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Abstract—We present a new technique of multi-layer thermal
analysis for VLSI chips. It performs two dimensional, steady-state
analysis of thermal conduction and heat generation. Its key component
is a new direct method of solving huge systems of linear equations
derived from thermal conduction equations. We implemented our
technique in C and compared its performance to that of the most
effective iterative method of ICCG of LASPACK. Our experimental
results demonstrate the superiority of our program by the factors of
3.25 and 6.4 while keeping smaller residuals by 5 and 1 order(s) of
magnitude, respectively.
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l. INTRODUCTION

As semiconductor technology advances in feature size
reduction, speed-up, and power reduction, thermal analysis of
VLSI chips comes to play more and more important roles in their
performances [6][18]. Since the late 1990s, a sizable amount of
research activities have been made on the effect of thermal
conduction from silicon substrate and heat generated from metal
layers on the characteristics of VVLSI chips in the post-90 nm era.
They are categorized in two major approaches [13].

The first approach starts with a physical equation such as a
thermal conduction equation. It then discretizes the equation and
solves the generated system of linear equations.

Such a system is then solved by iterative methods such as
Incomplete Cholesky Conjugate Gradient (ICCG) method [5] or
direct methods such as LU decomposition (LUD) method as well
as a special purpose SPICE-like algorithm [1] or a simple
tridiagonal band matrix solver, called the Thomas algorithm
[14].

In one way, the equation is modeled by finite element method
and analyzed by a general purpose solver, called ANSYS
through an iterative method or a direct method [4]. Another way
uses finite difference method to discretize the equation and
analyzes the resultant system of linear equations by a special
purpose SPICE-like algorithm [1] or a tridiagonal matrix solver,
called the Thomas algorithm in combination with a speed-up
technique, called the ADI (Alternative Direction Implicit)
method [14].
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These methods provide accurate solutions by way of solving
thermal equations and are easy to handle different heat sources
and a variety of boundary conditions. However, when dealing
with large scale thermal analysis for, say an entire chip, the size
of the coefficient matrix generated becomes huge and its analysis
gets extremely difficult [13].

A new trend of research has recently emerged on thermal
analysis for entire VLSI chips with complex shapes and
multi-layer structures. This second approach utilizes analogy
between heat and electricity to model heat transfer mechanism as
RC networks analyzes them using SPICE-like [2][6][17] or a
full-chip-scale circuit simulator [1][9].

These methods can be combined with circuit and parasitic
analyses and hence it is feasible to realize chip design that takes
thermal analysis into consideration. However, the RC networks
used become huge and their reduction and approximation are
required. As a result, the accuracy of simulation may degrade
[13].

It should be noted that a third approach was very recently
proposed. It used Green function to describe thermal conduction.
However, it cannot be used for transient thermal analysis [15].

We propose a new multi-layer thermal analysis technique along
the line of the first approach. It utilizes a new direct method that
requires less time and memory than even most iterative methods.

The application of finite difference methods to two or three
dimensional Laplace and/or Poisson equations generates large
scale systems of linear equations. The coefficient matrices of
such systems have a special structure, called block tridiagonal
band matrices. Most of the methods and tools thus far proposed
use iterative methods for solving the tridiagonal systems of
linear equations since such methods require less time and
memory than direct methods [4][8][16]. However, the former
cannot obtain as accurate solutions as the latter due to an error
caused by forced termination of computation [5]. Thus, the
direct methods are still preferred in certain situations.
Furthermore, in the case of transient thermal analysis, LUD is
most often used for easy substitution iteration.

Our technique uses a direct method for block tridiagonal band
coefficient matricies. It was derived from a general case linear
system solver, called Partial Solution Method (PSM) [12] and is
known as Symbolic PSM (S-PSM) in the area of computational
fluid dynamics [3]. It was applied to thermal conduction
analysis for two and four adjacent materials, where thermal
conduction was described by Laplace equations [10].

We demonstrated that S-PSM can be applied to multiple layer
materials whose thermal conduction is described by a
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combination of Laplace and Poisson equations [11]. In
particular, we consider the case of four layer materials of
different thermal conductivities. We then used finite difference
method to discretize a combination of Poisson and Laplace
equations and generate large scale systems of linear equations.
We then applied S-PSM, a block LUD, and ICCG to the linear
systems. The experimental results revealed that our method ran
70 times faster, required 3 times less memory, and an order of
magnitude smaller residual than LUD. They also showed that the
technique achieved up to 3 times speed-up and used 1.8 times
smaller memory than ICCG [11].

We improve the technique of [11], and demonstrate that it can
solve huge system of linear equations faster. As examples of LSI
thermal analysis, we deal with multi-layer interconnect Joule
heating problem. We implemented our technique in C and
compared its performance to that of the most effective iterative
method of ICCG of LASPACK. Our experimental results
demonstrate the superiority of our program by the factors of 3.25
and 6.4 while keeping smaller residuals by 5 and 1 order(s) of
magnitude, respectively.

In the next section, we provide a complete review of S-PSM
using a Poisson equation for the case of a single material. Section
I11 describes a complete review of S-PSM using a set of Poisson
equations for the four layer case. Section IV describes a brief
overview of its extension to multi-layer case. Section V
describes our experiments and compares the results. We
conclude the paper in Section VI.

I1. S-PSM FOR A SINGLE LAYER

We review an S-PSM solution process as applied to a
two-dimensional steady-state thermal conduction analysis of a
single material within which heat is generate. Let u denote the
material under consideration. Its thermal conduction is modeled
by the equation

2 2
T4+ 08 = pr
ox° oy
where variable u denotes the temperature and constants k, and p"
are the thermal conductivity and the heat generation per unit
volume of the material u. Note that if heat is not generated from
material u, the constant p" on the right hand side of Eq. (2-1)
becomes zero and the equation leads to
ou o
ku (_2 + _2) =0
ox° oy

When we divide both sides of the above equations (2-1) and
(2-2) by the constant k,, we obtain the Poisson and Laplace
equations, respectively. Therefore, we call these equations the
Poisson and Laplace thermal conduction equations, respectively,
for convenience.

(2-1)

(2-2)
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Fig. 2.1: The arrangement of interior grid and boundary points

In order to use the Symbolic Partial Solution Method (S-PSM)
to solve Eq. (2-1) numerically we apply finite difference method
to discretize it in a certain way. More specifically, we
decompose (on) its rectangular domain into n x m grid points as
numbered in Fig. 2.1, where we select the value of n as

n = 2%+ for some positive integer € .
In the following discussion the indices i and jrange asi=1, 2,

..,nandj=1,2, ...,m. The resulting discretized form of Eq.
(2-1) is given as,

K, [ Ui
(2-3)

For simplicity we assume that AX = Ay . The above equation
becomes

72ui,j+ui+1,j+ui,j—172ui,j+ui,j+l .
AX? Ay? I

Ky (Ui U U g+ U, — AU ) = AXZP:: (2-4)

These equations are combined into the following single
matrix-vector form such that the matrix of order n has tridiagonal
elements of blocks.

A k1 0 u®) (D) (ku®
kI A” kI 0 u |90
0 kI A” kI 0 ud 9o
[} o L] [}

[) [] B [} - o

(] [} (] °

0 kI A” kI |u®| [f2 1] 0

0 kI A”{u?) (R3] kulh

(2-5)

where O isazero matrix of order m, | is a unit matrix of order
m, 0 is a zero column vector of order m, and matrix A® and
column vectors u®and f(9 of order m each are given by
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— 4k, k, 0
k, -4k, k, 0
o O K k0 ey
O ku _4ku ku
0 k, —4k,
Ui(O)z(ui,l U, Us o U, ui,m)T (2-7)
UéO):(uO,l Uy, Ugs Uom-1 uo,m)T 2-8)
uggr)l:(unﬂ,l Uz Unaz o Upgma un+1,m)T (2-9)

£ = (ko A0l AXp, APy Kl +AX°00)" (2-10)

0
Note that the vector fu(,i) represents the boundary conditions.

The discretized form of the Laplace thermal conduction
equation expressed of Eq. (2-2) is obtained by setting variables
pij to zero in Eq. (2-10). In other words, Eq. (2-10) becomes

) _ T
fiil =(-k,u, 0 0 ... 0O —KkyU. ) (2-11)
level: t=0 level: t=1 level: t=2
Top boundary Top boundary Top boundary

o —] )

—4

u©

condition condition condition

Solutions: (3-3)
o
2
Equations: (3-2) |y
with*=1 |

4

uo

Solutions: (3-3)

ue

Equations: (3-2) ul®
with #=2 | o
Ut

©
U

Solutions: (3-3)

Lo
1o
Equations: (3-2) u®

with =3 | o

Equations: (3-14) uf
with1=2

I u®
Solutions: (3-3) | Y=
L@

"
Equations: (3-2) | y®
with 1*=4 |

Bottom boundary| Bottom boundary( « _ Bottom boundary| o _ o
ey ugg ey ug? =ufy L ug? =ug
condition condition condition

e=2,n=2¢2=16

swiasAsqns p/u ol (G-z) uonenb3 asodwosaq

O: Operation for merging adjacent partial solutions.

Fig. 2.2: An overall computation flow with relevant equation numbers of a
S-PSM-based solution process of a Poisson thermal conduction equation.

To solve Eq. (2-5), we first partition the tridiagonal band part
of its coefficient matrix into n/4 submatrices. As n = 2°"2each
of the resultant submatrices is a 4x4 matrix. We say that these
submatrices and their corresponding subsystems of equations are
at the 0-th level. The I*th subsystem, with I* =1, 2, ..., n/4, at
the 0-th level is given by

A? kI 0 O Y uld g (foeya K,Ufey)

kul Ai(O) kul 9] u%tmz _ fLE?A)(Inl)ﬂ _ 0

0 kI A” k1| ufys| [y 0 (2-12)
0O O k!l A2 u® O k,ul.,
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The solution of the above equation is given by

0 O] O]
U4(|*71)+1 fu,4(|*—1)+1 kuu4(l*—1)
) ©]
Uggeaysz | T Ok fu,4(l*—1)+2 _ 0 (2-13)
(0) ) fO 0
u4(|*-1)+3 u,4(1*-1)+3
O] (0) ©)
u4l* fu,AI* I(u u4l*+1
where
A® kI O o) (B® B® B B
4 |k A® k1 O B” B B B -
K = A9 k1| BZO) BZO) BZO) BZO’ (2-14)
O O kI A® B B{® B® BO®

and

c=( % )a® o= ¥ Je-v-©T

B” =CD((C)*~1), B’ =-D((C)*~1)
B{®” =CD, B{”=-D, B{=CD((C)’-1I),

(2-15)
B{” =-D(C)?

As depicted in Fig. 2.2 and explained below, the next step of
the S-PSM-based solution process is to work on pairs of the
above subsystems. We will merge a pair of subsystems at the
(t-1)st level to obtain a subsystem at the t-th level, wheret=1, 2,
..., €-1. Note that solutions for the middle two column vectors of
variables of each subsystem are readily available. Therefore, the
remaining first and fourth vectors of variables of the I-th
subsystem, with 1 = 1, 2, ..., n/2"*", at the 0-th level are renamed
as the first and second vectors at the 1st level as follows.

u(ZlI)—l = 51(871)+1
(2-16)
ug) = uf)

From Eqg. (2-13) the right hand side of the above equations are
expressed by

(0) _ 1),00) 1),00) @
Uagonyes =~ A Ugg gy — AU + T (2-17)
0) _ (1)y,(0) (1),,(0) (6))
Uy, = _Az u4(|71) - A1 Ugn fu,2|
where
1) _ 0 1) _ 0 (2'18)
AP =k,BO, AP =k,B
fu(gl—l = B1(O)fu(,04)(|71)+1

(0)£ (0) (0)f(0) (0)f(0)
+B; fu,4(|—1)+2 +B; fu,4(|—1)+3 +B, fu,4l}

1) _ Rr©f) (0)f(0) (0)f(0) (0)f (0)
fu,zl =B, fu,4(|—1)+1 +B; fu,4(|—1)+2 +B; fu,4(|—1)+3 +B fu,4|

(2-19)
Using Eg. (2-16), Eq. (2-17) is rewritten as
© __A0,® ®,,@ €
Uz, = _A1 u;_, — Az Uzl +fu,2|—1
O _ _A®,® 0,0 L fO (2-20)
Uy =—A7Uy, — AVU, +T
Similarly, the (I+1)st subsystem is expressed as
@ _ ®,,@ 1),@ @
Uy = _AL Uy — Az u2|+3 +fu,2|+1 (2 5 )
-21
@ _ ®,,@ @,,@ @
Up, =— Uy — Ai u2|+3 +fu,2|+2

Combining (2-20) and (2-21), we have
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1 0 ug) T APu),

A

0 21-1 u,2l-1

0 I AM of u® 9 B Wy® 2-22)
0 AP 1 0fug, | | T | | APug,

0 AV 0 1fup,) (. Jusls

Upon re-indexing the vectors, the above equation becomes

I 0 Aél) 0 uftl()l—l)ﬂ fu14(l -1)+1 Ai(l) (ll -1)

0 I Ai(l) 0 uftl()lfm _ fu(l‘)t(l )2 | Aél)uftl()lfn

0 AV 10 ufy | | fhene | | AR, | (223)
0 AY 0 1) u® £ APug,

In general, after merging a pair of subsystems at the (t-1)st
level, we obtain a subsystem at the t-th level as shown below.
Note thatt=1, 2, ..., e-1.

I 0 Ag) 0 uflt()l —1)+1 fu( tA 1-1)+1 Ai( I)uftt()l -1)
0 I Ai(t) 0 uflt()l—l)+2 _ fu(,l4(lfl)+2 Aét)uftt()l -1)
0 A 10Ul || s | | ARG, | B2
0 A 0 1)L uf fia AU,
The solution of the above equation is given by
u4(|71)+1 fu(tz)t(l —1)+1 Ai(t) Elt()l -1)
UL a2 w3 | Fidan.z Puy (2-25)
u4(|71)+3 ® fu(,tz)1(|71)+3 A2(t)ufltl)+1
ugy £ AU,
where
I o AP o) (1 B® B® O
T 2| O |m A o] _|o B%: BSE: O (2.26)
o AY 1 O o B® B O
o AY o | o B B® |
and
B =—APAY((A) - 1), BY =—((A") 1) }(2_27)
“’ =AY((A") -1, B =AP((AY) -1)*

As seen from the right hand side of Eq. (2-25), the solutions
for the four vectors on the left hand side are obtained once we
solve for the two vectors on the right hand side, which are the
fourth vector of the (I-1)st subsystem and the first vector of the
(1+1)st subsystem both at the t-th level, where 1 =1, 2, ..., n/2"*%
Therefore, we re-index the vectors as shown below and merge
the pair of the I-th and (I+1)st subsystems at the t-th level to
obtain the (t+1)st level subsystem of two equations

u(ZtItll) uit()|—1)+1 (2-28)
u(ztlﬂ) = ufatl)

where
A1(t+1) = Ai(t) + Bl(t)Az(t)u Aéﬂl) = Bit)Aét) (2_29)
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(t+1) _ (t+1), , (t+1) (t+1), , (t+1) (t+1)
Uy, = Al Uz, — Az Ui +fu 21-1

(t+1) _ (t+1), , (t+1) (t+1), , (t+1) (t+1) -
U = —A2 Uz — A1 u2|+1 +fu 21 (2-30)
(3-
(t+1) (t) (1)
foan =1 P B fu A(1-1)+2 + B fu 4(1-1)43 (2-31)
() _ 0} ® 0} )
fu,;l - fu 4(1-1)+2 + B fu A(1-1)+3 +fu 41

At the end of the above merging process, we have the
following single subsystem of four equations at e-th level.

|0 AY oYU (1) (A%
0 1 AY ofu®| |f9] | A®uY
0 Al(e) | 0 uge) - f(eg - (e)u(se) (2-32)
u,
0 A? 0 1) (£2) (Ao
u,
The solution of the above equation is given by
uf? 1) (A
W9 ||| 12 || AU
{ —
uf || ADUY (2-33)
12) (Ao
where
I 0 A® o) (1 B® B® O
Tei_|O 1 A® o |0 B B O (2-34)
@ O A 1 O O B® B® O
|

o AP o0 | 0 B® B®

_|)*1
1y } (2-35)

Note that in the above process of merging, we need to
consider the four boundary conditions. The upper boundary
value stays the same at any level. The lower one gets a new
index given by n/2"**+1 at the (t+1)st level. More precisely,

and
7 B =—(A")
BY = A ((A®)” -

~AYAD (A7) -
B = AN 1),

uf (t+1) _ =uf (0)
(t+1) (0) (2-36)
u n/2Hi1 =Una

In order to have a clearer view of understanding the merging
of two adjacent materials at their boundary, we rewrite Eq.
(2-33) as follows:

u® =f¢+Bf) + B fu3 ~(A® + BEAL)E - BE ALY

u® = B + B - BY APUY - BY APUL (2:37)

uy =BPf +BIE) -BY ‘eu BY APUY

uf =B +BEFE +15 -BOATUY - (AY + B AP )ul?
Using the relations,

APD = A© L BOA® ACD =BEAD  (2-38)
the first and fourth equations of (2-37) are expressed as

U =15 — AU — ATy

up — 10 - A - e[ O
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u®

u®
5 are given, we get

As the values for the vectors ~° and

(e) (e)
Uy and Uy,

the solutions for . Substituting these values into

) ) u® u'®
Eq. (2-37), we find the solutions for =2 and ~3 .

Starting with those values with the aid of the following
relations expressed as Eq. (2-40), we can solve the subsystems at
the t-th level from those at the (t+1)st level fort=e-1,e-2, ..., 1,
as depicted in Fig. 2.3.

(t) (O(1) () 0} t) (1), ()
u( -1)+2 Bzfua +2+Bs fu4|"1 _B Azu4(|A1_ 3Azu4|ﬂ+1 (2 40)
(t). t) 1),,(t)
|A 143 T B3 fu4 +2+Bz fu4 'B Az u4(|ﬂ1 - 2 Az Uiy
(I"=n/2"? ..., 2,1)

At the last step, we get the solutions for the remaining vectors
as follows:

(0) _ R(0)£(0) (0)£(0) (0)£(0) (0)£(0)
Uggieayeo = By T gy +Bs Fyageyso + B T dgesyia + By g

(0) (0) (0) 0)
k B 4(I* 1) k B Ugpeia (2_41)
(0) (0) B (0), (0)£(0)
Ug(ixnyes = fu A1 fu a+1+2 T Bs fu (1% 1)+3 +By f g
k B l'IA(I* 1) _k B 4I*+l
(I*=1,2, ..., n/4)
level: =0 level: =1 level: =2

Top boundary
condition

Top boundary
condition

Top boundary
condition

=

Back
Substitution:
(z41)
with [*=1

—]
—]

Back
Substitution:
(2-40)
with 1" =1

Back
(2-41)
with 1*=2 Back
Substitution:
Back @37
Substitution:
(2-41)

with [*=3

Back
Substitution:

Back

Substitution:
(2-41)

with 1*=4

SWIaSASQNs ## 0y (S-7) uo [yenbay asoduroaacg

Bottom boundary
condition

Bottom houndary . _ =

Bottom houndary [
condition B

condition

e=2,n,=271=16

(O : Operation for remaining variables

Fig. 2.3: An overall computation flow with relevant
equation numbers of an S-PSM-based back substitution
process of a Poisson thermal conduction equation.

We consider a thermal analysis using a basic structural pattern
of a VLSI chip consisting of four layer materials. Thermal
conduction of some materials within which heat is generated is
expressed by a set of Poisson equations. Thermal conduction of
other materials within which heat is not generated is expressed
by a set of Laplace equations. The Laplace equation is a special
case of Poisson equation in that its right hand side is equal to
zero. Therefore, in generalized, thermal conduction of the

S-PSM FOR FOUR LAYERS
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multi-layer material structure can be expressed as a set of
Poisson equations. For materials within which heat is not
generated, the right hand side of its Poisson equation is set to
zero. In this chapter, we consider a set of Poisson equations
corresponding to four layers of materials. We apply an
S-PSM-based solution method which was discussed in the
Chapter 2 to solve four Poisson thermal conduction equations at
a time.

In the next section, we explain how S-PSM works using our
four layer example.

3.1 The Problem

We consider a multi-layer structure as depicted in Fig. 3.1,
where four layers of materials p, g, r, and s of thermal
conductivities kp, kg, K, and Kk, respectively, are stacked together.
This structure may represent a basic pattern of a VLSI chip,
where the layers are from the bottom, SiO,, Cu (copper wire),
ILD (interlayer dielectric), and passivation. Heat is generated
due to Joule heating only from the copper wire. The heat travels
through a heat transfer pass consisting of the Cu, ILD, and
passivation, and goes out to the ambient air. Our problem is to
find temperature distribution through two-dimensional
steady-state thermal conduction analysis.

In this multi-layer structure, the materials p, g, r, and s
correspond to the passivation, ILD, Cu, and SiO,, respectively.
Because heat is generated from Cu, the thermal conduction of
material r is described by a Poisson thermal conduction equation
of Eq. (2-1). Because the other materials SiO,, ILD, and
passivation do not generate heat, the thermal conduction of
materials p, q, and s is described by a Poisson thermal
conduction equation whose right hand side is set to zero.

X a
t A
fTamb=45(°C) (Ambient temperature)\
Tieft=20(°C) Passivation: . k,=2:23[Wi(nr=K)] b
(Reference)
LD Ky=0:3[Wi = K)] b
b { Cu K. =400[W/(m =K)] Tright=20(°C)
(Reference)
b SiO; k=1 0fWIHm=K)]
HEERiiSER RS8R 4008 10 ARE IR SRR RRSREH >y
(0-0) Tj= 85(°C) (Si junction temperature)

Si bulk

AX=AY: mesh size

h: number of Y-axis grid points
g=2h+8: number of X-axis grid points
a=h x AY b=(g/4) x AX

Fig. 3.1: Two dimensional analysis for steady-state heat
conduction of four materials of thermal conductivities kp, Kq,
krand Ks.

3.2 S-PSM-based Solution Process
We describe the concept and a computational procedure of the
linear equation solver, called S-PSM as applied to Poisson
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thermal conduction equations. Given a system of linear
equations derived by FDM, the S-PSM decomposes it into its
subsystems and finds the values of the variables shared by each
pair of adjacent subsystems. Figure 3.2 shows an overall flow of
the major algebraic computations to take place at each
subsystem with their relevant equations and solutions specified.

It should be noted from the figure that the S-PSM-based
solution process goes through many levels of repeated
operations of decomposition and merging. In the following
section, the level information is attached to variable vectors and
coefficient submatrices as their superscripts with parentheses
such as (0) and (e).

level: =0 level: =1 level: =2
Top boundary |, Top boundary Top boundary o
condition N condition N condition N

Solutions: (3-22) | ., |

Equations: (3-18) Soltions:(3.29)

Equations: (3-26)

Solutions: (3-23) | e

Fquations: (3-19)| % Soutions: (.53
- olutions:

Equations: (3-31)| %"

=
Solutions: (3-24) | o0

Equations: (3-20) o .
g Solutions: (3-30)

Equations: (3-

%
Solutions: (3-25) | .,

Equations: (3-21)

Bottom houndary [, Bottom boundary [ Bottom houndary [,
condition : condition ¢ condition :

(O: Operation for merging adjacent partial solutions.

swsAsqns  03u] (¢ 1-€) uopyenbar asodwioaacg

Fig. 3.2: An overall computation flow with relevant
equation numbers of a S-PSM-based solution process of
Poisson thermal conduction thermal equations for four
materials.

3.2.1 Poisson Thermal Conduction and Finite Difference
Equations

The thermal conduction is described by the Poisson thermal
conduction equation. The thermal conduction of the four
materials p, g, r and s are described by a Poisson thermal
conduction equation that is expressed as Eg. (2-1).

In our analysis, the bold lower case letter u represents one of
the four materials p, g, r and s and the lower case letter u denotes
one of their corresponding variable names p, g, r and s. So we
have a set of four Poisson thermal conduction equations to solve.

When we apply FDM to Eqg. (2-1), we decompose each of the
corresponding rectangle domains into a grid of (n,+2) X m points
to which variables are assigned as shown inside each rectangle of
Fig. 3.3. Note that there are (n,+2) rows of grid points instead of
ng. It is unlike the single material case as depicted in Fig. 2.1 of
the Chapter 2. As discussed in section 3.2.2, we need a single
extra row of grid of m points respectively, at the top and bottom
borders of each of the rectangle domains so as to define the
equivalent thermal conductivity of the connection boundary
between adjacent materials. In other words, the grid of n, x m
points in each material is used to obtain a solution for each
material, as discussed in the Chapter 2. In addition, the grid of m
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points, which are set at the top and the bottom borders of each
material, is used to connect adjacent materials.

For the sake of simplicity, we make two assumptions:
(1) Each cell of the four grids is a square of the same size, that is,
AX = Ay .
(2) The number of X-axis grid points for each material u (=p, q,
r, s) is a power of 2, that is,

np =2%*2, ng =2%"2 n, =2%%2 ng= 22 (3

for some positive integers €1 , €2 , €5and €, respectively.

We apply finite difference method (FDM) on its rectangular
domain of grid points in each material of Fig. 3.3 and discretize
Eq. (2-1). The resulting discretized form of Eq. (2-1) is given as
Eq. (2-4). These equations are combined into the single
matrix-vector form and are expressed as Eq. (2-5). Then, the
boundary condition is expressed as Eq. (2-10). This system of
linear equation is solved in each material.

3.2.2 Boundary Conditions

As shown in Fig. 3.1, the upper and lower boundary
conditions are the ambient temperature T, 0f 45 deg. C and the
heat source temperature T;of 85 deg. C, respectively. Likewise
the left and right boundary conditions are the reference
temperatures Tyeq and T gy OF 20 deg. C each.

As expressed by Eq. (2-10) in Chapter 2, the left and right
boundary conditions for each material u are expressed in the
column vectors as

fi) = (kU0 A AXpl,

ui

szp:m—l - kuui,m+1 + AXZpilfm )T
(3-2)

where K, is the variable associated with the material u. Note

that if heat is not generated from material u, the constant p;;" in
Eq. (3-2) becomes zero (j =1, 2, ..., m).

The top and bottom boundary conditions for the combined four
layers of materials are given as

0) _ T
v _(VO,l Vo,2 oo Voma Vom (3-3)

0 _ T -
W= (W, Wo, e Worny Wop) (3-4)

Note that the superscripts (0) for the above vectors indicate that
their element values are given at the start of the S-PSM process.

We apply S-PSM to solve a set of four Poisson thermal
conduction equations. We generate finite difference equations
that define a connection at the boundary between each pair of
adjacent materials. Since each material has its own thermal
conductivity, we need to define the equivalent thermal
conductivity of the boundary between each pair of adjacent
materials.

We consider a pair of material g and r as a representative case.
We set the equivalent thermal conductivity of the boundary
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between adjacent materials, q and r of thermal conductivities

kq and kr as
K, =Kk (3-5)
ok +k,
Voo Voa Vo2 Vos Vom Voms
Po.o Pos Po.2 Pos Pom Po.ms
Pro Pis Pr2 Pis Pim Prmsa
Pz Pas Pz P23 Pom Pa.mi
kp
pnp+1 pnp+11 pnp+12 pnp+13 pnp+1,m pnp+1,m+1
Qo0 Gos o, Uo,3 Yom Uo,ms1
pnp+10 pnp+lvl pnp+12 pnp+13 pnp+1,m pnp+1,m+1
Go,0 Uo o, Go,3 Go,m Go,m1
Guo Gi1 Gy O3 O m O maa
qz,o q2,1 q2,2 q2,3 qz,m qz,m+1
kq
On10] Ongaz Gngszz Gngaaa On,tm | Ongstme
r-0 0 r-0,1 r-0 2 r-0,3 rO,m rO,m+1
qnq +1,0 qnq+1 qnq+l 2 qnq+l 3 qnq +1,m qnq+1,m+l
r-0 0 rO,l r0 2 r0,3 rIO,m rO,erl
Mo N h2 s Mim Mma
0 1 r2,2 r2,3 rz,m r-2,m+1
kr
rnr +1,0 rnr+1,1 rn,—+l,2 rn,—+l,3 rnr+1,m rnr+l,m+1
S0,0 SO,l SO,Z SO,3 SO,m SO,m+l
rnr +1,0 rnr +1q rnr +1,2 rnr +1,3 rnr +1,m rnr +1,m+1
s0 0 SO 1 SO,Z S0 3 SO,m SO,m-%—l
s1 0 Sl 1 s1,2 Sl 3 S1,m s1,m+1
SZ 0 SZ 1 s2,2 s2,3 SZ m S2,m+1
ks
SnS +1,0 Sns+1,l Sns+l,2 Sn5+l,3 Sn +1,m Sns+l,m+1
WO,O WO,l WO,Z W0,3 WO,m WO,m+1

Fig. 3.3. The arrangement of interior grid and boundary
points for the four material domains.

At the boundary between each pair of materials, we use the
first order approximation for heat conduction as follows.

From the viewpoint of material g, the following difference
equation holds at its boundary with material p:

kp,q(pnp+1,j _qO,j)+kq (QO,H _QO,1)+

kq (qo,j+1 — 0o, )+ kq (ql,j —0oj )= szpg,j

(3-6)
Similarly, at its boundary with material r, we have
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K, (qnq,j - qnq+1,j) +k, (qnq+1‘j71 - qnq+1,j) +
kq (qnq+l.]+l - an+1,j) + kq,r (ro‘J - an+1,j) = AXZP%A,J
3-7)
Other cases are similarly considered.
Thus, using the variable vector notation
) _ T
ui _(ui,l ui,2 ui,3 ui,m—l ui,m) (3'8)

we have the following four equations for the pair of adjacent
materials, g and r.

kpqp(el)l+ Aéo)q(ez) +k q(ez) _f(o)

(e) 0y (e2) (e3) 0
’ +At§) n2+1_|_k r ’ _fcgn)+1

N

( ) (0) - (e3) (es) © [ (39
e e. e -
q rqn2+1 1 r0 : +krrl : :fr,o

krrr$f3)+A:g) (es) +k

Sgezl ) f (O)

n,+1 r,n.+1
Where
,(-le:ll — p(el)’ q(ez) J— qgeZ)’ 516231 — qéeZ)
3 3 3 3 (3_10)
=, ne =
= (k, +3k,) K,
K, =k, +3k,) K,
0 k, (kyq +3k,) K, (3-11)
. . .
Ky = (k,qt3K,)
(3, +k,) K,
k @k +k.) K
q q q
(3-12)
0= k, (3, +k,,) K,
K, =3k, +k,)
(k, +3k) K.
k. k. +3%) K
A(lm - kr (k r+3kr) k (3-13)
. . .
ke = (k, +3K)
(3K, +k.) k.
k. (3K, +k. ) k,
A - k) K (349
. . .
ko -3k +k)

As depicted in Fig. 3.2, many levels of decomposition and
merging operations take place but most of those operations occur
within each material (for detailed discussions in Chapter 2). So
as seen in the above equations and those to follow, the
superscripts attached to vectors are at the last levels such as (e)
and (e+1). Note that the superscript (0) indicates that the values
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given at the beginning of the S-PSM process do not change at the
end of the process. Note also that the Eq. (3-10) describes the
correspondence between the variable names of each of the two
materials (for the reasoning to derive such equations, see Eq.
(2-36) of Chapter 2).

On the other hand, we now get the following equations for the
second and third material (for the reasoning to derive such
equations, see Eq. (2-39) of Chapter 2).

(&) _ f(ep+1) (e;+1) ~ (&2) (e;+1) ~ (&2)
12 _fq,lz _Aiz qo2 _Azz 52

(e2) (e, +1) ( ) (€2) (e2+1) ~ (&7) (3_15)
e e,+1 e, +1 e e,+1 e
o =13 - AT - AT
(e3) _ f(e3+l) (e3+1) (e3) (e3+1) -(e3)
r 3 _fr,13 - Ai N o ¥ — Az $ I N (3-16)

(e3) _ f(e3+) (e3+1) -(e3) (e3+1) - (e3)
r, _fr,z _Az o _A1 I

We repeatedly apply the above procedure for derivation of
Egs. (3-9), (3-10), (3-15), and (3-16) to the remaining material
boundaries. We then obtain the following matrix-vector form of
the Eq. (3-17) for the three boundaries:

AY kIl 0 O P () (kv
A0 A o]0 ] o
A0 A ||| o
0 0 Kkl AY Kl | |10l o
kol A kI O qi | | 19 0
A0 A W] || | o

A0 1A al |t || o

0 0 kI AY Kkl o | |fal | 0

k,J AY kI 0 0 |9 0

A1 0 A ] ] o

A;ez»l) 0 | Ai(e; 1) ro(m f'(e;q) 0

0 0 kI AY Kkl L]0

koo A klooo 0 s | 9 0

R C R

AR 01 AR R0

0 0 ki A Lst) (19, ] lwd

(3-17)

3.2.3 System Decomposition and Partial Solutions for Each
Subsystem/Material

We decompose Eq. (3-17) into four subsystems of equations
that correspond to the four materials.

(0) (a1) (0) (0)

A9 k1 O O Yp& kO ) (9
e 1S I B A N
A2(91+1) 0 | Ai(el+1) E‘el) - 0 + f'(fgl)

(0) (&) (0)
0 0 kI Ay &) K, qlo® b1
(0) (&3) (0)
) k!l O 0 Yo\ (k1) (0.
Ai(ez+l) | O Az(e2 +1) Etez) 0 féeé +1) (3_19)
Aéez +1) O I A1(82 +1) qiez) 0 fé? +1)
0 0 kq | (2) gez) k péel) f (00)
p.q g,
0 (e2) (0)
AY(l) kr I O O réea) kq‘rqS ’ fr,0
1 1 (e5+1)
Ai(eaJ' ) | O Aéeﬁ ) rl(es) L 0 s fma (3-20)
(e5+1) O | (e3+1) (e3) - 0 f (e5+1)
AZ Ai r4 r2
0
0 0 I(rl Alfg) r5(83) kr,ss(()e“ fr(,n),+1
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(0) (eq) (0) (0)

A%Z ks I O O SS ‘ ksWO fs,n5+1
Ai(enl) | O Aée,ﬁl) SSEA) 0 fs(ezA+1) (3_21)
Aée4 +1) O | A1(e4 +1) SieA) 0 fs(iA+l)

O 0 kI AP fAsg) (k™) |3

We denote the inverse matrix of each coefficient matrix of the

above equations by the matrix of 16 submatrices of the form B"
as shown below. The partial solutions for each subsystem are
given as follows (for the correspondence between the blocks of
the inverse matrix above and the B matrix below, See Egs. (A-1)
and (A-3) of Appendix A).

éel) 51?1 B1’,)2 Bl‘,]a B1’,)4 k P Vf)O) f ;()0(;

EEI) _ sz,l BZP,Z sz,3 sz,4 _ 0 + fl():s{rl) (3_22)
@1 |BL B, B B, 0 fos”

pe’) (B B, Bl B (e ;?3,,4

& B} B Bl Bl kquro(%) fr5,0n)q+1

| |8 By By e |0 | 180

€)| | By BY BI B - 0 + £ (&) (3-23)
1 3,1 3,2 3,3 3,4 ql

$) (Bl Bl Bl Bl | (kups?) [ fio

ré%) Blr,l Blr,z Blr,3 B1r‘4 kq,rqéeﬂ fr(,Uo)

n || B Bo Bl Bi | | O | £ 1| (3-24)
r® | | B Bj, Bi, B, 0 fis™

i) (Bl Bi, Bi Bl | (kst) (fina

s&) (B B, Bl Bl (kwp | (fd.

s¢| B, B3, By By, | | 0 N £ (3-25)
sie“ B§,1 B;,z Bas,3 B;,A 0 f534+1)

ss) \Bin Bi, By Bl | (k™) (9

3.2.4 Merging of Partial Solutions for Each Pair of Adjacent
Materials
For the pair of adjacent materials p and ¢, we extract two

equations for variables pgel) and qffz) from Egs. (3-22) and
(3-23), respectively, and merge them to get Eq. (3-26). Similarly,
for the r, s pair, we merge the two equations with respect to
ri) and S from E - - i

5 0 gs. (3-24) and (3-25), and derive Eq.
(3-27).

I O kp‘uBlpll O p((]el) kpBl?lvf)O) ffpo
O I kBl Ofpf | | KBy L[ s
O kBl | O|q®| |k,BLr® | |ff,| (326)
O k,.BY, 0 I \g Ko BT | ffs
I O kB, OYr® Ky BLOSY ) (ff
0 I k..Bj, Ofrf _ K, Bl 05 . ffs | (3-27)
O k.B;, I Ofsl k.Bs wy || ff,
O kB, O 1)s& k,Bow | | ff
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where
o= BYF r(f,)c)) + BT r(fiﬂ) + BYf r(flzﬂ) +BP,f r()?r:pﬂ
ff s = BIfoo + Bl + BLA%™ + BT ;g(,)n)pﬂ
o = Bz?,lfq(?n)q at Bf,zfé,?H) + Bz?,sfuf,efﬂ) + B"f_4fq(%)

ffs = BALFD

q £ (ex+1) q f (e2+1) q £(0)
117 q,ng+1 + Bl,qué + B:L,3fq,l2 + Bl,4fq,0

(3-28)
_ r £(0) r g(e3+1) r g (e3+1) r £(0)
ffrO - Bl,lfr,O + Bl,Zfr,l3 + Bl,3fr,23 + Bl,4fr,n,+l
_Rr £0O r g(e3+l) r g (e3+1) r £(0)
ffrk') - B4,1fr.0 + BA.Zfr,l3 + B4,31:|r.23 + BA.Afr,n,+1

_ s £(0) s (e4+1) s (e4+1) s (0)
ffso - B4,1fs,n5+1 + B4,21:s,24 + BA,3fs,1A + B4,4fs,0

_ s £(0) s (e, +1) s £ (e4+1) s (0)
ffsS - Bl,lfs,ns+1 + Bl,Zfs,ZA + Bl,3fs,14 + Bl,AfS,O

As both of the above coefficient matrices are of special
structure, their inverse matrices are expressed as shown below

with two full middle columns of submatrices of the forms B "
and B", respectively. The partial solutions for each pair of

materials are now obtained as follows (See Eq. (A-4) of
Appendix A).

p891) I Blpl(.:l BZpT O k p Bl?lv(()O) ff po
pgﬁ) O Blr,’g szg O k p Bflv(()O) ff p5
qe) = O BY BM O N K, B lréea) + ffoo (3-29)
a ) Lo Bm BE 1) |k,.Bur® | |,
r® | B B O K, Bl,5? ff,
r5(e3) _ o B, By, O kq,r Bz:,lq éeZ) + ffs
s [“lo BE BE, Of | kB:w® ||, ||(330)
si) O B By | k B ,w(” ff,

3.2.5 Final Solutions
Finally, for the two pairs of materials p and g, and of r and s,

we extract equations with respect to variables qf-,ez) and I’ée"‘)

from Eqgs. (3-29) and (3-30). Their merging then produces the
following equation.

| k.. (B2BY, + B3 )Y q
qu,r(B;iBmB;l) | Irgm} (330
__(kprzB:lvé‘”Hfqu]

k,B;1B :,1wg°> ff,

where
ff= B/ ff ps T Bzrfiffqo +fgs
ffrs = ffro + Blrifer + Bzr,slffso

We then take the inverse matrix of the coefficient matrix of

(3-32)

Eq. (3-31) and derive the final solutions for variables qu’z) and
r§e3) as follows (See Eq. (A-6) of Appendix A).
¢ =-D,(B/} (B/v")) - D, (B}3(B;.w; ")) + Diff  + Dff
r'O(ea) = _D3 (Blpz? (BzElVEJO))) - DA (Bzrsl(lewg()))) + DSff pg + D4ﬁrs
where

(3-33)
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D1 = [I - kq,rkq,r (sz,i Bz?,l + Blt?l)(Bler;,l + Bf,l)]fl
Dz = _kq,r Dl(BZp,?l Bj,l + Bfl)
D4 = [I - kq,rkq,r (Blr,sle:,l + Blr,l)(BZp,?l Bz?,l + Bfl)]il
D3 = _kq,rD4(Blr,SlB£,1 + Blr,l)

(3-34)

3.2.6 Back Substitution
The above solutions are now substituted into Egs. (3-29) and
(3-30) to find solutions for

(&) (&) (e2) (es) (&) (e4)
0 5, Op%, K5, Sy*and Sg*’. These

solutions are then back substituted into Egs. (3-22), (3-23),
(3-24) and (3-25) and the solutions for the remaining variables
are obtained, as depicted Fig. 3.4. It should be noted that we
need one more step to find solutions for the variables associated
with each material. Along a similar line of equation derivations
given above, this can be done by way of repeated substitutions of
the values for relevant variables into certain equations (See Egs.
(2-37), (2-40), and (2-41) of Chapter 2 for more detail).

level: =0 level: =1 level: =2
Top boundary |, Top boundary Top houndary
condition * condition . condition :
2,

Back (1|
= Substitution: |*'
| (3-22) I
é s Back
£ =) L <
H . (3-29)
; Back g
r=) Substitution: |*
5 (3-23) 9.
= L Back
5 — — Substitution:
o el 3-33
- Back e @59
= Substitution: |
=3 (3-24) 7
= e Back
g =) L -
z (=) (3-30)
z Back g
= Substitution:
5 (3-25)
= =

Bottom boundary |« Bottom boundary( Bottom boundary [ w
condition - condition _ condition _

(O : Operation for remaining variables

Fig. 3.4: An overall computation flow with relevant
equation numbers of a S-PSM-based back substitution
process of Poisson thermal conduction thermal equations
for four materials.

3.3 Verification

We applied the above mentioned technique to a simplified
model of four layer materials of different thermal conductivities,
as depicted in Fig. 3.1. The experimental results revealed that
our method ran 70 times faster, required 3 times less memory,
and an order of magnitude smaller residual than LUD. They also
showed that the technique achieved up to 3 times speed-up and
used 1.8 times smaller memory than ICCG [11].

V.

We improved our S-PSM program in order to deal with

EXTENSION TO MULTI-LAYER ANALYSIS
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multi-layer structures which are composed of a large humber of
materials. The number of layers (materials) is expressed as a
symbol NL (NL=2°*2, e is positive integer). The overall
computation flow of an S-PSM based solution process is similar
to that depicted in Fig. 3.1. It has a binary tree structure. The
depth of the tree is equal to e+2. In this chapter, we summarize
the computation flow as follows.

(1) Combining: The solution of the system of linear equations
for each material is obtained corresponding to Egs. (3-15)
and (3-16). Moreover the four equations for each pair of
adjacent materials at its boundary are obtained
corresponding to Egs. (3-9) and (3-10). The above
procedure is applied repeatedly to all materials and their
boundaries. By combining these equations, the
matrix-vector form which expresses the whole system is
obtained corresponding to Eq. (3-17).

Decomposition: The whole system obtained in the step (1) is
decomposed into NL subsystems of equations that
correspond to the NL materials. Note that they are
equivalent to Egs. (3-18), (3-19), (3-20) and (3-21).
Moreover the partial solution for each subsystem is obtained
by the inverse matrix of each coefficient matrix (See Case 1
and Case 2 of Appendix A). Note that they are equivalent to
Egs. (3-22), (3-23), (3-24) and (3-25).

Low-level merging: The each pair of partial solutions which
obtained in the step (2) is merged into an upper level
subsystem. This procedure is applied repeatedly, and NL/2
upper level subsystems are obtained. Note that they are
equivalent to Egs. (3-26) and (3-27). Moreover the partial
solution for each upper level subsystem is obtained by the
inverse matrix of each coefficient matrix (See Case 3 of
Appendix A). Note that they are equivalent to Egs. (3-29),
and (3-30).

Mid-level merging: The each pair of partial solutions which
obtained in the step (3) is merged into a more upper level
subsystem. This procedure is applied repeatedly, and NL/4
more upper level subsystems are obtained. Note that they
are equivalent to Egs. (3-26) and (3-27). Moreover the
partial solution for each more upper level subsystem is
obtained by the inverse matrix of each coefficient matrix
(See Case 3 of Appendix A). Note that they are equivalent to
Egs. (3-29), and (3-30). The two partial solutions are
obtained by applying these operations repeatedly with a
bottom-up approach.

Final Solution: The pair of the partial solutions which
obtained finally in the step (4) is merged into an uppermost
system. Note that it corresponds to Eq. (3-31). Moreover the
solution for the uppermost system is obtained by the inverse
matrix of the coefficient matrix (See Case 4 of Appendix A).
Note that it corresponds to Eg. (3-33).

Back substitution: The solutions for the remaining variables
are derived by repeating back substitution as described in
section 3.2.6.

()

3)

(4)

Q)

(6)

EXPERIMENTS RESULTS
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We applied our S-PSM program which is extended as above
to multi-layer thermal analysis for VLSI chips and evaluated the
performance of our technique.

As an example of multi-layer thermal analysis, we deal with
internal temperature rise due to Joule heating described by Im, et
al. [7]. Figure 5.1, Figure 5.2, and Figure 5.3 depict the
simulation models which correspond to 8-layer structure,
16-layer structure and 32-layer structure, respectively. In the
example of 32-layer structure, its simulation model consists of
equivalent package layer, equivalent passivation layer, five
global interconnect layers, nine intermediate interconnect layers
and local interconnect layer (M1) over the unit-cell. Moreover
an interlayer dielectric (ILD) layer is placed between each pair
of adjacent interconnect layer. The values of simulation
parameters (interconnect thickness, ILD thickness, ILD thermal
conductivity (k. p), etc.) and thermal parameters (resistivity,
maximum current density, etc.) are taken from Im, et al. [7]. Also
the boundary conditions are set in the same as way. Furthermore,
since each ILD layer, package layer, and passivation layer do not
have Joule heating effect, they are described by Poisson
equations of which the right hand side is equal to zero. Since
each interconnect layer has Joule heating effect, it is described
by Poisson equation. Thus whole phenomenon of thermal
conduction and heat generation are described by a set of Poisson
equations.

With the parameter settings mentioned above, we applied we
perform two-dimensional steady-state thermal analysis and
checked the temperature rise with respect to the junction
temperature (ATmax = Tmax — Tj). Figure 5.4 depicts the
temperature rises for the 32-layer structure obtained by our
program. It shows different temperature rise depending on
copper technology used. The copper technologies used are
22/32/45/65nm processes. Moreover, we calculated the values
of temperature rises for the example of thermal analysis which is
taken from Im, et al. [7] by using our program, and compared the
results to those of [7]. Both resemble very close to each other, as
depicted in Fig. 5.5. This implies that our technique produces
correct results.

We perform multi-layer thermal analysis using the simulation
models for 8-layer, 16-layer and 32-layer structures in order to
evaluate the performance of our technique. We use simulation
parameters and thermal parameters of 22nm copper technology
[7]. In the same way as the chip level thermal analysis mentioned
in the previous subsection, the number of Y-direction grids (h)
and the number of X-direction grids (g) are set so that the mesh
size of Y-direction is equal to that of X-direction (Ax =Ay ).

Table 5.1 shows the CPU times required and the residuals
produced by our program, ICCG method and CG method in the
simulation model of 8-layer structure. Note that conventional
CG (Conjugate Gradient) method is borrowed from LASPACK
packages [5] in the same way as ICCG method. The ICCG
method is more than five times faster than the CG method
because of its pre-conditioner. The results demonstrate that for
the largest grid (h=256, g=1680, matrix size=hxg=430080), our
program ran 2.93 and 5.4 times faster while keeping smaller
residuals by 6 and 2 order of magnitudes, respectively, than
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ICCG. The memory usage of our program is 1.31 times less than
that by ICCG.

Table 5.2 shows the CPU times required and the residuals
produced by our program, ICCG method and CG method in the
simulation model of 16-layer structure. The results demonstrate
that for the largest grid (h=256, @=2464, matrix
size=hxg=630784), our program ran 3.0 and 5.7 times faster
while keeping smaller residuals by 5 and 1 order of magnitudes,
respectively, than ICCG. The memory usage of our program is
1.02 times less than that by ICCG.

Table 5.3 shows the CPU times required and the residuals
produced by our program, ICCG method and CG method in the
simulation model of 32-layer structure. The results demonstrate
that for the largest grid (h=256, @=3776, matrix
size=hxg=966656), our program ran 3.25 and 6.4 times faster
while keeping smaller residuals by 5 and 1 order of magnitudes,
respectively, than ICCG.

The summary of the results mentioned above is as follows: (1)
With the increase of layers of simulation model becomes larger,
the solution speed by our technique becomes faster than that of
ICCG. (2) The residuals are more than an order of magnitudes
smaller than that of ICCG.

Layer
v Tum=45°C

Equivalent
Package Layer

Passivation | T,

c8 AT =TT, g

ILD

M2 Heat transfer

ILD

M1

ILD

T,=85C

(Si bulk Top)

—>
vy unitcell size

h

h : number of Y-axis grid points
g : number of X-axis grid points
mesh size : AX=AY= (unit cell size) / (h+1)

X prowbsro o ~ @

Fig. 5.1: Thermal simulation model for 8-layer structure.

Layer

Tams=45°C _ _ _
16 Equivalent \
Package Layer
15 Passivation | T
14 G7
13 ILD
12 G6
1 ILD
10 G5 AT Trex Ty g
9 ILD
8 M4 Heat transfer
7 ILD
6 M3
5 ILD
4 M2
3 ILD
2 ML
1 ILD _ /
x T,=85C
(Si bulk Top) . .
- . h : number of Y-axis grid points
Y unit cell size

g : number of X-axis grid points
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Fig. 5.2: Thermal simulation model for 16-layer structure.
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Fig. 5.3: Thermal simulation

model for 32-layer structure.
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Fig. 5.5: Comparison between temperature rises obtained
by our program, and those of [7].
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VI.

We have presented a new technique of thermal analysis for
multi-layer VLSI chips. After modeling multiple layers of
materials of different heat conductivities by a set of Poisson
equations, it discretizes the equations and applies S-PSM to the
resulting systems of linear equations.

We have applied our technique to two-dimensional,
steady-state heat conduction analysis for Joule heating problem
of multi-layer interconnect structure, and compared our program
to ICCG method. The experimental results demonstrate the
superiority of our program by the factors of 3.25 and 6.4 while
keeping smaller residuals by 5 and 1 order(s) of magnitude,
respectively. They reveal the superiority of our technique in the
thermal analysis for multi-layer VLSI chips.

Research on the extension of our technique to three
dimensional analysis and transient heat conduction analysis for
multi-layer materials of more complex shapes is under way.

CONCLUSIONS

APPENDICES

A. Appendix A: Formula for inverse matrices

Case 1: The inverse matrix of the coefficient matrix for each of
Egs. (3-18), (3-19), (3-20) and (3-21).

-1

A IO O B, B, By By
A I O A _ B,y B, B,s By, (A-l)
A O I A Bs; Bs, By By,
O O K A B,y Bs. Bus By
where
C=(1-AAD"
B4,4 = (A4 - K(Az + A3A1710A3))71
Bs.a :AABMv B3‘4 =(l 7AAB4,4)K71
B4,3 = 7KBA.4 ’ Bl,4 = A171CA3 B4‘4
BLS = _KBLA , BZ,A =—(I+ A AilC)AsBAA (A-Z)
Bz,a = _KBz,4 ’ BS,l = _Bs,sAaAi C
B;o=-Bsy;, B,i= _BA,SA3A171C
Ba,z = 7B4.1v Bl,l =(I+ KBl,aAS)Alilc
BLZ = 781‘1 ' BZ.l =-CA, Alil - Bz,a A3A171C
B,, =1-KB,;

Case 2: The inverse matrix of the coefficient matrix for each of
Egs. (3-18), (3-19), (3-20) and (3-21).

-1

A K, O O K, O O OYKA I O O

A I O A O 1 00| A I 0O A

A, O I A| |lO o1 0ol A 0 I A

0 0 K, A 0O 00 1] 0O 0K, A
KA I O O)(K! oo o
A I 0 A|l|lO 1 0O

A, o1 A|lo 01O (A-3)
O 0K, AJlO 0 o0 I
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Case 3: The inverse matrix of the coefficient matrix for each of
Egs. (3-26) and (3-27).

-1

I O A O I B By O

o 1 A O |0 B B O (A—4)
O A I O O B, B, O

O A O |1 O B, B, |

where

Bz_(I_AAAl)ilr Ba__B7A

B, =-A,B,, B, =-AB, (A'5)
B, = (I _A1A4)71v B =-BA

B, =-B,A,, B, =-B,A,

Case 4: The inverse matrix of the coefficient matrix for Eq.

(3-31)
I A - Bl,l Bl,z

() e e >
where

Bl,l =(- A1A2r1

Bl,Z = 781,1A1

B, = (G A2A1)71 (A_7)

Bl,Z = _Bz,zAz
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Table 5.1: [8-layer structure]: Processing CPU times / Residuals / Memory of S-PSM, ICCG, and CG for difference arrangements grid points.

— 1CCo 1CCG el el

Number of grid points SPSM (EPS=L.0E-6) (EPS=1.0E-10) (EPS=L.0E-6) (EPS=1.0E-10)
ma;rr:qilze h g CPU (sec)| Residual N}?\Tg)ry g:g Residual (CSZ;I Residual NKTBO)W g:; Residual z:; Residual Nli;lnBo)ry
1920] 16 | 120 || 0.02 (L0) L8OE-16| 6.7 (LO)| 0.03 (207) 9.6E-07 0.04 (2.9)] 45E-11| 6.0 (0.90) 0.15 (9.7)] 9.8E-07 0.25 (16.8)] 5.6E-11 | 5.7 (0.86)
7168] 32 | 224 || 0.08 (L0)| 2.00E-15| 1L.2 (L.O)| _0.18 (2.35) 8.7E-07 0.27 (3.6)] 6.6E-11| 7.6 (0.68) 1.2 (16.0)] 9.3E-07 2.15 (28.6)| 8.8E-11 | 65 (0.58)
27648] 64 | 432 || 0.69 (LO)| LIOE-14| 3L0(LO)| 164 (2.38) 9.4E-07 2.72(3.9)] 8.3E-11 | 10.7(0.35)] _ 13.2 (19.1)] 9.8E-07 24.61 (35.7)] 9.3E-11 | 8.0 (0.26)
108544] 128 | 848 | 4.36 (L0)| 4.90E-14| 40.0 (L0O)| 108 (2.49)] 9.5E-07 180 (4.3) 9.1E-11 | 26.1(0.65) _ 97.3 (22.3)] 9.7E-07 199.7 (45.8)| 9.9E-11 | 15.7 (0.39)
430080] 256 | 1680 | 24.7 (L0)] 4.80E-13| 67.1(LO)| 72.22 (2.93)] 9.4E-07 133.1 (5.4)] 9.8E-11 | 87.9(L3L)| 7122 (28.9) 9.9E-07 | _ 1477.3 (59.9)] 9.9E-11 | 46.7 (0.70)

Notes: The values in parentheses are the ratios of increase in time and memory, respectively, as measured relative to the time and memory used by our S-PSM

Table 5.2: [16-layer structure] Processing CPU times / Residuals / Memory of S-PSM, ICCG, and CG for difference arrangements grid points.

. . ICCG ICCG CG CG
Number of grid points S-PSM (EPS=1.0E-6) (EPS=1.0E-10) (EPS=1.0E-6) (EPS=1.0E-10)
matrix siz P . Mem P . P . Memor P . P . Memor
a(h*g§ € h g (Cse; Residual (iﬂg)ry (Cse(l:.; Residual (Cseé-; Residual (?\/IBO)y (CsecL; Residual (Cse; Residual (TVIBO)y
2944] 16 184 0.04 (1.0)| 4.4E-16 8.0 (LO)| __ 0.07 (1.8)] 9.9E-07 0.01 (2.6)] 8.9E-11 | 6.3(0.78) 0.30 (8.0)| 8.8E-07 0.56 (15.0)] 9.6E-11 | 5.9 (0.73)
10752] 32 336 0.23 (1.0)] 5.7E-15 | 17.1(LO)[ _ 0.45(1.9)] 6.4E-07 0.69 (3.0)] 5.7E-11 | 8.7 (0.51) 2.80 (12.0)] 9.5E-07 5.19 (22.3)] 9.1E-11 | 7.0 (0.41)
40960 64 640 1.40 (1.0)] 2.1E-14 56.9 (1.0)| 3.45 (2.5)] 8.8E-07 5.74 (4.1)] 9.9E-11 [ 13.2(0.23) 28.7 (20.5)] 9.9E-07 55.32 (39.5)[ 9.0E-11 9.2 (0.16)
159744 128 | 1248 | 8.48 (1.0)| 1.4E-13 | 73.7 (LO) _ 21.7 (2.6)] 8.7E-07 38.6 (4.6)] 9.9E-11 | 36.0 (0.49) 211.8 (25.0)] 9.8E-07 4476 (52.8)] 9.5E-11 | 20.7 (0.28)
630784] 256 | 2464 || 485 (1.0)] 1.4E-12 | 124.4 (1.0)] 147.6 (3.0 9.4E-07 274.8 (5.7)| 8.3E-11 [ 126.3 (1.02) 1465.7 (30.2)| 9.9E-07 3157.1 (65.1)] 9.6E-11 | 65.9 (0.53)

Notes: The values in parentheses are the ratios of increase in time and memory, respectively, as measured relative to the time and memory used by our S-PSM

Table 5.3: [32-layer structure] Processing CPU times / Residuals / Memory of S-PSM, ICCG, and CG for difference arrangements grid points.

. ICCG ICCG CG CG

Number of grid points S-PSM (EPS=1.0E-6) (EPS=1.0E-10) (EPS=1.0E-6) (EPS=1.0E-10)
ma(trr][i(q?ze h g (CS:;' Residual l\/::;ns)ry (CS:; Residual (Cszg Residual NLT\I/I“BO)W (CS:(L:‘)' Residual (CS:; Residual Ng;lﬂé))ry
4736| 16 296 0.08(1.0)] 3.1E-15 | 10.6(1.0) 0.15(2.05)| 7.7E-07 0.22(2.9)| 7.2E-11 | 6.9 (0.65) 0.68 (9.1)] 9.6E-07 1.26 (16.8)| 8.2E-11 | 6.1(0.58)
16896 32 528 041(1.0)] 82E-15 | 285(1.0) 1.13(2.75)] 9.5E-07 1.76 (4.3)] 8.2E-11 | 8.6 (0.30) 7.10 (17.2)] 9.9E-07 13.87 (33.6) 9.8E-11 | 6.94 (0.24)
63488| 64 992 2.65(1.0)] 3.9E-14 | 106.9 (1.0) 7.6(2.85)| 7.7E-07 125(4.7)| 8.3E-11 | 17.5(0.16) 58.1(21.9)[ 8.9E-07 120.1 (45.4) 9.3E-11 | 11.4(0.11)
245760 128 [ 1920 158 (1.0)| 2.2E-13 | 1428 (1.0)| 46.2(2.93)] 9.9E-07 82.3(5.2)| 9.8E-11 | 52.5(0.37)[  446.1(28.3)| 9.4E-07 927.7 (58.9)| 9.9E-07 | 28.9(0.20)
966656 256 [ 3776 934 (1.0)] 2.1E-12 | 2359 (1.0)] 302.7 (3.25)] 9.2E-07 596.0 (6.4)[ 9.9E-11 | 190.7 (0.81)] 3036.7 (32.5)] 9.9E-07 6814.9 (73.0)] 9.9E-11 | 98.1(0.42)

Notes: The values in parentheses are the ratios of increase in time and memory, respectively, as measured relative to the time and memory used by our S-PSM
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