
 

 

  
Abstract—Despite not producing good results, the method of 

moments is commonly applied when constructing the most 
appropriate parametric distribution for a given data file. An 
alternative approach is to use the so-called order statistics. The 
present paper deals with the application of order statistics (parameter 
estimation methods of L-moments and TL-moments) to the economic 
data. Theoretical advantages of L-moments over conventional 
moments become obvious when applied to small data sets, e.g. in 
hydrology, meteorology and climatology, considering extreme 
precipitation in particular. L-moments have been introduced as 
a robust alternative to classical moments of probability distributions. 
However, L-moments and their estimates lack some robust features 
specific to TL-moments, the latter representing an alternative robust 
version of the former, the so-called trimmed L-moments.  

The main aim of this paper is to apply the two methods to large 
data sets, comparing their parametric estimation accuracy with that of 
the maximum likelihood method. In this very case, the methods of L-
moments and TL-moments are utilized for the construction of income 
and wage distribution models. Three-parameter lognormal curves 
represent the basic theoretical probability distribution whose 
parameters were estimated simultaneously by the three methods of 
point parameter estimation, their accuracy having been then 
evaluated.  

Income and wage distributions for the Czech Republic have been 
examined. The total of 168 nominal income distributions (net annual 
household income per capita in CZK) for the years 1992, 1996, 2002 
(Microcensus survey) and 2004–2007 (EU Statistics on Income and 
Living Conditions survey) were analyzed, both the total income 
distribution for all Czech households and income distribution figures 
broken down into gender, historical land (Bohemia, Moravia), social 
group, municipality size, age and educational attainment having been 
studied. In addition, a total of 328 nominal wage distributions (gross 
monthly wage in CZK) have become the subject of the research; the 
total wage distribution for all CR employees as well as wage 
distributions in terms of gender, age, educational attainment and the 
classification of jobs and economic activities being examined. 2003–
2010 data in the form of an interval frequency distribution were 
drawn from the official website of the Czech Statistical Office.  

The study is divided into a theoretical part, in which mathematical 
and statistical aspects are described, and an analytical part, where the 
results of the three robust parameter estimation methods are 
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presented. For all analyzed income and wage distributions, the model 
distribution parameters were estimated using the methods of TL-
moments, L-moments and maximum likelihood simultaneously. The 
accuracy of the methods employed was then compared, TL-moments 
having brought the most accurate, L-moments the second best and the 
maximum likelihood method the least accurate results in general. 
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I. INTRODUCTION 
HE advantages of L-moments and TL-moments methods 
are obvious when applied to small data sets, 

predominantly in the fields of hydrology, meteorology and 
climatology, considering extreme precipitation in particular. 
The main aim of this paper is to utilize the two methods of 
parameter estimation in large data sets and compare their 
accuracy to that of the maximum likelihood method.  

The total income distribution for all Czech households as 
well as income distributions broken down by gender, historical 
land (Bohemia, Moravia), social group, municipality size, age 
and educational attainment are examined. The total wage 
distribution for all employees of the Czech Republic and wage 
distributions divided in terms of gender, job category, 
economic activity, age and educational attainment are also 
studied. Altogether, 168 distributions of net annual household 
income in CZK (nominal income) and 328 distributions of 
gross monthly wage in CZK (nominal wage) have been 
researched. The income distribution data coming from the 
years 1992, 1996 and 2002 originate from the Microcensus 
statistical survey, those for the years 2004–2007 being 
generated from the EU-SILC survey. All the data were taken 
from the Czech Statistical Office. Data concerning the wage 
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distribution (in the form of an interval frequency distribution) 
for the period 2003–2010 were also downloaded from the 
official CSO website. Three-parameter lognormal curves 
represent the basic theoretical probability distribution. For all 
analyzed income distributions, the model distribution 
parameters were estimated using the methods of L-moments, 
TL-moments and maximum likelihood simultaneously, their 
accuracy having been subsequently compared. 

L-moments form the basis for a general theory that includes 
the summarization and description of theoretical probability 
distributions and obtained sample data sets, parameter 
estimation of theoretical probability distributions and 
hypothesis testing of their parameter values. The theory of L-
moments includes such established methods like the use of 
order statistics and the Gini middle difference. It leads to some 
promising innovations in the area of measuring skewness and 
kurtosis of the distribution, providing relatively new methods 
of parameter estimation for a particular distribution. L-
moments can be defined for any random variable whose 
expected value exists. The main advantage of L-moments over 
conventional moments is that the former can be estimated by 
linear functions of sample values and are more resistant to the 
influence of sample variability. L-moments are more robust 
than conventional moments to the existence of outliers in the 
data, allowing better conclusions reached on the basis of small 
samples of the basic probability distribution. L-moments 
sometimes bring even more efficient parameter estimations of 
parametric distribution than the estimations acquired using the 
maximum likelihood method, particularly for small samples. 

L-moments are an alternative system describing the shape of 
the probability distribution. They have certain theoretical 
advantages over conventional moments resting in the ability to 
characterize a wider range of distribution. They are more 
resistant to outliers compared with conventional moments and 
less prone to estimation bias, the approximation by asymptotic 
normal distribution being more accurate in finite samples. L-
moments are analogous to conventional moments. They can be 
estimated based on linear combinations of sample order 
statistics, i.e. L-statistics. L-moments and their estimations, 
however, lack some robust features that belong to TL-
moments, the latter (the trimmed L-moments) representing an 
alternative robust version of the former. 

All calculations were performed using Statgraphics and SAS 
statistical software packages, the Microsoft Excel spreadsheet 
and mathematical software R.  

II. MATERIAL AND METHODS  

A. Wage Distribution 
The research database consists of the total wage distribution 

for all employees in the Czech Republic together and the wage 
distribution of relatively homogeneous groups of the Czech 
population broken down by gender, job classification (see 
Table I), industrial classification of economic activities 
(Tables II and III), age and educational attainment (Table IV); 

all distributions were measured in the period 2003–2010. In 
the observed years, however, a substantial change occurred in 
the economic activity nomenclature, the standard industrial 
classification (SIC) having been replaced by the new statistical 
nomenclature (CZ-NACE); see Tables II and III. This disrupts 
the continuity of the time series obtained over the given 
period, data for the years 2003–2008 being based on the 
former while those for the 2009–2010 period on the latter 
classification. 

The research design involved the employees in the Czech 
Republic. The gross monthly wage in CZK (nominal wage) 
was the research variable, interval frequency distributions with 
extreme open intervals being the subject of the research. They 
are indicated in the following standard tables – available in the 
Czech Statistical Office website –, presenting percentages of 
employees in gross monthly wage brackets broken down by: 

• gender; 
• main job categories; 
• industry; 
• age; 
• educational attainment. 

The following CSO analytical tables provided details of the 
survey sample (sample sizes): 

• number of employees and their average gross monthly 
wages in the main job categories according to 
educational attainment – males; 

• number of employees and their average gross monthly 
wages in the main job categories according to 
educational attainment – females; 

• number of employees and their average gross monthly 
wages in the main job categories according to 
educational attainment; 

• number of employees and their average gross monthly 
wages according to industry and age; 

• number of employees and their average gross monthly 
wages according to age and educational attainment. 

Additional data were adopted from the following regional 
table on the CSO website: 

• structure of the average gross monthly wage in the 
regions. 

Tables V–X give information on sample sizes of the above 
wage distributions. 

The Czech Statistical Office (CSO) draws information on 
the development of gross monthly wages from two sources 
simultaneously. Enterprise payroll reporting is the first one, 
offering reliable data on wages in the national economy that 
can be sorted by business criteria, such as sectors or size 
groups, not providing more detailed classification though. 
Structural statistics are another source of data. They provide 
the most detailed information on wages of individual 
employees using various classification criteria, occupational 
ones in particular. The Czech Statistical Office receives an 
overview of the wage distribution among employees from 
those statistics as well.  
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Table I Job classification 
Main job categories Code 
Legislative, leading and managing staff 1,000 
Scientific and professional staff 2,000 
Technical, medical and pedagogical staff 3,000 
Junior administrative staff 4,000 
Operational staff in services and trade 5,000 
Qualified workers in agriculture, forestry 
and fishing 6,000 

Craftsmen, qualified producers and 
processors 7,000 

Machine and equipment operators 8,000 
Auxiliary and unqualified workers 9,000 

Source: http://www.czso.cz 
 

Table II Industrial classification of economic activities  
(2003–2008) 

Sections of industrial classification of 
economic activities (SIC) 

 
Marker 

Agriculture, forestry and fishing A+B 
Industry C-E 
Building industry F 
Trade; maintenance of motor vehicles and 
products for personal and household 
consumption 

 
G 

Accommodation and catering H 
Transportation, warehousing and 
communications I 

Financial intermediation J 
Real estate and rental activities; 
entrepreneurial activities K 

Public administration and defense; 
compulsory social security L 

Education M 
Health and social care; veterinary activities N 
Other public, social and personal services O 

Source: http://www.czso.cz 
 

Table III Classification of economic activities (2009–2010) 
Nomenclature of economic activities (CZ-
NACE) 

 
Marker  

Agriculture, forestry and fishing A 
Industry B-E 
Building industry F 
Trade; maintenance of motor vehicles G 
Transportation and warehousing H 
Accommodation, catering and hospitality I 
Information and communication activities J 
Finance and insurance K 
Real estate activities L 
Professional, scientific and technical 
activities M 

Administrative and support activities N 
Public administration and defense, 
compulsory social security O 

Education P 
Health and social care Q 
Cultural, entertainment and recreational 
activities R 

Other activities S 
Source: http://www.czso.cz 

Table IV Classification by age and educational attainment 
Age Education 
to 19 years Primary and incomplete 

from 20 to 24 years Secondary without high school 
diploma 

from 25 to 29 years Secondary with high school 
diploma 

from 30 to 34 years Higher professional and 
undergraduate 

from 35 to 39 years Tertiary (2nd degree) 
from 40 to 44 years Source: http://www.czso.cz 

 
 

from 45 to 49 years 
from 50 to 54 years 
from 55 to 59 years 
from 60 to 64 years 
from 65 years 

 
The CSO has cooperated with the Ministry of Labor and 

Social Affairs in terms of structural statistics since 1996, 
finding out about individual employees’ wages. Thus, apart 
from gross wage components, individual employees’ personal 
data, such as gender, age and educational attainment are under 
scrutiny. The collected statistics data are used for a detailed 
analysis of the labor market and its development. In structural 
statistics on gross wages, all wages earned for work 
performed, including premiums, bonuses or additional salaries 
as well as earning compensations for time not worked during 
vacations or due to work impediments are reported. The 
average wage of an employee in a given year is calculated in 
relation to his/her paid time, i.e. the number of months he/she 
really receives a wage or its compensation. The duration of 
sickness and other unpaid absences from work is therefore not 
included. The calculated average gross monthly wage 
precisely characterizes comparable wage levels of different 
jobs, being based on an exactly given amount of paid time. 
The average gross wage calculated in this way is not the same 
as that obtained from standard business reports that measure 
the total volume of wages against the number of registered 
staff of an organization, including those on sickness or other 
unpaid leave of less than four weeks. Except for the effect of 
unpaid leaves and a different database, further differences 
between the wage levels relative to other statistical sources 
may arise due to the fact that employees whose weekly 
working load is less than thirty hours are not included in the 
structural statistics. Results of structural statistics are 
produced by the sample survey, being therefore affected by 
a sample error. Moreover, some of the addressed units do not 
provide the data required for the sample analysis and certain 
records have to be excluded because of a high error rate, 
which causes minor distortions; see more at www.czso.cz. 
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Table V Sizes of sample sets of wage distribution broken down by gender 
 
Gender 

Year 
2003 2004 2005 2006 2007 2008 2009 2010 

Total 1,018,934 1,404,496 1,515,527 1,614,372 1,673,498 1,711,811 1,651,506 1,662,829 
Male 559,863 711,551 769,802 813,821 858,656 875,139 846,028 850,788 
Female 459,071 692,945 745,725 800,551 814,842 836,672 805,478 812,041 

Source: http://www.czso.cz 

 
Table VI Sizes of sample sets of wage distribution broken down by job classification 

 
Code 

  Year 
2003 2004 2005 2006 2007 2008 2009 2010 

1000 60,300 84,264 91,302 96,382 104,516 107,599 109,281 110,155 
2000 109,779 241,959 248,320 270,252 273,497 285,880 289,894 295,775 
3000 250,639 355,319 383,730 402,651 402,553 413,067 399,798 401,402 
4000 77,565 95,552 101,920 111,470 118,124 122,083 123,784 125,778 
5000 63,685 95,247 108,172 122,661 128,053 134,127 134,560 134,370 
6000 9,912 10,697 11,417 10,098 8,859 7,877 7,630 7,250 
7000 193,715 211,356 226,527 232,399 243,246 243,390 221,308 225,420 
8000 192,378 214,229 240,057 258,177 282,001 284,634 260,355 256,472 
9000 60,961 95,873 104,082 110,282 112,649 113,154 104,896 106,207 

Source: http://www.czso.cz 

 
Table VII Sizes of sample sets of wage distribution broken down by the industrial classification of economic activities 

 
Marking 

Year 
2003 2004 2005 2006 2007 2008 2009 2010 

A+B 28,132 31,055 33,004 27,502 24,296 21,537 − − 
C-E 431,534 479,817 522,097 554,783 600,924 603,951 − − 
F 38,261 42,223 45,242 43,941 50,073 50,437 − − 
G 52,070 63,221 74,232 93,353 111,944 120,464 − − 
H 8,556 11,188 12,020 15,447 16,858 16,997 − − 
I 161,895 157,881 142,185 141,819 143,612 144,536 − − 
J 47,932 52,140 48,601 51,893 53,506 55,993 − − 
K 35,911 43,758 49,080 59,836 67,604 79,003 − − 
L 68,971 192,993 217,590 235,536 232,800 233,438 − − 
M 33,508 173,477 183,277 189,068 187,325 188,730 − − 
N 93,480 125,784 149,429 160,700 144,471 155,533 − − 
O 18,684 30,959 38,770 40,494 40,085 41,192 − − 

Source: http://www.czso.cz 

 
Table VIII Sizes of sample sets of wage distribution broken down by the NACE classification of economic activities 

 
Marking 

Year 
2003 2004 2005 2006 2007 2008 2009 2010 

A − − − − − − 20,560 18,659 
B-E − − − − − − 558,904 560,299 
F − − − − − − 50,789 52,769 
G − − − − − − 125,373 130,348 
H − − − − − − 147,328 141,193 
I − − − − − − 17,132 16,673 
J − − − − − − 42,058 43,602 
K − − − − − − 57,149 57,715 
L − − − − − − 5,540 5,093 
M − − − − − − 20,922 22,978 
N − − − − − − 41,588 44,533 
O − − − − − − 208,606 212,765 
P − − − − − − 185,453 186,092 
Q − − − − − − 143,595 143,877 
R − − − − − − 23,756 23,033 
S − − − − − − 2,753 3,200 

Source: http://www.czso.cz 
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Table IX Sizes of sample sets of wage distribution broken down by age 
Age 
(in years) 

Year 
2003 2004 2005 2006 2007 2008 2009 2010 

      − 19 2,805 3,567 4,314 5,887 6,879 6,455 4,245 3,927 
20 – 24 63,496 76,595 86,317 97,025 105,523 106,958 94,097 91,160 
25 – 29 129,298 166,682 178,259 188,289 193,222 190,866 177,961 177,044 
30 – 34 121,054 173,799 197,020 217,720 227,325 231,284 220,500 216,899 
35 − 39 122,324 170,268 183,513 198,609 210,780 226,740 233,095 246,619 
40 − 44 123,278 184,904 204,368 218,373 225,528 226,265 216,461 218,695 
45 − 49 148,936 198,188 205,107 208,653 209,454 217,468 220,087 227,237 
50 − 54 166,456 221,988 222,759 220,744 220,894 216,944 201,687 194,387 
55 − 59 113,813 163,222 182,059 194,592 200,682 207,352 201,606 203,674 
60 − 64 22,019 36,571 42,151 52,473 60,501 66,795 66,452 68,220 
65 + 5,455 8,712 9,660 12,007 12,710 14,684 15,315 14,967 

Source: http://www.czso.cz 

 
Table X Sizes of sample sets of wage distribution broken down by educational attainment 

 
Education 

Year 
2003 2004 2005 2006 2007 2008 2009 2010 

Primary and 
incomplete 95,112 119,480 125,972 129,027 135,399 137,190 120,254 116,383 

Secondary without  
high school diploma 377,347 470,688 523,744 553,522 587,081 591,669 557,780 555,266 

Secondary with high 
school diploma 408,562 560,237 575,668 621,306 629,447 644,576 625,631 627,073 

Higher profess. and 
undergraduate 15,749 29,144 40,055 42,856 47,967 54,439 57,747 64,684 

Tertiary (2nd deg.) 122,164 224,947 250,088 267,661 273,604 283,937 290,094 299,423 
Source: http://www.czso.cz

 B.   Income Distribution 
In terms of the accuracy of different methods of point 

parameter estimation, the results obtained by the analysis of 
wage distribution are compared to those produced by the 
research of income distribution in the Czech Republic. This 
project examined the total distribution of net annual 
household income per capita in CZK (nominal income) for all 
households of the Czech Republic together as well as income 
distribution figures broken down into gender, historical land 
(Bohemia and Moravia; see Fig. 1), social group (junior 
employee, self-employed, senior employee, pensioners either 
economically active or inactive, unemployed and others), 
municipality size (0–999, 1,000–9,999, 10,000–99,999, 
100,000 and more inhabitants), age (0–29, 30–39, 40–49, 50–
59, from 60 years of age) and educational attainment 
(primary, secondary, complete secondary, tertiary), 
households having been categorized according to the head of 
the household (male in the vast majority). Individual data for 
the years 1992 (sample of 16,233 households), 1996 (28,148), 
2002 (7,973), 2004 (4,351), 2005 (7,483), 2006 (9,675) and 
2007 (11,294) were collected by the Czech Statistical Office – 
the first three years based on the Microcensus survey findings, 
the latter four years on the EU-SILC statistical survey 
conducted between 2005 and 2008. The information on the 
sample sizes of these income distributions is presented in 
Table XI. 

 
 

 
 
The head of the household is always a male in two-parent 

families (a husband-and-wife or cohabiting type), regardless 
of the economic activity. In single-parent families (a one-
parent-with-children type) and non-family households whose 
members are related neither by marriage (partnership) nor 
parent-child relationship, the key criterion for determining the 
head of the household is economic activity, another aspect 
being the amount of money income of individual household 
members. The former criterion also applies in the case of 
more complex household types, for instance, in joint 
households of more two-parent families. For this reason, we 
can observe smaller sample sizes in the cases where the head 
of the household is a female as compared to those of male-
headed households; see Table XI. 

Different approaches to the parameter estimation and 
various types of estimators have been currently under 
discussion in some areas of statistics and applied 
mathematics, see, e.g. [13], [21], and [24]–[25], the 
application of the L-moments method of the parameter 
estimation being studied, e.g. in [2]−[11]. The development 
and modeling of wage and income distributions have been 
also dealt with extensively in the statistical literature; see, e.g. 
[19]–[20] or [22]–[23]. A secondary aim of the present paper 
is to analyze the development of wage and income 
distributions in the Czech Republic in the period prior to and, 
as for wage distribution, during the global economic 
downturn. 
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Fig. 1 Historical lands of the Czech Republic and their regions 

Source:  http://www.google.cz 
 

Table XI Sample sizes of income distributions broken down by relatively homogeneous categories 
  

Set 
Year 

G
en

-
de

r 1992 1996 2002 2004 2005 2006 2007 
Men 12,785 21,590 5,870 3,203 5,456 7,151 8,322 
Women 3,448 6,558 2,103 1,148 2,027 2,524 2,972 

C
ou

n-
try

 Czech Republic 16,233 28,148 7,973 4,351 7,483 9,675 11,294 
Bohemia 9,923 22,684 5,520 2,775 4,692 6,086 7,074 
Moravia 6,310 5,464 2,453 1,576 2,791 3,589 4,220 

So
ci

al
 g

ro
up

 Lower employee 4,953 4,963 1,912 1,068 1,880 2,385 2,811 
Self-employed 932 1,097 740 391 649 802 924 
Higher employee 3,975 4,248 2,170 1,080 1,768 2,279 2,627 
Pensioner with s EA 685 594 278 178 287 418 493 
Pensioner without EA 4,822 4,998 2,533 1,425 2,577 3,423 4,063 
Unemployed 189 135 172 131 222 258 251 

M
un

ic
ip

. 
si

ze
 

0–999 inhabitants 2,458 3,069 999 727 1,164 1,607 1,947 
1,000–9,999 inhabitants 4,516 4,471 2,300 1,233 2,297 3,034 3,511 
10,000–99,999 inhabitants 5,574 5,755 2,401 1,508 2,655 3,347 3,947 
100,000 and more inhabitants 3,685 2,853 2,273 883 1,367 1,687 1,889 

A
ge

 

To 29 years 1,680 2,809 817 413 627 649 827 
From 30 to 39 years 3,035 4,718 1,398 716 1,247 1,620 1,655 
From 40 to 49 years 3,829 6,348 1,446 738 1,249 1,609 1,863 
From 50 to 59 years 2,621 5,216 1,642 919 1,581 2,051 2,391 
From 60 years 5,068 9,057 2,670 1,565 2,779 3,746 4,558 

Ed
uc

a-
tio

n 

Primary 9,302 15,891 3,480 553 940 1,183 1,385 
Secondary 4,646 3,172 2,493 3,186 5,460 7,168 8,371 
Complete secondary 1,951 6,356 1,129 118 282 266 319 
Tertiary 334 2,729 871 494 801 1,058 1,219 

Source: Own research 
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Let X be a random variable with the distribution function 
F(x) and quantile function x(F) and let X1, X2, …, Xn denote 
a random sample from the given distribution of the sample 
size n. Then X...XX nnnn ::2:1 ≤≤≤  are the order statistics 
of the random sample of size n, coming from the distribution 
of the random variable X.  

III.   THEORY AND CALCULATION 

A. Lognormal Distribution 
The lognormal distribution was pioneered, for instance, by 

Galton, McAlister, Kapteyn, van Uven and Gibrat, the initial 
study of this probability distribution being followed up, e.g. 
by Fechner, Wicksell, Nydell, Davies, Yuan, Finney, Kalecki, 
Gaddum, Bliss, Hatch, Choute, Krumbein, Bol\shev, 
Prohorov, Rudinov, Herdan, Kalinske, Kolmogorov, Kottler, 
Wise, Cochran, Williams, Grundy, Herdan, Pearce, Koch, 
Aitchison, Brown, Wu and many others. Among more recent 
authors are, for example, Nakamura, Crow, Shimizu, Johnson, 
Balakrishnan, Kleiber or Kotz; see [16]‒[17]. The lognormal 
distribution as a model for sample distributions is of 
unquestionable significance, its distinguishing properties 
being sequential actions of mutually dependent factors, 
a tendency towards the development in geometric progression 
and the conversion of a random to systematic variability, i.e. 
the differentiation. The lognormal model is applied in diverse 
fields such as astronomy, engineering or sociology. 

In economics, wages and incomes of the population are 
among the many phenomena that the lognormal model allows 
to interpret. It is necessary to observe the following 
requirements. 

• The curve must represent a given shape of the 
frequency distribution in the best possible way, being 
therefore most closely congruent with the respective 
modeled distribution in terms of its basic properties 
such as the location, variability, skewness and 
kurtosis. 

• The shape of the curve is supposed to be as simple as 
possible so that it can be manipulated and, above all, 
it should depend on a small number of parameters 
that can be estimated by a suitable method of point 
estimation. 

• Moreover, the interpretability of the curve 
parameters is required so that their values can be 
predicted without using the methods of a statistical 
time series analysis, particularly in the cases when 
sufficiently long time series are not available. 

Every choice is always a certain compromise between the 
above mentioned requirements. Parameter functions of 
lognormal curves have a very simple interpretation. In the 
case of a two-parameter lognormal curve, the expression 
exp(μ) represents the median of the gross monthly wage or the 
median of net annual household income per capita, parameters 
μ and σ2 representing the expected value and variance of 
natural logarithms of wages and incomes, respectively. In the 

case of a three-parameter lognormal curve, the parameter θ 
represents this curve’s minimum, the expression exp(μ) 
indicating the distance of the wage or income median from 
this theoretical minimum. Parameters μ and σ2 represent the 
expected value and variance of the natural logarithms of wage 
or income distances from the theoretical minimum θ. 

The notion that the logarithms of economic variable values 
are normally distributed is slightly outdated. It stems from the 
fact that the effects of a large number of different impulses, 
resulting in the value of a monitored variable, are proportional 
to the present state of the variable. 

However, a strong agreement of the model with global 
wage or income distributions does not imply that the 
lognormal distribution is appropriate for any case or, 
eventually, for extremely homogeneous employee or 
household subsets created through a detailed classification by 
certain demographic or socio-economic criteria. 

As for the applicability of the lognormal distribution, it is 
obvious that the wage or income distribution can be captured 
by a lognormal curve with a sufficient accuracy in the 
standard case of not too detailed classification by relatively 
homogeneous subgroups of employees or households. The 
parameters of lognormal distribution can be properly 
estimated from the sample or, alternatively, the curve can be 
shifted either by subjectively determined wage or income 
minimum or by the shift parameter – the third of the 
parameters estimated on a sample basis. This solution brought 
about positive outcomes in the construction of global wage 
and income models, both on national scales and for relatively 
homogeneous large groups created only through a rough 
classification according to some demographic and socio-
economic criteria. However, the lognormal model is not to be 
considered universal to such an extent that it would be 
suitable for any subset of employees or households created 
through a very detailed classification. (This kind of 
classification is not the subject of this research in terms of 
either wage or income distribution anyway.) 

Two-Parameter Lognormal Distribution 
The random variable X has a two-parameter lognormal 

distribution with parameters µ and σ2, where –∞ < µ < ∞, 
σ2 > 0 if its probability density function has the form 

 
f(x; µ, σ2) ,

2
)(lnexp

2
1

2

2













σ

µ−
−⋅

π⋅⋅σ
=

x
x

 
 

,0>x
 

 
 otherwise equaling 0. (1) 

 
The lognormal distribution with parameters µ and σ2 is 
denoted LN(µ, σ2). The probability density function of the 
two-parameter lognormal distribution is asymmetric, 
positively skewed. Figs. 2 and 3 show a graph of the 
probability density function of the two-parameter lognormal 
distribution LN(µ, σ2) depending on the values of distribution 
parameters µ and σ2. 

The probability density function of the two-parameter 
lognormal distribution is sometimes given in the form 
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 otherwise equaling 0, (2) 
 
probability density function formulae (1) and (2) being related 
as 

δ
σ

δ
γ

µ
1and =−= . 

We denote ),(exp 2σ=ω  the r-th common and central 
moments of the two-parameter lognormal distribution having 
the form 
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specifically, 
 

,)3(exp)2()1( 223
3 µ⋅⋅+ω⋅−ω⋅ω=µ /  (5) 

  
.)4(exp)332()1( 23422

4 µ⋅⋅−ω+ω+ω⋅−ω⋅ω=µ
 (6) 

 
It follows from (3) and (4) that the expected value and 
variance of the random variable X, having a two-parameter 
lognormal distribution, depends on both parameters 

 

,
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exp)(
2
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
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

 σ+µ=XE
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.XD )1()(2exp]1)([exp)2(exp)( 22 −ω⋅ω⋅µ=−σ⋅σ+µ=

 (8) 

 
On the other hand, the median (as well as the geometric mean 
Geo(X) in this case) depends only on one parameter μ 
 

,)(exp)( µ=XMedian  (9) 
 
which follows from the formula for a 100 · P% quantile of 
this distribution 
 

),(exp ux PP ⋅σ+µ=  (10) 
 
where uP is the 100 · P% quantile of the standardized normal 
distribution. Thus, it holds that 
 

).(exp)()( µ== XGeoXMedian  (11) 
 

The two-parameter lognormal distribution is unimodal, with 
one mode 
 

.)(exp)(exp)( 2
ω

µ
=σ−µ=XMode

  

(12) 

 
The relation between the expected value, median and mode, 
resulting from (7), (9) and (12), which is typical especially for 
a positively skewed frequency distribution, is expressed as 
follows 
 

.XModeXMedianXE )()()( >>  (13) 
 

The coefficient of variation of the two-parameter lognormal 
distribution, see [9], depends only on one variability 
parameter σ2 
 

.XV 11)(exp)( 2 −ω=−σ=  (14) 
 
Another interesting characteristic of the variability, the Gini 
coefficient, also depending – in the case of the two-parameter 
lognormal distribution – on a single parameter σ2, has the 
form  
 

,
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alternatively, 
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see [9], where erf(z) is the so-called error function 
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z
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Moment measures of the skewness and kurtosis also depend 
on a single parameter σ2 
 

,)2(1]2)([exp1)(exp 22
1 +ω⋅−ω=+σ⋅−σ=β

 (17) 
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 (18) 
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Fig. 2 Probability density function of two-parameter lognormal distribution for the parameter value σ = 2 (σ2 = 4) 

Source: Own research 
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Fig. 3 Probability density function of two-parameter lognormal distribution for the parameter value μ = 3 

Source: Own research 
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Three-Parameter Lognormal Distribution 
The random variable X has a three-parameter lognormal 

distribution with parameters µ, σ2 and θ, where –∞ < µ < ∞, 
σ2 > 0, –∞ < θ < ∞ if its probability density function has the 
form 
 

 
f(x; µ, σ2, θ) ,
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x
x

 
 

,> θx  

 otherwise equaling 0. (19) 
 
The lognormal distribution with parameters µ, σ2 and θ (the 
beginning of the distribution, theoretical minimum) is denoted 
LN(µ, σ2, θ). The probability density function of the three-
parameter lognormal distribution is again asymmetric, 
positively skewed. Figs. 4 and 5 show a graph of the 
probability density function of the three-parameter lognormal 
distribution LN(µ, σ2, θ) depending on the values of 
distribution parameters µ, σ2 and θ. 

The probability density function of the three-parameter 
lognormal distribution is sometimes given in the form 
 

 
f(x; γ, δ, θ) ,
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and it holds again for the probability density functions (19) 
and (20) that 

δ
σ

δ
γ

µ
1and =−= . 

Having substituted θ = 0 (distribution minimum) into the 
formulas for the probability density function of the three-
parameter lognormal distribution (19) and (20), we obtain the 
expressions for the probability density function of the two-
parameter lognormal distribution (1) and (2). 

The distribution function of the three-parameter lognormal 
distribution has the form 
 

.>,
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(21) 

 
If the random variable X has a three-parameter lognormal 

distribution LN(µ, σ2, θ), then the random variable 
 

)(ln θ−= XY  (22) 
 
has a normal distribution N(µ, σ2) and the random variable 
 

)(ln)(ln
θ−⋅δ+γ=

σ
µ−θ−

= XXU
 

(23) 

 
has a standardized normal distribution N(0; 1). Thus, the 
parameter µ is the expected value of the random variable (22), 
the parameter σ2 being its variance. The parameter θ is the 
beginning of the distribution, i.e. the theoretical minimum of 
the random variable X. 

For )(exp 2σ=ω , the r-th common and central moments of 
the three-parameter lognormal distribution have the form 
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specifically again, 
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From (24) and (25), we obtain the expressions for the 
expected value and variance of the random variable X having 
a three-parameter lognormal distribution 
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The expression for the median 
 

)(exp)( µ+θ=XMedian  (30) 
 
is based on the formula for a 100 · P% quantile of this 
distribution 
 

).(exp ux PP ⋅σ+µ+θ=  (31) 
 
The three-parameter lognormal distribution is unimodal, with 
one mode 
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The relation between the expected value, median and mode,  
 

,)()()( XModeXMedianXE >>  (33) 
 
which is typical especially for a positively skewed frequency 
distribution, results again from the equations (28), (30) and 
(32).  

However, the coefficient of variation of the three-parameter 
lognormal distribution is the function of all three distribution 
parameters µ, σ2 and θ, see [9], 
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Fig. 4 Probability density function of three-parameter lognormal distribution for parameter values σ = 2 (σ2 = 4); θ = 2 

Source: Own research 
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Fig. 5 Probability density function of three-parameter lognormal distribution for parameter values μ = 3; θ = 2 

Source: Own research 
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The Gini coefficient also depends on the values of all three 
distribution parameters µ, σ2 and θ, see [9],  
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Moment measures of the skewness and kurtosis depend on 

a single parameter σ2 
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Four-Parameter Lognormal Distribution 
The random variable X has a four-parameter lognormal 

distribution with parameters µ, σ2, θ and τ, where –∞ < µ < ∞, 
σ2 > 0, –∞ < θ < τ < ∞ if its probability density function has 
the form 
 

 
f(x; µ, σ2, θ, τ) 
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The lognormal distribution with parameters µ, σ2, θ and τ is 
denoted LN(µ, σ2, θ, τ). The probability density function of 
the four-parameter lognormal distribution LN(µ, σ2, θ, τ) can 
have very different shapes depending on the values of 
distribution parameters; see Figs. 6−8. The distribution can be 
also bimodal for σ2 > 2 and 
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The probability density function of the four-parameter 
lognormal distribution is sometimes given in the form 
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and it holds again for the probability density functions (38) 
and (39) that 

δ
σ

δ
γ

µ
1and =−= . 

If the random variable X has a four-parameter lognormal 
distribution LN(µ, σ2, θ, τ), then the random variable  
 

X
XY

−τ
θ−

= ln

 
(40) 

 
has a normal distribution N(µ, σ2), the random variable 
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having a standardized normal distribution N(0; 1).  
The parameter µ is thus the expected value of the random 

variable (40), parameter σ2 being its variance. The parameter 
θ is the beginning of the distribution of the random variable X 
(theoretical minimum), parameter τ representing its endpoint 
(theoretical maximum). 

 

B.   L-moments and TL-moments 
L-moments of Probability Distribution 
Let X be a continuous random variable that has 

a distribution with the distribution function F(x) and quantile 
function x(F). Let X...XX nnnn ::2:1 ≤≤≤  be the order 
statistics of a random sample of the sample size n, coming 
from the distribution of the random variable X. L-moment of 
the r-th order of the random variable X is defined as 
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The expected value of the r-th order statistic of a random 
sample of size n has the form 
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If we substitute equation (43) into equation (42), we obtain 
after adjustments 
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and )]([ xFPr

∗  is the r-th shifted Legendre polynomial. 
Substituting expression (43) into expression (42), we also 
obtain 
 

....,2,1,)(d)]([1)]([)(
!!)1(

!1
)1(

1 1

0

1

0

1 =−⋅⋅⋅
⋅−−

⋅






 −
⋅−⋅=λ ∑ ∫

−

=

−− rxFxFxFFx
jjr

r
j

r
r

r

j

jjrj
r

 

 
(46) 

 
The letter “L” in “L-moments” indicates that the r-th L-

moment λr is a linear function of the expected value of 
a certain linear combination of the order statistics. The actual 
estimation of the r-th L-moment λr based on the obtained data 
sample is then a linear combination of order data values, i.e. 
L-statistics. 
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Fig. 6 Probability density function of four-parameter lognormal distribution for parameter values σ = 2 (σ2 = 4); θ = 2; τ = 20 

Source: Own research 
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Fig. 7 Probability density function of four-parameter lognormal distribution for parameter values σ = 2 (σ2 = 4); θ = 2; τ = 20 

Source: Own research 
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Fig. 8 Probability density function of four-parameter lognormal distribution for parameter values μ = –1; θ = 2; τ = 20 

Source: Own research 

 
The first four L-moments of the probability distribution are 

now defined as 
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The probability distribution can be specified by its L-
moments, even if some of its conventional moments do not 
exist, the opposite, however, not being true. It can be proved 
that the first L-moment λ1 is a characteristic of the location 
and the second L-moment λ2 is that of variability. It is often 
desirable to standardize higher L-moments λr, r ≥ 3, so that 
they can be independent on specific units of the random 
variable X. The ratio of L-moments of the r-th order of the 
random variable X is defined as 
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(51) 

 
We can also define a function of L-moments which is 

analogous to the classical coefficient of variation, i.e. the so 
called L-coefficient of variation 

.
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2

λ

λ
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(52) 

 
The ratio of L-moments τ3 is the skewness characteristic, 

the ratio of L-moments τ4 being the kurtosis characteristic of 
the respective probability distribution. The main probability 
distribution properties are very well summarized by the 
following four characteristics: L-location λ1, L-variability λ2, 
L-skewness τ3 and L-kurtosis τ4. L-moments λ1 and λ2, L-
coefficient of variation τ and ratios of L-moments τ3 and τ4 are 
the most useful characteristics allowing us to summarize the 
probability distribution. Their main properties are existence 
(if the expected value of the distribution exists, then all its L-
moments exist) and uniqueness (if the expected value of the 
distribution exists, then L-moments define the only one 
distribution, i.e. no two distributions have the same L-
moments). 

Using the equations (47)−(50) and (51), we obtain the 
expressions for L-moments and the ratios of L-moments for 
the chosen probability distributions, respectively; see 
Table XII. 
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Table XII Formulas for the distribution function or quantile function, L-moments and ratios of L-moments of chosen probability 
distributions 

Distribution Distribution function F(x) or quantile function x(F) L-moments and ratios of L-moments 
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Source: [14], own research 
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Table XII Continuation 
Distribution Distribution function F(x) or quantile function x(F) L-moments and ratios of L-moments 
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1 Ix(p, q) is an incomplete beta function 

Sample L-moments 
L-moments are usually estimated from a random sample 

drawn from the unknown distribution. Since the r-th L-
moment λr is a function of order statistics expected values of 
the r-sized random sample, it is naturally estimated using the 
so-called U-statistic, i.e. the corresponding function of the 
sample order statistics (averaged over all subsets of the 
sample size r that may be formed from the obtained random 
sample of size n). 

Let x1, x2, …, xn be a sample and x...xx nnnn ::2:1 ≤≤≤  an 
order sample. Then the r-th sample L-moment can be written 
as 
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Hence the first four sample L-moments have the form 
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U-statistics are widely used, especially in nonparametric 

statistics. Their positive properties are the absence of bias, 
asymptotic normality and a slight resistance due to the 
influence of outliers. 

When calculating the r-th sample L-moment, it is not 
necessary to repeat the process over all subsets of the sample 
size r; this statistic can be expressed directly as a linear 
combination of the order statistics of a random sample of size 
n. 

The estimation of E(Xr:r) obtained using U-statistics can be 
written as r ·br−1, where 
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therefore generally, 
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The first sample L-moments can be denoted as 
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Overall, we can therefore write 
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The use of sample L-moments is similar to that of sample 

conventional L-moments. Sample L-moments summarize the 
basic properties of the sample distribution, namely the 
location (level), variability, skewness and kurtosis, thus 
allowing for the estimation of the corresponding properties of 
the probability distribution from which the sample comes. 
They can be employed in estimating the parameters of the 
relevant probability distribution. Sample L-moments are often 
preferred over conventional moments within such applications 
since – as the linear functions of sample values – the former 
are less sensitive to sample variability and measurement errors 
(in the case of extreme observations) than the latter. L-
moments therefore lead to more accurate and robust 
estimations of parameters (characteristics) of the basic 
probability distribution. 

Sample L-moments have already been used in statistics, 
however, not as part of a unified theory. The first sample L-
moment l1 is a sample L-location (sample average), the 
second sample L-moment l2 being a sample L-variability. 
Natural estimation of the ratio of L-moments (51) is the 
sample ratio of L-moments 
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Hence t3 is a sample L-skewness and t4 is a sample L-kurtosis. 
Sample ratios of L-moments t3 and t4 may be used as 
characteristics of skewness and kurtosis of the sample data 
set. 

The Gini middle difference relates to sample L-moments, 
having the form 
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and the Gini coefficient, which depends only on a single 
parameter σ in the case of a two-parameter lognormal 
distribution, depending, however, on the values of all three 
parameters in the case of a three-parameter lognormal 
distribution. Table XIII presents the expressions for parameter 
estimations of chosen probability distributions obtained using 
the method of L-moments. For more details, see, e.g. 
[1]−[11], [14]−[15], [18] and [26]. 
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Table XIII Formulas for parameter estimation provided by the method of L-moments of chosen probability distributions 
Distribution Parameter estimation 

Exponential 
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TL-moments of Probability Distribution 
An alternative robust version of L-moments will be 

introduced now. This modification of L-moments is called the 
“trimmed L-moments” and is noted TL-moments. In this 
modification of L-moments, the expected values of order 
statistics of a random sample (in L-moments definition of 
probability distributions) are replaced by the expected values 
of order statistics of a larger random sample, the sample size 
growing in such a way that it corresponds to the total size of 
the adjustment, as shown below. 

TL-moments have certain advantages over conventional L-
moments and central moments. TL-moment of probability 
distribution may exist even if the corresponding L-moment or 
central moment of this probability distribution does not exist, 
as it is the case of the Cauchy distribution. Sample TL-
moments are more resistant to outliers in the data. The method 
of TL-moments is not intended to replace the existing robust 
methods, but rather as their supplement, particularly in 
situations with outliers in the data. 

In this alternative robust modification of L-moments, the 
expected value E(Xr-j:r) is replaced by that of E(Xr+t1−j : 

r+t1+t2). For each r, we increase the size of a random sample 
from the original r to r + t1 + t2, working only with the 
expected values of these r modified order statistics 
Xt1+1:r+t1+t2, Xt1+2:r+t1+t2, …, Xt1+r:r+t1+t2 by trimming t1 
and t2 (the lowest and highest value, respectively, from 
a conceptual sample). This modification is called the r-th 

trimmed L-moment (TL-moment) and marked .), 21(λ tt
r  Thus, 

TL-moment of the r-th order of a random variable X is 
defined as 
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It is evident from the expressions (71) and (42) that TL-
moments are reduced to L-moments when t1 = t2 = 0. 
Although we can also consider applications where the 
adjustment values are not equal, i.e. t1 ≠ t2, we focus only on 
the symmetry of t1 = t2 = t. Then the expression (71) can be 
rewritten 
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Thus, for example, )( 21:1

(
1

) XE tt
t

++=λ  is the expected value of 
the median of a conceptual random sample of the sample size 
1 + 2t. It is to be noted here that λ )(

1
t  is equal to zero for 

distributions symmetric around zero. 
For t = 1, the first four TL-moments have the form¨ 
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Measurements of location, variability, skewness and kurtosis 
of a probability distribution analogous to conventional L-
moments (47)−(50) are based on λλλλ )))) 1(

4
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1 a,, . 
The expected value E(Xr:n) can be written using the formula 

(43). Applying the equation (43), we can re-express the right 
side of the equation (72)  
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(77) 

 
It is necessary to bear in mind that λ=λ rr

)0(  normally 
represents the r-th L-moment with no adjustment. 

The expressions (73)−(76) for the first four TL-moments 
(t = 1) may be written in an alternative manner 
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The distribution can be identified by its TL-moments, 
although some of its L-moments and conventional moments 

do not exit. For example, λ )1(
1  (the expected value of the 

median of a conceptual random sample of size three) exists 
for the Cauchy distribution, despite the first L-moment λ1 not 
existing. 

TL-skewness τ )(
3
t  and TL-kurtosis τ )(

4
t  can be defined 

analogously as L-skewness τ3  and L-kurtosis τ4  
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Sample TL-moments  
Let x1, x2, …, xn be the sample and x...xx nnnn ::2:1 ≤≤≤  

an order sample. The expression 
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is considered to be an unbiased estimation of the expected 
value of the (j + 1)-th order statistic Xj+1:j+l+1 in the conceptual 
random sample of the sample size (j + l + 1). Now we assume 
that in the definition of the TL-moment λ )(t

r  in (72) the 
expression E(Xr+t−j:r+2t) is replaced by its unbiased estimation 
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which is obtained by substituting j → r + t − j − 1 and 
l → t + j in (84). Now we get the r-th sample TL-moment 
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i.e. 
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which is an unbiased estimation of the r-th TL-moment .t

rλ )(
 

Let us note that for each j = 0, 1, …, r – 1, the values xi:n  

in (87) are not equal to zero only for r + t − j ≤ i ≤ n − t –j in 
relation to combination numbers. Simple adjustment of the 
equation (87) provides an alternative linear form 
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For example, for the first sample TL-moment (for r = 1) we 

obtain 
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where the weights are given by  

 

.

12

1

)
:

(









+








 −
⋅







 −

=

t
n

t
in

t
i

w t
ni

 
(90) 

 

The above results can be used to estimate TL-skewness 

τ )(
3
t  and TL-kurtosis τ )(

4
t  by simple ratios 
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We can choose t = nα which represents the amount of 

adjustment from each end of the sample, α being a certain 
ratio, where 0 ≤ α < 0,5.  

Table XIV contains the expressions and ratios for TL-
moments and expressions for parameter estimations of chosen 
probability distributions obtained using the method of TL-
moments (t = 1); for more, see, e.g. [12]. 

 

C.   Maximum Likelihood Method 
Let the random sample of the sample size n come from 

a three-parameter lognormal distribution with the probability 
density function (19). The likelihood function then has the 
form 
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We determine the natural logarithm of the likelihood function 
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 (94) 
 
We put the first partial derivations of the logarithm of the 
likelihood function according to μ and σ2 in equality to zero, 
obtaining a system of likelihood equations  
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After adjustment, we obtain maximum likelihood estimations 
of the parameters μ and σ2 for the parameter θ  
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Table XIV Formulas for TL-moments and ratios of TL-moments and formulas for parameter estimations made by the method of 
TL-moments of chosen probability distributions (t = 1) 

Distribution TL-moments and ratios of TL-moments Parameter estimation 
 
 
Normal 

µ=λ(1)
1  

σ=λ ,2970(1)
2  

0(1)
3 =τ  

,0620(1)
4 =τ  

 
lˆ =µ (1)
1  

0,297

(1)
2lˆ =σ  

 
 
Logistic 

µ=λ(1)
1  

σ=λ ,5000(1)
2  

0(1)
3 =τ  

,0830(1)
4 =τ  

 
lˆ =µ (1)
1  

lˆ 2 (1)
2=σ  

 
 
Cauchy 

µ=λ(1)
1  

σ=λ ,6980(1)
2  

0(1)
3 =τ  

,3430(1)
4 =τ  

 
lˆ =µ (1)
1

 

0,698

(1)
2lˆ =σ  

 
 
 
 
Exponential 

6
5(1)

1
α

=λ  

4
(1)
2

α
=λ  

9
2(1)

3 =τ  

12
1(1)

4 =τ  

 
 
 

5
6 (1)

1lˆ =α  

Source: [12], own research

,1
)(ln

)(
n

ˆ

n

i
ix∑ θ

=
−

=θµ  (97) 

  

.
)]()([ln

)( 1

2

2

n

ˆxi
ˆ

n

i
∑ θµ−θ−
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If the value of the parameter θ is known, we get maximum 

likelihood estimations of the remaining two parameters of 
three-parametric lognormal distribution using the equations 
(97) and (98). However, if the value of the parameter θ is 
unknown, the problem is more complicated. It can be proved 
that if the parameter θ closes to min{X1, X2, …, Xn}, then the 
maximum likelihood approaches infinity. The maximum 
likelihood method is often combined with Cohen method, 
where we put the smallest sample value to be equal to 
a 100 ⋅ (n + 1)− 1

 -percentage quantile 
 

.)(exp )1(min 1uˆˆˆx n
V

+ −⋅σ+µ+θ=
 

(99) 
 
The equation (99) is then combined with the system of 
equations (97) and (98). 

For solving maximum likelihood equations (97) and (98) it 

is also possible to use θ̂  satisfying the equation  
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where 

 

,
)(

)()(ln

θσ

θµ−θ−
= ˆˆ

ˆˆˆx
z

i\
i

 
(101) 

 
where )(and)( θσθµ ˆˆˆˆ  satisfy the equations (97) and (98) with 

the parameter θ replaced by .θ̂  We may also obtain the limits 
of variances 

 

,
12)1

2(

)(2exp2
)(

2




 −σ−σ+⋅ω⋅ω

µ⋅σ=θ⋅ ˆDn
 

(102) 

 
 

,
12)1

2(

]2)1
2([2

)(
2

2

−σ−σ+⋅ω

σ−σ+⋅ω⋅σ
=µ⋅ ˆDn

 (103) 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 75



 

 

  

.
12)1

2(

]1)1
2([2

)(
2 −σ−σ+⋅ω

−σ+⋅ω⋅σ
=σ⋅ ˆDn  (104) 

 

D.   Estimation Accuracy Evaluation 
It is also necessary to assess the suitability of the 

constructed model or choose a model from several 
alternatives. The choice is made using a criterion – either the 
sum of absolute deviations of the observed and theoretical 
frequencies for all intervals 

 

S n ni ii

k
=  − 

=
∑ π

1

 
(105) 

 
or the criterion χ2 

 

2
2

1
χ

π
π=

−
=
∑

( )
,iin n

n ii

k
 

(106) 

 
which is known, where ni are the observed frequencies in 
individual income or wage intervals, πi are the theoretical 
probabilities of the statistical unit belonging to the i-th 
interval, n ⋅ πi are the theoretical frequencies in individual 
income or wage intervals, i = 1, 2, ..., k, n is a total sample 
size of the corresponding statistical set and k is the number of 
intervals. 

However, the question of the appropriateness of the model 
curve for income or wage distribution is not a common 
mathematical and statistical issue in which we test the null 
hypothesis  

(H0: the sample coming from an assumed theoretical 
distribution) 

against an alternative hypothesis 
(H1: non H0), 

because in the case of income or wage distribution we often 
work with large sample sizes and the goodness of fit tests 
would therefore almost always lead to the rejection of the null 
hypothesis. This follows not only from the fact that for such 
large samples, the power of the test is so high at the chosen 
level of significance that it reveals even the slightest 
deviations of the model and a given income or wage 
distribution, but it also results from the way the test is 
constructed. 

Practically, however, we are not interested in such 
small deviations. Thus, only rough agreement of the model 
with reality is sufficient and we, so to say, “borrow” the 
model (curve), the test criterion χ2 being applied only 
tentatively. When evaluating the suitability of the model, we 
proceed subjectively to a large extent, relying on experience 
and logical analysis.  

Estimation of the value of the parameter θ (beginning 
of the distribution, theoretical minimum) is negative in some 
cases. It means that a three-parameter lognormal curve shifts 
to negative values in terms of income or wage at the 

beginning of its course. Since the curve is at first very close to 
the horizontal axis, it does not necessarily deny reasonable 
agreement between the model and the real distribution. 

IV.   RESULTS AND DISCUSSION 

A.   Income Distribution 
The method of TL-moments provided the most accurate 

results in almost all cases, with negligible exceptions. The 
method of L-moments proved to be the second most accurate 
in more than half of the cases. The differences between the L-
moments method and that of maximum likelihood, however, 
are not significant enough to reflect in the number of cases 
when the former method yielded better results than the latter 
one. Table XV shows distinctive results for all 168 income 
distributions, encompassing the total set of households in the 
Czech Republic. It contains the estimated values of the 
parameters of the three-parameter lognormal distribution 
obtained simultaneously using TL-moments, L-moments and 
maximum likelihood methods as well as the value of the test 
criterion (106). It is obvious from the criterion values that the 
method of L-moments brought more accurate results than that 
of maximum likelihood in four out of seven cases. The most 
accurate results were produced applying the method of TL-
moments in all the seven cases. 

Figs. 9–11 allow us to compare these methods in terms of 
model probability density functions in the chosen years (1992, 
2004 and 2007) for the total set of households in the Czech 
Republic. It is to be noted that in order to enhance the 
readability of information, in Fig. 9 there is a different scale 
on the vertical axis than in Figs. 10 and 11; soon after the 
transformation of the Czech economy from a centrally 
planned to market system, the income distribution was still 
exhibiting different characteristics (lower level and 
variability, higher skewness and kurtosis) from those 
displayed in recent years. It is clear from the three figures that 
the methods of TL-moments and L-moments yield very 
similar results, while the probability density function with the 
parameters estimated by the maximum likelihood method 
differs a lot from probability density function models 
constructed using the first two methods. 

Fig. 12 also provides a comparison of the accuracy of these 
three methods of point parameter estimation. It represents the 
development of the sample median and theoretical medians of 
lognormal distribution with the parameters estimated using the 
methods of TL-moments, L-moments and maximum 
likelihood again for the total set of households of the Czech 
Republic in the research period. It is also obvious from this 
figure that the curve indicating the course of theoretical 
medians of lognormal distribution with the parameters 
estimated by TL-moments and L-moments methods are closer 
to that showing the course of the sample median compared 
with the curve representing the development of the theoretical 
median of lognormal distribution with the parameters 
estimated by the maximum likelihood method. 
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Table XV Parameter estimations of three-parameter lognormal curves obtained using three various robust methods of point 
parameter estimation and the value of χ2 criterion 

 
Year 

Method of TL-moments Method of L-moments Maximum likelihood method 
μ σ2 θ μ σ2 θ μ σ2 θ 

1992 
1996 
2002 
2004 
2005 
2006 
2007 

9.722 
10.334 
10.818 
10.961 
11.006 
11.074 
11.156 

0.521 
0.573 
0.675 
0.552 
0.521 
0.508 
0.472 

14,881 
25,981 
40,183 
39,899 
40,956 
44,941 
48,529 

9.696 
10.343 
10.819 
11.028 
11.040 
11.112 
11.163 

0.700 
0.545 
0.773 
0.675 
0.677 
0.440 
0.654 

14,491 
25,362 
37,685 
33,738 
36,606 
40,327 
45,634 

10.384 
10.995 
11.438 
11.503 
11.542 
11.623 
11.703 

0.390 
0.424 
0.459 
0.665 
0.446 
0.435 
0.421 

-325 
52.231 
73.545 

7.675 
-8.826 

-42.331 
-171.292 

 

Year Criterion χ2 Criterion χ2 Criterion χ2 
1992 739.512 811.007 1,227.325 
1996 1,503.878 1,742.631 2,197.251 
2002 998.325 1,535.557 1,060.891 
2004 494.441 866.279 524.478 
2005 731.225 899.245 995.855 
2006 831.667 959.902 1,067.789 
2007 1,050.105 1,220.478 1,199.035 

Source: Own research 
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Fig. 9 Model probability density functions of three-parameter lognormal curves in 1992 with parameters estimated using three 

various robust methods of point parameter estimation 
Source: Own research 
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Fig. 10 Model probability density functions of three-parameter lognormal curves in 2004 with parameters estimated using three 

various robust methods of point parameter estimation 
Source: Own research 
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Fig. 11 Model probability density functions of three-parameter lognormal curves in 2007 with parameters estimated using three 

various robust methods of point parameter estimation 
Source: Own research 
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Fig. 12 Development of the model and sample median of net annual household income per capita (in CZK) 

Source: Own research 
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Fig. 13 Development of the probability density function of three-parameter lognormal curves with parameters estimated using the 

method of TL-moments 
Source: Own research 
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Fig. 14 Development of the probability density function of three-parameter lognormal curves with parameters estimated using the 

method of L-moments 
Source: Own research 
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Fig. 15 Development of the probability density function of three-parameter lognormal curves with parameters estimated using the 

maximum likelihood method 
Source: Own research 
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Fig. 16 Model employee ratios (in %) by the bracket of net annual household income per capita with parameters of three-
parameter lognormal curves estimated by the method of TL-moments in 2007 

Source: Own research 
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Fig. 17 Model employee ratios (in %) by the bracket of net annual household income per capita with parameters of three-
parameter lognormal curves estimated by the method of L-moments in 2007 

Source: Own research 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 81



 

 

0

0,5

1

1,5

2

2,5

3

3,5

4
re

la
tiv

e 
fre

qu
en

cy
 (%

)

m iddle of interval of net annual household income per capita (in CZK)
 

Fig. 18 Model employee ratios (in %) by the bracket of net annual household income per capita with parameters of three-
parameter lognormal curves estimated by the maximum likelihood method in 2007 

Source: Own research 
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Fig. 19 Sample employee ratios (in %) by the bracket of net annual household income per capita in 2007 
Source: Own research 
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Figs. 13–15 present the development of probability density 
function models of the three-parameter lognormal distribution 
again with the parameters estimated using the three methods 
of parameter estimation for the total set of households in the 
Czech Republic. In view of these figures, the income 
distribution in 1992 differs greatly from income distributions 
in the years to come. We can also observe a certain similarity 
of the results produced applying the methods of TL-moments 
and L-moments as well as a considerable divergence between 
the results obtained using these two methods and those 
achieved by the maximum likelihood method. 

Figs. 16–18 present model relative frequencies (in %) of 
employees divided according to net annual household per 
capita income brackets in 2007 obtained using three-
parameter lognormal curves with the parameters estimated by 
TL-moments, L-moments and maximum likelihood methods. 
These figures also allow us to compare the accuracy of the 
analyzed methods of point parameter estimation, Fig. 19 
showing the actually observed relative frequencies in 
particular income intervals obtained from a sample. 

B.   Wage Distribution 
Figs. 20 and 21 provide an overview of the development of 

the annual growth rate of the level of gross monthly wage in 
the Czech Republic in the research period and the outline of 
the development of the average annual inflation. Because the 
growth rate is calculated from the growth coefficient, which is 
the ratio of two consecutive values of the time series, we 
would have needed 2002 data to calculate the growth rate for 
the year 2003. Since 2002 is not included in the analyzed 
period, the growth rate for 2003 is not presented here. An 
impact of the global economic downturn on the development 
of the wage level and inflation in the Czech Republic is 
evident from these figures. It is apparent from Fig. 20 that 
having dropped to almost zero in 2009, the annual growth rate 
of middle gross monthly wage increased a little over the 
following year, remaining still far below pre-crisis values. It is 
clear from Fig. 21 that having declined significantly in 2009, 
the average annual inflation rate rose slightly again during 
2010. 
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Fig. 20 Annual growth rate of the median of gross monthly wage in the Czech Republic in 2003−2010 (%) 
Source: Own research 
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Fig. 21 Average annual inflation rate in 2003−2010 (%) 
Source: Own research 
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Table XVI Parameter estimations obtained using the three methods of point parameter estimation and the value of S criterion for 
total wage distribution in the Czech Republic 

 
 
Year 

 
Method of TL-moments 

 
Method of L-moments 

Maximum likelihood method 

μ σ2 θ μ σ2 θ μ σ2 θ 
2003 
2004 
2005 
2006 
2007 
2008 
2009 

9.060 
9.215 
9.277 
9.314 
9.382 
9.439 
9.444 

0.631 
0.581 
0.573 
0.578 
0.681 
0.689 
0.704 

9,066 
8,552 
8,873 
9,383 

10,028 
10,898 
10,641 

9.018 
9.241 
9.283 
9.284 
9.388 
9.423 
9.431 

0.608 
0.508 
0.515 
0.543 
0.601 
0.624 
0.631 

7,664 
6,541 
6,977 
7,868 
7,903 
8,755 
8,685 

9.741 
9.780 
9.834 
9.891 
9.950 

10.017 
10.020 

0.197 
0.232 
0.229 
0.211 
0.268 
0.264 
0.269 

2.071 
0.222 
0.270 
0.591 
0.162 
0.190 
0.200 

2010 9.482 0.681 10,617 9.453 0.621 8,746 10.034 0.270 0.201 
 

Year Criterion S Criterion S Criterion S 
2003 108,437.01 133,320.79 248,331.74 
2004 146,509.34 248,438.78 281,541.41 
2005 137,422.05 231,978.79 311,008.23 
2006 149,144.68 216,373.24 325,055.67 
2007 198,670.74 366,202.87 370,373.62 
2008 206,698.93 357,668.48 391,346.02 
2009 193,559.55 335,999.20 359,736.37 
2010 210,434.01 235,483.68 389,551.44 

Source: Own research 
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Fig. 22 Development of the probability density function of three-parameter lognormal curves with parameters estimated using the 

method of TL-moments 
Source: Own research 
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Fig. 23 Development of the probability density function of three-parameter lognormal curves with parameters estimated using the 

method of L-moments 
Source: Own research 
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Fig. 24 Development of the probability density function of three-parameter lognormal curves with parameters estimated using the 

maximum likelihood method 
Source: Own research 
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Fig. 25 Development of the sample and theoretical median of three-parameter lognormal curves with parameters estimated using 

the three methods of parameter estimation 
Source: Own research 

 
Table XVI shows parameter estimations obtained using the 

three methods and the value of the criterion (105) for the total 
wage distribution in the Czech Republic, giving an 
approximate description of research outcomes for all 328 
wage distributions. We found out that the method of TL-
moments provided the most accurate results in almost all, with 
minor exceptions, wage distribution cases, the deviations 
having occurred mainly at both ends of the wage distribution 
due to extreme open intervals of an interval frequency 
distribution. Table XVI indicates that for the total wage 
distribution set for the whole Czech Republic in 2003–2010, 
the method of TL-moments always yields the most accurate 
output in terms of the S criterion. As for the research of all 
328 wage distributions, the second most accurate results were 
produced by the method of L-moments, the deviations having 
occurred again at both ends of the distribution in particular. 
The latter method brought the second most accurate results in 
terms of all total wage distribution data sets over the period 
2003–2010. In the majority of cases, the maximum likelihood 
method was the third most accurate approach. (For all cases, 
see Table XVI.) 

Figs. 22–24 present the development of the probability 
density function of three-parameter lognormal curves with the 
parameters estimated employing the methods of TL-moments, 
L-moments and maximum likelihood, models of the total 
wage distribution for all employees of the Czech Republic 
being examined over the period 2003–2010 again. In 
comparison to the results obtained by the analysis of income 

distribution, we can see that the shapes of lognormal curves 
with the parameters estimated using L-moments and 
maximum likelihood methods (Figs. 23 and 24) are similar to 
each other, differing greatly, however, from the shape of 
three-parameter lognormal curves with the parameters 
estimated by the method of TL-moments (Fig. 22). 

Fig. 25 also informs about the accuracy of the examined 
methods of point parameter estimation. The figure shows the 
development of the sample median of gross monthly wage for 
the total set of all employees of the Czech Republic in the 
period 2003–2010 as well as the development of the 
respective theoretical median of three-parameter lognormal 
model curves with the parameters estimated by the three 
methods. It is observable from this figure that the curve 
following the course of the theoretical median of a three-
parameter lognormal distribution with the parameters 
estimated using the method of TL-moments adheres the most 
to the curve showing the development of the sample median. 
The other two curves articulating the development of the 
theoretical median of three-parameter lognormal curves with 
the parameters estimated by L-moments and by maximum 
likelihood methods are relatively distant from the course of 
the sample median of the wage distribution. 

Figs. 26 and 27 indicate the values of S criterion of 2010 
wage distributions in terms of job category and five-year age 
intervals, respectively. High accuracy of the method of TL-
moments in comparison to the other two methods of point 
parameter estimation is evident from the two figures, too. 
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Fig. 26 Values of S criterion for three-parameter lognormal model curves with parameters estimated by methods of point 

parameter estimation (broken down by job category codes) – year 2010 
Source: Own research 
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Fig. 27 Values of S criterion for three-parameter lognormal model curves with parameters estimated by methods of point 

parameter estimation (broken down by age-year intervals) – year 2010 
Source: Own research 
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V. THE CONCLUSION 
A relatively new class of moment characteristics of the 

probability distribution has been introduced in this paper. The 
probability distribution characteristics of the location (level), 
variability, skewness and kurtosis have been constructed using 
L-moments and their robust extension – TL-moments method, 
the former (as an alternative to classical moments of 
probability distributions) lacking some robust features that are 
typical for the latter. 

Sample TL-moments are linear combinations of sample 
order statistics assigning zero weight to a predetermined 
number of sample outliers. They are unbiased estimates of the 
corresponding TL-moments of probability distributions. The 
efficiency of TL-statistics depends on the choice of α – 

lll ))) 2(
1

1(
1

0(
1 ,, , for instance, having the smallest variance (the 

highest efficiency) among other estimations for random 
samples of normal, logistic and double exponential 
distributions. Some theoretical and practical aspects of TL-
moments need to be further researched anyway. 

The accuracy of TL-moments method was compared to that 
of L-moments and the maximum likelihood method. Higher 
accuracy of the former approach in comparison to that of the 
latter two methods has been proved by examining 168 income 
and 328 wage distribution data sets. Advantages of L-
moments over the maximum likelihood method have been 
demonstrated by the present study as well. Two criteria for 
tackling income and wage distributions, respectively – namely 
the χ2 criterion and the sum of all absolute deviations of the 
observed and theoretical frequencies for all intervals – have 
been employed. The χ2 criterion values have always resulted 
in rejection of the null hypothesis about the supposed shape of 
the distribution due to large sample sizes typical for income 
and wage distribution at any significance level.  
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