
  
Abstract—We present a new technique of multi-layer thermal 

analysis for VLSI chips. It performs two dimensional, steady-state 
analysis of thermal conduction and heat generation. Its key component 
is a new direct method of solving huge systems of linear equations 
derived from thermal conduction equations. We implemented our 
technique in C and compared its performance to that of the most 
effective iterative method of ICCG of LASPACK. Our experimental 
results demonstrate the superiority of our program by the factors of 
3.25 and 6.4 while keeping smaller residuals by 5 and 1 order(s) of 
magnitude, respectively.  
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I. INTRODUCTION 

As semiconductor technology advances in feature size 
reduction, speed-up, and power reduction, thermal analysis of 
VLSI chips comes to play more and more important roles in their 
performances [6][18]. Since the late 1990s, a sizable amount of 
research activities have been made on the effect of thermal 
conduction from silicon substrate and heat generated from metal 
layers on the characteristics of VLSI chips in the post-90 nm era. 
They are categorized in two major approaches [13]. 

The first approach starts with a physical equation such as a 
thermal conduction equation. It then discretizes the equation and 
solves the generated system of linear equations.  
  Such a system is then solved by iterative methods such as 
Incomplete Cholesky Conjugate Gradient (ICCG) method [5] or 
direct methods such as LU decomposition (LUD) method as well 
as a special purpose SPICE-like algorithm [1] or a simple 
tridiagonal band matrix solver, called the Thomas algorithm 
[14]. 
  In one way, the equation is modeled by finite element method 
and analyzed by a general purpose solver, called ANSYS 
through an iterative method or a direct method [4].  Another way 
uses finite difference method to discretize the equation and 
analyzes the resultant system of linear equations by a special 
purpose SPICE-like algorithm [1] or a tridiagonal matrix solver, 
called the Thomas algorithm in combination with a speed-up 
technique, called the ADI (Alternative Direction Implicit) 
method [14]. 
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These methods provide accurate solutions by way of solving 
thermal equations and are easy to handle different heat sources 
and a variety of boundary conditions.  However, when dealing 
with large scale thermal analysis for, say an entire chip, the size 
of the coefficient matrix generated becomes huge and its analysis 
gets extremely difficult [13]. 

A new trend of research has recently emerged on thermal 
analysis for entire VLSI chips with complex shapes and 
multi-layer structures. This second approach utilizes analogy 
between heat and electricity to model heat transfer mechanism as 
RC networks analyzes them using SPICE-like [2][6][17] or a 
full-chip-scale circuit simulator [1][9]. 

These methods can be combined with circuit and parasitic 
analyses and hence it is feasible to realize chip design that takes 
thermal analysis into consideration.  However, the RC networks 
used become huge and their reduction and approximation are 
required. As a result, the accuracy of simulation may degrade 
[13]. 

It should be noted that a third approach was very recently 
proposed.  It used Green function to describe thermal conduction.  
However, it cannot be used for transient thermal analysis [15]. 
  We propose a new multi-layer thermal analysis technique along 
the line of the first approach. It utilizes a new direct method that 
requires less time and memory than even most iterative methods. 

The application of finite difference methods to two or three 
dimensional Laplace and/or Poisson equations generates large 
scale systems of linear equations. The coefficient matrices of 
such systems have a special structure, called block tridiagonal 
band matrices.  Most of the methods and tools thus far proposed 
use iterative methods for solving the tridiagonal systems of 
linear equations since such methods require less time and 
memory than direct methods [4][8][16]. However, the former 
cannot obtain as accurate solutions as the latter due to an error 
caused by forced termination of computation [5].  Thus, the 
direct methods are still preferred in certain situations. 
Furthermore, in the case of transient thermal analysis, LUD is 
most often used for easy substitution iteration. 
  Our technique uses a direct method for block tridiagonal band 
coefficient matricies. It was derived from a general case linear 
system solver, called Partial Solution Method (PSM) [12] and is 
known as Symbolic PSM (S-PSM) in the area of computational 
fluid dynamics [3].  It was applied to thermal conduction 
analysis for two and four adjacent materials, where thermal 
conduction was described by Laplace equations [10]. 

We demonstrated that S-PSM can be applied to multiple layer 
materials whose thermal conduction is described by a 
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combination of Laplace and Poisson equations [11].  In 
particular, we consider the case of four layer materials of 
different thermal conductivities. We then used finite difference 
method to discretize a combination of Poisson and Laplace 
equations and generate large scale systems of linear equations. 
We then applied S-PSM, a block LUD, and ICCG to the linear 
systems.  The experimental results revealed that our method ran 
70 times faster, required 3 times less memory, and an order of 
magnitude smaller residual than LUD. They also showed that the 
technique achieved up to 3 times speed-up and used 1.8 times 
smaller memory than ICCG [11]. 

We improve the technique of [11], and demonstrate that it can 
solve huge system of linear equations faster. As examples of LSI 
thermal analysis, we deal with multi-layer interconnect Joule 
heating problem. We implemented our technique in C and 
compared its performance to that of the most effective iterative 
method of ICCG of LASPACK. Our experimental results 
demonstrate the superiority of our program by the factors of 3.25 
and 6.4 while keeping smaller residuals by 5 and 1 order(s) of 
magnitude, respectively.  

In the next section, we provide a complete review of S-PSM 
using a Poisson equation for the case of a single material. Section 
III describes a complete review of S-PSM using a set of Poisson 
equations for the four layer case. Section IV describes a brief 
overview of its extension to multi-layer case.  Section V 
describes our experiments and compares the results.  We 
conclude the paper in Section VI. 
 
 

II. S-PSM FOR A SINGLE LAYER 

   We review an S-PSM solution process as applied to a 
two-dimensional steady-state thermal conduction analysis of a 
single material within which heat is generate.  Let u denote the 
material under consideration.  Its thermal conduction is modeled 
by the equation 
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where variable u denotes the temperature and constants ku and ρu 
are the thermal conductivity and the heat generation per unit 
volume of the material u.  Note that if heat is not generated from 
material u, the constant ρu on the right hand side of Eq. (2-1) 
becomes zero and the equation leads to 
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   When we divide both sides of the above equations (2-1) and 
(2-2) by the constant ku, we obtain the Poisson and Laplace 
equations, respectively. Therefore, we call these equations the 
Poisson and Laplace thermal conduction equations, respectively, 
for convenience. 
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Fig. 2.1:   The arrangement of interior grid and boundary points 

 

   In order to use the Symbolic Partial Solution Method (S-PSM) 
to solve Eq. (2-1) numerically we apply finite difference method 
to discretize it in a certain way.  More specifically, we 
decompose (on) its rectangular domain into n × m grid points as 
numbered in Fig. 2.1, where we select the value of n as 

22 += en for some positive integer e .           

   In the following discussion the indices i and j range as i = 1, 2, 
…, n and j = 1, 2, …, m.  The resulting discretized form of Eq. 
(2-1) is given as, 
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For simplicity we assume that yx ∆=∆ .  The above equation 
becomes 
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These equations are combined into the following single 

matrix-vector form such that the matrix of order n has tridiagonal 
elements of blocks. 
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where O  is a zero matrix of order m, I is a unit matrix of order 
m, 0 is a zero column vector of order m, and matrix )0(

1A and 
column vectors )0(

iu and )0(
,iuf  of order m each are given by 

(2-1) 

(2-2) 

(2-4) 

(2-3) 

(2-5) 
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Note that the vector 
)0(

,iuf  represents the boundary conditions. 
The discretized form of the Laplace thermal conduction 

equation expressed of Eq. (2-2) is obtained by setting variables 
ρi,j to zero in Eq. (2-10).  In other words, Eq. (2-10) becomes 
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Fig. 2.2: An overall computation flow with relevant equation numbers of a 
S-PSM-based solution process of a Poisson thermal conduction equation. 
 

To solve Eq. (2-5), we first partition the tridiagonal band part 
of its coefficient matrix into n/4 submatrices.  As 22 += en each 
of the resultant submatrices is a 4x4 matrix.  We say that these 
submatrices and their corresponding subsystems of equations are 
at the 0-th level.  The l*th subsystem, with l* = 1, 2, …, n/4, at 
the 0-th level is given by 
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The solution of the above equation is given by 
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   As depicted in Fig. 2.2 and explained below, the next step of 
the S-PSM-based solution process is to work on pairs of the 
above subsystems. We will merge a pair of subsystems at the 
(t-1)st level to obtain a subsystem at the t-th level, where t = 1, 2, 
…, e-1. Note that solutions for the middle two column vectors of 
variables of each subsystem are readily available. Therefore, the 
remaining first and fourth vectors of variables of the l-th 
subsystem, with l = 1, 2, …, n/2t+1, at the 0-th level are renamed 
as the first and second vectors at the 1st level as follows. 
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From Eq. (2-13) the right hand side of the above equations are 

expressed by 
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Using Eq. (2-16), Eq. (2-17) is rewritten as 
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Similarly, the (l+1)st subsystem is expressed as  
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Combining (2-20) and (2-21), we have 

(2-6) 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

(2-14) 

 

(2-15) 

(2-16) 

(2-17) 

(2-19) 
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(2-20) 

(2-21) 
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Upon re-indexing the vectors, the above equation becomes 
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In general, after merging a pair of subsystems at the (t-1)st 
level, we obtain a subsystem at the t-th level as shown below.  
Note that t = 1, 2, …, e-1. 
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The solution of the above equation is given by 
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As seen from the right hand side of Eq. (2-25), the solutions 

for the four vectors on the left hand side are obtained once we 
solve for the two vectors on the right hand side, which are the 
fourth vector of the (l-1)st subsystem and the first vector of the 
(l+1)st subsystem both at the t-th level, where l = 1, 2, …, n/2t+2. 
Therefore, we re-index the vectors as shown below and merge 
the pair of the l-th and (l+1)st subsystems at the t-th level to 
obtain the (t+1)st level subsystem of two equations 
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At the end of the above merging process, we have the 
following single subsystem of four equations at e-th level. 
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The solution of the above equation is given by 
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Note that in the above process of merging, we need to 

consider the four boundary conditions.  The upper boundary 
value stays the same at any level.  The lower one gets a new 
index given by n/2t+1+1 at the (t+1)st level.  More precisely, 
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In order to have a clearer view of understanding the merging 
of two adjacent materials at their boundary, we rewrite Eq. 
(2-33) as follows: 
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Using the relations, 
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the first and fourth equations of (2-37) are expressed as 
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(3-12) 

 

 

 

(2-22) 
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As the values for the vectors 
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0
eu and 
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5
eu are given, we get 

the solutions for 
)(
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eu and 

)(
4
eu . Substituting these values into 

Eq. (2-37), we find the solutions for 
)(

2
eu and 

)(
3
eu . 

Starting with those values with the aid of the following 
relations expressed as Eq. (2-40), we can solve the subsystems at 
the t-th level from those at the (t+1)st level for t = e-1, e-2, …, 1, 
as depicted in Fig. 2.3.  
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              (l^  = n/2t+2, …, 2, 1) 
At the last step, we get the solutions for the remaining vectors 

as follows: 
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Fig. 2.3: An overall computation flow with relevant 
equation numbers of an S-PSM-based back substitution 
process of a Poisson thermal conduction equation. 

 
 

III. S-PSM FOR FOUR LAYERS 

  We consider a thermal analysis using a basic structural pattern 
of a VLSI chip consisting of four layer materials. Thermal 
conduction of some materials within which heat is generated is 
expressed by a set of Poisson equations. Thermal conduction of 
other materials within which heat is not generated is expressed 
by a set of Laplace equations. The Laplace equation is a special 
case of Poisson equation in that its right hand side is equal to 
zero. Therefore, in generalized, thermal conduction of the 

multi-layer material structure can be expressed as a set of 
Poisson equations. For materials within which heat is not 
generated, the right hand side of its Poisson equation is set to 
zero. In this chapter, we consider a set of Poisson equations 
corresponding to four layers of materials. We apply an 
S-PSM-based solution method which was discussed in the 
Chapter 2 to solve four Poisson thermal conduction equations at 
a time.  
  In the next section, we explain how S-PSM works using our 
four layer example.  
 
3.1 The Problem 

We consider a multi-layer structure as depicted in Fig. 3.1, 
where four layers of materials p, q, r, and s of thermal 
conductivities kp, kq, kr, and ks, respectively, are stacked together.  
This structure may represent a basic pattern of a VLSI chip, 
where the layers are from the bottom, SiO2, Cu (copper wire), 
ILD (interlayer dielectric), and passivation. Heat is generated 
due to Joule heating only from the copper wire. The heat travels 
through a heat transfer pass consisting of the Cu, ILD, and 
passivation, and goes out to the ambient air. Our problem is to 
find temperature distribution through two-dimensional 
steady-state thermal conduction analysis. 

In this multi-layer structure, the materials p, q, r, and s 
correspond to the passivation, ILD, Cu, and SiO2, respectively. 
Because heat is generated from Cu, the thermal conduction of 
material r is described by a Poisson thermal conduction equation 
of Eq. (2-1). Because the other materials SiO2, ILD, and 
passivation do not generate heat, the thermal conduction of 
materials p, q, and s is described by a Poisson thermal 
conduction equation whose right hand side is set to zero. 
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Fig. 3.1: Two dimensional analysis for steady-state heat 
conduction of four materials of thermal conductivities kp, kq, 
kr and ks. 

 
3.2 S-PSM-based Solution Process 

We describe the concept and a computational procedure of the 
linear equation solver, called S-PSM as applied to Poisson 

(2-40) 

(2-41) 
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thermal conduction equations.  Given a system of linear 
equations derived by FDM, the S-PSM decomposes it into its 
subsystems and finds the values of the variables shared by each 
pair of adjacent subsystems. Figure 3.2 shows an overall flow of 
the major algebraic computations to take place at each 
subsystem with their relevant equations and solutions specified. 

It should be noted from the figure that the S-PSM-based 
solution process goes through many levels of repeated 
operations of decomposition and merging.  In the following 
section, the level information is attached to variable vectors and 
coefficient submatrices as their superscripts with parentheses 
such as (0) and (e). 
 

 
 
 

Fig. 3.2: An overall computation flow with relevant 
equation numbers of a S-PSM-based solution process of 
Poisson thermal conduction thermal equations for four 
materials. 

 
3.2.1 Poisson Thermal Conduction and Finite Difference 
Equations 

The thermal conduction is described by the Poisson thermal 
conduction equation. The thermal conduction of the four 
materials p, q, r and s are described by a Poisson thermal 
conduction equation that is expressed as Eq. (2-1). 

In our analysis, the bold lower case letter u represents one of 
the four materials p, q, r and s and the lower case letter u denotes 
one of their corresponding variable names p, q, r and s. So we 
have a set of four Poisson thermal conduction equations to solve. 

When we apply FDM to Eq. (2-1), we decompose each of the 
corresponding rectangle domains into a grid of (nu+2) x m points 
to which variables are assigned as shown inside each rectangle of 
Fig. 3.3. Note that there are (nu+2) rows of grid points instead of 
nu. It is unlike the single material case as depicted in Fig. 2.1 of 
the Chapter 2. As discussed in section 3.2.2, we need a single 
extra row of grid of m points respectively, at the top and bottom 
borders of each of the rectangle domains so as to define the 
equivalent thermal conductivity of the connection boundary 
between adjacent materials. In other words, the grid of nu x m 
points in each material is used to obtain a solution for each 
material, as discussed in the Chapter 2. In addition, the grid of m 

points, which are set at the top and the bottom borders of each 
material, is used to connect adjacent materials. 
 

For the sake of simplicity, we make two assumptions: 
(1) Each cell of the four grids is a square of the same size, that is, 

yx ∆=∆ .  
(2) The number of X-axis grid points for each material u (=p, q, 

r, s) is a power of 2, that is, 
212 += e

pn , 222 += e
qn , 232 += e

rn  , 242 += e
sn  

for some positive integers 1e , 2e , 3e and 4e , respectively. 
  We apply finite difference method (FDM) on its rectangular 
domain of grid points in each material of Fig. 3.3 and discretize 
Eq. (2-1). The resulting discretized form of Eq. (2-1) is given as 
Eq. (2-4). These equations are combined into the single 
matrix-vector form and are expressed as Eq. (2-5). Then, the 
boundary condition is expressed as Eq. (2-10). This system of 
linear equation is solved in each material.  
 
3.2.2 Boundary Conditions 

As shown in Fig. 3.1, the upper and lower boundary 
conditions are the ambient temperature Tamb of 45 deg. C and the 
heat source temperature Tj of 85 deg. C, respectively. Likewise 
the left and right boundary conditions are the reference 
temperatures Tleft and Trigh of 20 deg. C each. 

As expressed by Eq. (2-10) in Chapter 2, the left and right 
boundary conditions for each material u are expressed in the 
column vectors as  
 
 Tu

mimiu
u

mi
u
i

u
iiuiu xukxxxuk )...( ,

2
1,1,

2
2,

2
1,

2
0,

)0(
, ρρρρ ∆+−∆∆∆+−= +−f  

 
where uk  is the variable associated with the material u. Note 
that if heat is not generated from material u, the constant ρi,j

u in 
Eq. (3-2) becomes zero (j = 1, 2, …, m). 
 
The top and bottom boundary conditions for the combined four 
layers of materials are given as 
 

T
mm vvvv )....( ,01,02,01,0

)0(
−=v  

T
mm wwww )....( ,01,02,01,0

)0(
−=w  

 
Note that the superscripts (0) for the above vectors indicate that 
their element values are given at the start of the S-PSM process. 
 
  We apply S-PSM to solve a set of four Poisson thermal 
conduction equations. We generate finite difference equations 
that define a connection at the boundary between each pair of 
adjacent materials. Since each material has its own thermal 
conductivity, we need to define the equivalent thermal 
conductivity of the boundary between each pair of adjacent 
materials.  

We consider a pair of material q and r as a representative case. 
We set the equivalent thermal conductivity of the boundary 

(3-1) 

(3-3) 

(3-4) 

(3-2) 
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between adjacent materials, q and r of thermal conductivities 

qk and rk as 
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Fig. 3.3. The arrangement of interior grid and boundary 
points for the four material domains. 

 
At the boundary between each pair of materials, we use the 

first order approximation for heat conduction as follows.  
From the viewpoint of material q, the following difference 

equation holds at its boundary with material p: 
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Similarly, at its boundary with material r, we have 
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Other cases are similarly considered. 
 

Thus, using the variable vector notation 
 T

mimiiiii uuuuu )....( ,1,3,2,1,
)0(

−=u  
we have the following four equations for the pair of adjacent 
materials, q and r.  
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As depicted in Fig. 3.2, many levels of decomposition and 

merging operations take place but most of those operations occur 
within each material (for detailed discussions in Chapter 2). So 
as seen in the above equations and those to follow, the 
superscripts attached to vectors are at the last levels such as (e) 
and (e+1).  Note that the superscript (0) indicates that the values 
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given at the beginning of the S-PSM process do not change at the 
end of the process. Note also that the Eq. (3-10) describes the 
correspondence between the variable names of each of the two 
materials (for the reasoning to derive such equations, see Eq. 
(2-36) of Chapter 2). 

On the other hand, we now get the following equations for the 
second and third material (for the reasoning to derive such 
equations, see Eq. (2-39) of Chapter 2). 







−−=

−−=
+++

+++

)(
5

)1(
1

)(
0

)1(
2

)1(
2,

)(
4

)(
5

)1(
2

)(
0

)1(
1

)1(
1,

)(
1

222222

222222

eeeee
q

e

eeeee
q

e

AA

AA

qqfq

qqfq
 







−−=

−−=
+++

+++

)3(
5

)13(
1

)3(
0

)13(
2

)13(
2,

)3(
4

)3(
5

)13(
2

)3(
0

)13(
1

)13(
1,

)3(
1

eeeee
r

e

eeeee
r

e

AA

AA

rrfr

rrfr
 

We repeatedly apply the above procedure for derivation of 
Eqs. (3-9), (3-10), (3-15), and (3-16) to the remaining material 
boundaries. We then obtain the following matrix-vector form of 
the Eq. (3-17) for the three boundaries:  
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3.2.3 System Decomposition and Partial Solutions for Each 
Subsystem/Material 

We decompose Eq. (3-17) into four subsystems of equations 
that correspond to the four materials. 
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We denote the inverse matrix of each coefficient matrix of the 

above equations by the matrix of 16 submatrices of the form uB  
as shown below. The partial solutions for each subsystem are 
given as follows (for the correspondence between the blocks of 
the inverse matrix above and the B matrix below, See Eqs. (A-1) 
and (A-3) of Appendix A).  
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3.2.4 Merging of Partial Solutions for Each Pair of Adjacent 
Materials 

For the pair of adjacent materials p and q, we extract two 

equations for variables )(
5

1ep  and 
)(

0
2eq  from Eqs. (3-22) and 

(3-23), respectively, and merge them to get Eq. (3-26). Similarly, 
for the r, s pair, we merge the two equations with respect to 

)(
5

3er  and 
)(

0
4es  from Eqs. (3-24) and (3-25), and derive Eq. 

(3-27). 
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As both of the above coefficient matrices are of special 

structure, their inverse matrices are expressed as shown below 
with two full middle columns of submatrices of the forms pqB  

and rsB , respectively. The partial solutions for each pair of 
materials are now obtained as follows (See Eq. (A-4) of 
Appendix A). 
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3.2.5 Final Solutions 

Finally, for the two pairs of materials p and q, and of r and s, 

we extract equations with respect to variables 
)(

5
2eq  and 

)(
0

3er  
from Eqs. (3-29) and (3-30).  Their merging then produces the 
following equation. 
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We then take the inverse matrix of the coefficient matrix of 

Eq. (3-31) and derive the final solutions for variables 
)(

5
2eq  and 
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0

3er  as follows (See Eq. (A-6) of Appendix A). 
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3.2.6 Back Substitution  

The above solutions are now substituted into Eqs. (3-29) and 
(3-30) to find solutions for 

)(
0

)(
5

)(
0

)(
5

)(
0

43211 ,,,, eeeee srqpp and )(
5

4es . These 
solutions are then back substituted into Eqs. (3-22), (3-23), 
(3-24) and (3-25) and the solutions for the remaining variables 
are obtained, as depicted Fig. 3.4.  It should be noted that we 
need one more step to find solutions for the variables associated 
with each material.  Along a similar line of equation derivations 
given above, this can be done by way of repeated substitutions of 
the values for relevant variables into certain equations (See Eqs. 
(2-37), (2-40), and (2-41) of Chapter 2 for more detail). 
 

 
 

Fig. 3.4: An overall computation flow with relevant 
equation numbers of a S-PSM-based back substitution 
process of Poisson thermal conduction thermal equations 
for four materials. 

 
3.3 Verification 

We applied the above mentioned technique to a simplified 
model of four layer materials of different thermal conductivities, 
as depicted in Fig. 3.1. The experimental results revealed that 
our method ran 70 times faster, required 3 times less memory, 
and an order of magnitude smaller residual than LUD. They also 
showed that the technique achieved up to 3 times speed-up and 
used 1.8 times smaller memory than ICCG [11]. 
 
 

IV. EXTENSION TO MULTI-LAYER ANALYSIS 

We improved our S-PSM program in order to deal with 

 

(3-28) 

(3-29) 

(3-30) 

(3-31) 

(3-32) 

(3-33) 

(3-34) 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 12, 2018

ISSN: 2074-1278 9



multi-layer structures which are composed of a large number of 
materials. The number of layers (materials) is expressed as a 
symbol NL (NL=2e+2, e is positive integer). The overall 
computation flow of an S-PSM based solution process is similar 
to that depicted in Fig. 3.1. It has a binary tree structure. The 
depth of the tree is equal to e+2. In this chapter, we summarize 
the computation flow as follows. 
(1) Combining: The solution of the system of linear equations 

for each material is obtained corresponding to Eqs. (3-15) 
and (3-16). Moreover the four equations for each pair of 
adjacent materials at its boundary are obtained 
corresponding to Eqs. (3-9) and (3-10). The above 
procedure is applied repeatedly to all materials and their 
boundaries. By combining these equations, the 
matrix-vector form which expresses the whole system is 
obtained corresponding to Eq. (3-17). 

(2) Decomposition: The whole system obtained in the step (1) is 
decomposed into NL subsystems of equations that 
correspond to the NL materials. Note that they are 
equivalent to Eqs. (3-18), (3-19), (3-20) and (3-21). 
Moreover the partial solution for each subsystem is obtained 
by the inverse matrix of each coefficient matrix (See Case 1 
and Case 2 of Appendix A). Note that they are equivalent to 
Eqs. (3-22), (3-23), (3-24) and (3-25).  

(3) Low-level merging: The each pair of partial solutions which 
obtained in the step (2) is merged into an upper level 
subsystem. This procedure is applied repeatedly, and NL/2 
upper level subsystems are obtained. Note that they are 
equivalent to Eqs. (3-26) and (3-27). Moreover the partial 
solution for each upper level subsystem is obtained by the 
inverse matrix of each coefficient matrix (See Case 3 of 
Appendix A). Note that they are equivalent to Eqs. (3-29), 
and (3-30). 

(4) Mid-level merging: The each pair of partial solutions which 
obtained in the step (3) is merged into a more upper level 
subsystem. This procedure is applied repeatedly, and NL/4 
more upper level subsystems are obtained. Note that they 
are equivalent to Eqs. (3-26) and (3-27). Moreover the 
partial solution for each more upper level subsystem is 
obtained by the inverse matrix of each coefficient matrix 
(See Case 3 of Appendix A). Note that they are equivalent to 
Eqs. (3-29), and (3-30). The two partial solutions are 
obtained by applying these operations repeatedly with a 
bottom-up approach.  

(5) Final Solution: The pair of the partial solutions which 
obtained finally in the step (4) is merged into an uppermost 
system. Note that it corresponds to Eq. (3-31). Moreover the 
solution for the uppermost system is obtained by the inverse 
matrix of the coefficient matrix (See Case 4 of Appendix A). 
Note that it corresponds to Eq. (3-33).  

(6) Back substitution: The solutions for the remaining variables 
are derived by repeating back substitution as described in 
section 3.2.6. 

 
 

V. EXPERIMENTS RESULTS 

We applied our S-PSM program which is extended as above 
to multi-layer thermal analysis for VLSI chips and evaluated the 
performance of our technique.  

As an example of multi-layer thermal analysis, we deal with 
internal temperature rise due to Joule heating described by Im, et 
al. [7]. Figure 5.1, Figure 5.2, and Figure 5.3 depict the 
simulation models which correspond to 8-layer structure, 
16-layer structure and 32-layer structure, respectively. In the 
example of 32-layer structure, its simulation model consists of 
equivalent package layer, equivalent passivation layer, five 
global interconnect layers, nine intermediate interconnect layers 
and local interconnect layer (M1) over the unit-cell. Moreover 
an interlayer dielectric (ILD) layer is placed between each pair 
of adjacent interconnect layer. The values of simulation 
parameters (interconnect thickness, ILD thickness, ILD thermal 
conductivity (kILD), etc.) and thermal parameters (resistivity, 
maximum current density, etc.) are taken from Im, et al. [7]. Also 
the boundary conditions are set in the same as way. Furthermore, 
since each ILD layer, package layer, and passivation layer do not 
have Joule heating effect, they are described by Poisson 
equations of which the right hand side is equal to zero. Since 
each interconnect layer has Joule heating effect, it is described 
by Poisson equation. Thus whole phenomenon of thermal 
conduction and heat generation are described by a set of Poisson 
equations. 

With the parameter settings mentioned above, we applied we 
perform two-dimensional steady-state thermal analysis and 
checked the temperature rise with respect to the junction 
temperature (ΔTmax = Tmax – Tj). Figure 5.4 depicts the 
temperature rises for the 32-layer structure obtained by our 
program. It shows different temperature rise depending on 
copper technology used. The copper technologies used are 
22/32/45/65nm processes. Moreover, we calculated the values 
of temperature rises for the example of thermal analysis which is 
taken from Im, et al. [7] by using our program, and compared the 
results to those of [7].  Both resemble very close to each other, as 
depicted in Fig. 5.5. This implies that our technique produces 
correct results. 

We perform multi-layer thermal analysis using the simulation 
models for 8-layer, 16-layer and 32-layer structures in order to 
evaluate the performance of our technique. We use simulation 
parameters and thermal parameters of 22nm copper technology 
[7]. In the same way as the chip level thermal analysis mentioned 
in the previous subsection, the number of Y-direction grids (h) 
and the number of X-direction grids (g) are set so that the mesh 
size of Y-direction is equal to that of X-direction ( yx ∆=∆ ). 

Table 5.1 shows the CPU times required and the residuals 
produced by our program, ICCG method and CG method in the 
simulation model of 8-layer structure. Note that conventional 
CG (Conjugate Gradient) method is borrowed from LASPACK 
packages [5] in the same way as ICCG method. The ICCG 
method is more than five times faster than the CG method 
because of its pre-conditioner. The results demonstrate that for 
the largest grid (h=256, g=1680, matrix size=h×g=430080), our 
program ran 2.93 and 5.4 times faster while keeping smaller 
residuals by 6 and 2 order of magnitudes, respectively, than 
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ICCG. The memory usage of our program is 1.31 times less than 
that by ICCG.  

Table 5.2 shows the CPU times required and the residuals 
produced by our program, ICCG method and CG method in the 
simulation model of 16-layer structure. The results demonstrate 
that for the largest grid (h=256, g=2464, matrix 
size=h×g=630784), our program ran 3.0 and 5.7 times faster 
while keeping smaller residuals by 5 and 1 order of magnitudes, 
respectively, than ICCG. The memory usage of our program is 
1.02 times less than that by ICCG.  

Table 5.3 shows the CPU times required and the residuals 
produced by our program, ICCG method and CG method in the 
simulation model of 32-layer structure. The results demonstrate 
that for the largest grid (h=256, g=3776, matrix 
size=h×g=966656), our program ran 3.25 and 6.4 times faster 
while keeping smaller residuals by 5 and 1 order of magnitudes, 
respectively, than ICCG. 

The summary of the results mentioned above is as follows: (1) 
With the increase of layers of simulation model becomes larger, 
the solution speed by our technique becomes faster than that of 
ICCG. (2) The residuals are more than an order of magnitudes 
smaller than that of ICCG. 
 

 
 

Fig. 5.1: Thermal simulation model for 8-layer structure. 
 

 
Fig. 5.2: Thermal simulation model for 16-layer structure. 

 

 

 
 

Fig. 5.3: Thermal simulation model for 32-layer structure. 
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Fig. 5.4: Temperature rises for the 32-layer structure 
obtained by our program. The copper technologies used are 
22/32/45/65nm processes. 

 

 
 

Fig. 5.5: Comparison between temperature rises obtained 
by our program, and those of [7]. 
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VI. CONCLUSIONS  

We have presented a new technique of thermal analysis for 
multi-layer VLSI chips. After modeling multiple layers of 
materials of different heat conductivities by a set of Poisson 
equations, it discretizes the equations and applies S-PSM to the 
resulting systems of linear equations. 

We have applied our technique to two-dimensional, 
steady-state heat conduction analysis for Joule heating problem 
of multi-layer interconnect structure, and compared our program 
to ICCG method. The experimental results demonstrate the 
superiority of our program by the factors of 3.25 and 6.4 while 
keeping smaller residuals by 5 and 1 order(s) of magnitude, 
respectively. They reveal the superiority of our technique in the 
thermal analysis for multi-layer VLSI chips. 

Research on the extension of our technique to three 
dimensional analysis and transient heat conduction analysis for 
multi-layer materials of more complex shapes is under way. 
 
 

APPENDICES 

A. Appendix A: Formula for inverse matrices 
Case 1: The inverse matrix of the coefficient matrix for each of 

Eqs. (3-18), (3-19), (3-20) and (3-21). 
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Case 2: The inverse matrix of the coefficient matrix for each of 

Eqs. (3-18), (3-19), (3-20) and (3-21). 
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Case 3: The inverse matrix of the coefficient matrix for each of 
Eqs. (3-26) and (3-27). 
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Case 4: The inverse matrix of the coefficient matrix for Eq. 

(3-31) 
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Table 5.1: [8-layer structure]: Processing CPU times / Residuals / Memory of S-PSM, ICCG, and CG for difference arrangements grid points. 

 
 

matrix size
(h*g) h g CPU    (sec) Residual Memory

(MB)
CPU
(sec) Residual CPU

(sec) Residual Memory
(MB)

CPU
(sec) Residual CPU

(sec) Residual Memory
(MB)

1920 16 120 0.02 (1.0) 1.80E-16 6.7 (1.0) 0.03 (2.07) 9.6E-07 0.04 (2.9) 4.5E-11 6.0 (0.90) 0.15 (9.7) 9.8E-07 0.25 (16.8) 5.6E-11 5.7 (0.86)
7168 32 224 0.08 (1.0) 2.90E-15 11.2 (1.0) 0.18 (2.35) 8.7E-07 0.27 (3.6) 6.6E-11 7.6 (0.68) 1.2 (16.0) 9.3E-07 2.15 (28.6) 8.8E-11 6.5 (0.58)

27648 64 432 0.69 (1.0) 1.10E-14 31.0 (1.0) 1.64 (2.38) 9.4E-07 2.72 (3.9) 8.3E-11 10.7 (0.35) 13.2 (19.1) 9.8E-07 24.61 (35.7) 9.3E-11 8.0 (0.26)
108544 128 848 4.36 (1.0) 4.90E-14 40.0 (1.0) 10.8 (2.49) 9.5E-07 18.9 (4.3) 9.1E-11 26.1 (0.65) 97.3 (22.3) 9.7E-07 199.7 (45.8) 9.9E-11 15.7 (0.39)
430080 256 1680 24.7 (1.0) 4.80E-13 67.1 (1.0) 72.22 (2.93) 9.4E-07 133.1 (5.4) 9.8E-11 87.9 (1.31) 712.2 (28.9) 9.9E-07 1477.3 (59.9) 9.9E-11 46.7 (0.70)

S-PSM ICCG
(EPS=1.0E-6)

ICCG
(EPS=1.0E-10)

CG
(EPS=1.0E-6)

CG
(EPS=1.0E-10)Number of grid points

 
Notes: The values in parentheses are the ratios of increase in time and memory, respectively, as measured relative to the time and memory used by our S-PSM 
 

Table 5.2: [16-layer structure] Processing CPU times / Residuals / Memory of S-PSM, ICCG, and CG for difference arrangements grid points. 
 

matrix size
(h*g) h g CPU

(sec) Residual Memory
(MB)

CPU
(sec) Residual CPU

(sec) Residual Memory
(MB)

CPU
(sec) Residual CPU

(sec) Residual Memory
(MB)

2944 16 184 0.04 (1.0) 4.4E-16 8.0 (1.0) 0.07 (1.8) 9.9E-07 0.01 (2.6) 8.9E-11 6.3 (0.78) 0.30 (８.0) 8.8E-07 0.56 (15.0) 9.6E-11 5.9 (0.73)
10752 32 336 0.23 (1.0) 5.7E-15 17.1 (1.0) 0.45 (1.9) 6.4E-07 0.69 (3.0) 5.7E-11 8.7 (0.51) 2.80 (12.0) 9.5E-07 5.19 (22.3) 9.1E-11 7.0 (0.41)
40960 64 640 1.40 (1.0) 2.1E-14 56.9 (1.0) 3.45 (2.5) 8.8E-07 5.74 (4.1) 9.9E-11 13.2 (0.23) 28.7 (20.5) 9.9E-07 55.32 (39.5) 9.0E-11 9.2 (0.16)

159744 128 1248 8.48 (1.0) 1.4E-13 73.7 (1.0) 21.7 (2.6) 8.7E-07 38.6 (4.6) 9.9E-11 36.0 (0.49) 211.8 (25.0) 9.8E-07 447.6 (52.8) 9.5E-11 20.7 (0.28)
630784 256 2464 48.5 (1.0) 1.4E-12 124.4 (1.0) 147.6 (3.0) 9.4E-07 274.8 (5.7) 8.3E-11 126.3 (1.02) 1465.7 (30.2) 9.9E-07 3157.1 (65.1) 9.6E-11 65.9 (0.53)

CG
(EPS=1.0E-6)

CG
(EPS=1.0E-10)Number of grid points S-PSM ICCG

(EPS=1.0E-6)
ICCG

(EPS=1.0E-10)

 
Notes: The values in parentheses are the ratios of increase in time and memory, respectively, as measured relative to the time and memory used by our S-PSM 
 

Table 5.3: [32-layer structure] Processing CPU times / Residuals / Memory of S-PSM, ICCG, and CG for difference arrangements grid points. 
 
 

matrix size
(h*g) h g CPU

(sec) Residual Memory
(MB)

CPU
(sec) Residual CPU

(sec) Residual Memory
(MB)

CPU
(sec) Residual CPU

(sec) Residual Memory
(MB)

4736 16 296 0.08 (1.0) 3.1E-15 10.6 (1.0) 0.15 (2.05) 7.7E-07 0.22 (2.9) 7.2E-11 6.9 (0.65) 0.68 (9.1) 9.6E-07 1.26 (16.8) 8.2E-11 6.1 (0.58)
16896 32 528 0.41 (1.0) 8.2E-15 28.5 (1.0) 1.13 (2.75) 9.5E-07 1.76 (4.3) 8.2E-11 8.6 (0.30) 7.10 (17.2) 9.9E-07 13.87 (33.6) 9.8E-11 6.94 (0.24)
63488 64 992 2.65 (1.0) 3.9E-14 106.9 (1.0) 7.6 (2.85) 7.7E-07 12.5 (4.7) 8.3E-11 17.5 (0.16) 58.1 (21.9) 8.9E-07 120.1 (45.4) 9.3E-11 11.4 (0.11)

245760 128 1920 15.8 (1.0) 2.2E-13 142.8 (1.0) 46.2 (2.93) 9.9E-07 82.3 (5.2) 9.8E-11 52.5 (0.37) 446.1 (28.3) 9.4E-07 927.7 (58.9) 9.9E-07 28.9 (0.20)
966656 256 3776 93.4 (1.0) 2.1E-12 235.9 (1.0) 302.7 (3.25) 9.2E-07 596.0 (6.4) 9.9E-11 190.7 (0.81) 3036.7 (32.5) 9.9E-07 6814.9 (73.0) 9.9E-11 98.1 (0.42)

S-PSM ICCG
(EPS=1.0E-6)

ICCG
(EPS=1.0E-10)

CG
(EPS=1.0E-6)

CG
(EPS=1.0E-10)Number of grid points

 
Notes: The values in parentheses are the ratios of increase in time and memory, respectively, as measured relative to the time and memory used by our S-PSM
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