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Abstract—We are interested by the problem of combinatorial
auctions in which multiple items are sold and bidders submit
bids on packages. First, we present a multi-objective formulation
for a combinatorial auctions problem extending the existing
single-objective models. Indeed, the bids may concern several
specifications of the item, involving not only its price, but also
its quality, delivery conditions, delivery deadlines, the risk of
not being paid after a bid has been accepted and so on. The
seller expresses his preferences upon the suggested items and the
buyers are in competition with all the specified attributes done by
the seller. Second, we develop and implement an exact algorithm
based on a multi-objective branch-and-bound method.

Keywords: multi-objective combinatorial optimization, combinato-
rial auctions, multi-objective branch-and-bound method.

I. INTRODUCTION

The general multi-objective combinatorial optimization problem
can be expressed as:

(MOCO)
{

“max ”F (x) = (f1(x), f2(x), . . . , fp(x))
x ∈ S

where p ≥ 2 is the number of objective functions, x =
(x1, x2, . . . , xd) is the vector representing the decision variables, S
is the (finite) set of feasible solutions in the solution space Rd. The
set Z = F (S) represents the feasible points (outcome set) in the
objective space Rp and z = (z1, z2, . . . , zp), with zi = f i(x), is a
point of the objective space.

Observe that, in (MOCO), the term “max” appears in quotation
marks because, in general, there does not exist a single solution that is
maximal on all objectives. As a consequence, several concepts must
be established to define what an optimal solution is. The more used
one is the dominance relation also known as Pareto dominance (see
Fig. 1.).

Definition 1: We say that a point z = (z1, z2, . . . , zp) dominates
a point w = (w1, w2, . . . , wp) and we write z � w if and only if
for all i ∈ {1, . . . , p}, zi ≥ wi with for at least one i0 ∈ {1, . . . , p},
zi0 > wi0 .

Definition 2: A solution x∗ ∈ S is called (Pareto) efficient for
(MOCO) if and only if there does not exist any other feasible solution
x ∈ S, such that x dominates x∗. The point F (x∗) is then called a
non-dominated point.

The set of efficient solutions, also called the Pareto optimal set,
is often denoted by E and the image of E in Z is called the non-
dominated frontier or the Pareto optimal front, and is denoted by
ZE .
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Fig. 1. Dominations in the Pareto sense in a bi-objective space.

Note that if x, y ∈ S are such that F (x) dominates F (y) we
usually say that x dominates y and we also write x � y.

In (MOCO), we can optimize each of the objectives by solving
the following problems:

(COP(k))
{

max fk(x)
x ∈ S k = 1, . . . , p

Suppose that xk∗, k = 1..p are optimal solutions of the above
problems respectively. Then, the optimal value of objective k is given
by fk∗ = fk(xk∗).

Definition 3: The point F ∗ = (f1∗, f2∗, . . . , fp∗) is called the
ideal point in the objective space.

In general, an ideal point is not a feasible solution. Otherwise, the
objective would not be in conflict with one another.

II. SINGLE-OBJECTIVE COMBINATORIAL AUCTION
MODELS

The auctions research started essentially in 1961 with the Nobel
prized economist William Vickrey, but the early work on auctions
first appeared in operations research journals with Friedman [5] and
Rothkopf [12]. Since then, the field of auctions studies has grown
to more wide multidisciplinary fields like economics, games theory,
operations research, computer science, decision analysis, multicriteria
decision making, . . .
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Numerous applications have been reported in the literature for
combinatorial auctions. They have been employed in a variety of
industries (truckload transportation, bus routes, industrial procure-
ment, . . . ), in airport arrival and departure slots, in telecommunication
(allocating radio spectrum), in electronic business (eBAY, . . . ), in
public sector for procuring meals for schools, . . . .

In combinatorial auctions, the auctioneer has a set M of m items
(M = {a1, a2, . . . , ai, . . . , am}) to sell, and the buyers submit a set
B of n bids, (B = {B1, B2, . . . , Bj , . . . , Bn}). The compelling
motivation for the interest on such problem is the presence of
complementarities (the value of the whole bundle is larger than
the sum of the values of its components taken separately) and
substitutions (the bidder only wants one of the items) among the
items. These characteristics differ across bidders and allow them to
fully express their preferences. A bid is a tuple Bj = 〈Sj , cj〉, where
Sj ⊆ M is a set of items and cj is a price for the whole package
Sj . The selection of the winning bids becomes in this case more
complicate (NP-hard problem [14]). This problem is known as the
Winner Determination Problem (WDP) of combinatorial auctions and
the most research on this area focuses on the computational issues
[3].

A. Single-unit case

The Winner Determination Problem in the single-unit case is to
label the bids j = 1..n as winning (xj = 1) or losing (xj = 0), so as
to maximize the auctioneer’s revenue under the constraint that each
item can be allocated to at most one bidder:

(WDP)



maxZ(x) =

n∑
j=1

cjxj

n∑
j/i∈Sj

xj ≤ 1 i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

(WDP) is intractable. The branch and bound approaches ([15],
[16], [17]) are the most common usual methods in the single unit
case. Exact methods guarantee that an optimal solution is found but
do not guarantee the running time! Recently, heuristics have been
introduced to solve (WDP) in combinatorial auctions ([10], [8], [13]).

B. Multi-unit case

In this case, the auctioneer has some number µi of avail-
able units of each item ai (i = 1..m). The buyers submit a
set of bids {B1, B2, . . . , Bj , . . . , Bn}. A bid is a tuple Bj =
〈{λij , λ1

j , . . . , λ
i
j , . . . , λ

m
j }; cj〉, where λij is the (non negative in-

teger) number of units of the item ai (i = 1..m), required by the
j-th buyer (j = 1..n). The corresponding model is given by (WDP’).

(WDP’)


maxZ(x) =

n∑
j=1

cjxj .

n∑
j=1

λijxj ≤ µi i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

Several exact approaches have been used for solving (WDP’):
dynamic programming [14], linear programming [11], integer pro-
gramming [1] and constraint programming [9].

III. MULTI-OBJECTIVE COMBINATORIAL AUCTIONS

Most studies in the literature are focus either on single-unit
combinatorial auctions with price only (single-objective) or on single-
item (but non-combinatorial auctions) with multi-objective auctions.
However, both auctions types alone are already very complicated.
Thus far, there has not been much work on multi-objective (multi-
attribute) combinatorial auctions and the most of works in this area
use the weighting function to translate the multi-objective into utility
function or use a single objective branch-and-bound algorithm based
on the ε − constraint method [2] and a very recent work on the
e-constraint method for finding the exact pareto set in multi-objective
integer programs [7].

A. Problem formulation

The multi-objective formulation of (WDP’) is:

(MOWDP’)


“opt”Zk(x) =

n∑
j=1

ckjxj k = 1, . . . , p

n∑
j=1

λijxj ≤ µi i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

where ckj is the value of the bid j (j = 1, . . . , n) for the criterion
k (k = 1, . . . , p) and the decision variables are defined as follows:

xj =

{
1 if the bid Bj is accepted (a winner offer);
0 otherwise.

The seller expresses his preferences upon the suggested items
and the buyers are in competition with all the specified attributes
done by the seller. So, the Multi-Objective Winner Determination
Problem (MOWDP’) consists of finding the accepted bids which
simultaneously, for example, maximize the revenue of the seller and
minimize the payment time, under the constraints that at most the
available number of units of each item is allocated.

An acceptable bid (non risk of overlapping with other bids) for
which the vector of specifications (revenue vector) is not dominated
by any other vector of specifications of bids, is an efficient solution
for (MOWDP’).

B. Multi-Objective Branch and Bound method for (MOWDP’)

In this subsection, we propose an adaptation of the branch-and-
bound method dedicated to the multi-objective knapsack problem
type in 0 − 1 [4], to the Multi-Objective Winner Determination
Problem (MOWDP’). The addition of multiple units of each item
to (WDP) involves too many possible combinations to evaluate and
so, causes new levels of complications in the auctions process.
Furthermore, the mathematical formulation of the studied problem
(MOWDP’) is closely related to the multi-objective multiconstraint
knapsack problem. Many other practical problems can also be for-
mulated like the multiconstraint knapsack problem [18].

In the branch-and-bound scheme, the solution space is explored by
dynamically building a tree and by using the following three basic
procedures:

• Procedure of separation
– To define a partition of the fundamental set S.
– To choose a (node) subset to be treated.

• Procedure of evaluation
– To precise how to evaluate each node.

• Procedure of sterilization
– To determine when a node can be pruned.
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a) Procedure of separation: Partial solutions (nodes of the
search tree) are created by assigning zeros and ones to subsets of bids
denoted β0 and β1, respectively. Bids that are not assigned either zero
or one define the set F ⊆ {1, 2, . . . , n} of the free bids , thus, we
have {1, 2, . . . , n} = β0 ∪ β1 ∪ F .

The branching sequence is crucial for the performance of the
method. Let θ be the order according to which variables (bids) of a
partial solution will be assigned a value. The order θ can be defined
as by Florios et al. [6] according to the increasing values of either
(1) or (2) heuristics rules:

Ave sortj = (p.m)−1
p∑
k=1

m∑
i=1

ckj
λij

j = 1, . . . , n. (1)

maxj = max
k=1,...,p; i=1,...,m

ckj
λij

j = 1 . . . , n. (2)

In the particular case, when we have two objectives such that the
first is to maximize (e.g. the revenue) and the second is to minimize
(e.g. the payment time) we propose to order the bids according to
increasing values of the following formula:

quotj =
c1j
c2j

j = 1, . . . , n. (3)

The problem corresponding to the partial solution (β1, β0) is again
a Multi-Objective Winner Determination Problem:

(MOWDP’)


“opt”Zk(x) =

∑
j∈F

ckjxj +
∑
j∈β1

ckj k = 1, . . . , p∑
j∈F

λijxj ≤ µi i = 1, . . . ,m

xj ∈ {0, 1} j ∈ F

where:

µi = µi −
∑
j∈β1

λij i = 1, . . . ,m. (4)

A solution formed by assigning a value to all free variables is called
a completion of a partial solution.

b) Procedure of evaluation: We can evaluate the sub-
set S′ of S if we know how to determine a vector g(S′) =
(g1(S′), . . . , gp(S′)) in such a way that there exists no solution
s ∈ S′ such that Z(s) dominates g(S′). If S′ = ∅, then the only
possible evaluation is:

• g(S′) = +∞ for minimization problem;

• g(S′) = −∞ for maximization problem.

For each node S′ of the tree, we associate a vector valued bounds.
To compute the bounds, we define:

•
∑
j∈β1

ckj , k = 1, . . . , p: the value of the bids that have already

been assigned value 1.

• Zk∗(S′): the value of the optimal solution according to the k-th
objective, k = 1, . . . , p.

The values of
∑
j∈β1

ckj and (Zk∗(S′) +
∑
j∈β1

ckj ) (k = 1, . . . , p)

represent an estimation and an evaluation of the subset S′, respec-
tively.

TABLE I
LOWER AND UPPER BOUNDS AT A PARTIAL SOLUTION

Bounds maximization problem minimization problem
Lower bound estimation evaluation
Upper bound evaluation estimation

The components of the lower bound Z(S′) and the upper bound
Z(S′) at the partial solution S′, are given according to TABLE I.

If we consider two objectives, the first is to maximize and the
second is to minimize, the lower bound Z(S′) and the upper bound
Z(S′) at the partial solution S′, are given by:

Z(S′) = z = (z1, z2) =

( ∑
j∈β1

c1j ,
(
Z2∗(S′) +

∑
j∈β1

c2j
))

(5)

Z(S′) = z = (z1, z2) =

((
Z1∗(S′) +

∑
j∈β1

c1j
)
,
∑
j∈β1

c2j

)
(6)

c) Procedure of sterilization: A subset S′ of the set S of
solutions of a multi-objective combinatorial auctions problem is said
to be pruned if S′ = ∅ or we know a solution s∗ ∈ S such that s∗

dominates any solution of S′.

A vector valued bounds, defined above, allows us to prune a
partial solution S

′
, when no completion of S′ can possibly contain

an efficient solution. So, we do not need to develop further the
exploration of such a node.

Assume that the bids B1, B2,. . . , Bn are ordered according to one
of rules (1)− (3):

Let l∗ = min{l : λl ≤ µ}, with

• (λl)t =
( l∑
j=1

λj1,

l∑
j=1

λj2, . . . ,

l∑
j=1

λjm
)

and

• µt = (µ1, µ2, . . . , µm).

Thus, l∗ is the smallest index l such that ∃i0 with

l∑
j=1

λji0 > µi0 .

Observe that the critical bid is bl∗ . So, the subset S′ =
{B1, B2, . . . , Bl∗−1} of bids is a feasible solution because all bids
in S′ are not in conflict i.e. they have not items in common. The
branch-and-bound algorithm (Algorithm 1) starts by fixing many bids
according to the θ order to fastly find a good feasible solution. Thus,
many branches of the tree can be pruned early. The list N of nodes
is maintained as a LIFO stack (Last In First Out). When a node is
pruned, the algorithm backtracks and creates a new node by moving
the last bid in β1 to β0. In addition, all bids in β0 after this new
bid become free. If, however, n was the last bid in β1, the algorithm
removes all bids {v, . . . , n} in β1 (v is the smallest one) and defines
β0 to be all previous elements of β0 up to v − 1 and to include v.
When a node is not pruned, the algorithm progresses deeper down
the tree and creates a new successor node. Indeed, as many bids as
possible are included in β1, according to order θ, i.e. as they appear
in F . But if the remaining vector µ does not allow bid l to be added
to β1, the first possible bid r of F , which can be added to β1 is
sought and bid r is added to β1. Of course, all bids {i, . . . , r − 1}
must be added to β0.
The method is summarized in Algorithm 1.
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Algorithm 1 MOBB algorithm.
Require: Data of (MOWDP’).
Ensure: A set of efficient solutions.

1: Initialization: Create the root node N0 as follows:

β1 := ∅, β0 := ∅, F := {1, . . . , n}, L := φ, N := {N0}.

2: while N 6= ∅ do
3: Choose the last node N ∈ N .
4: Compute z (lower bound at the partial solution).
5: Add z to L if it is not dominated.
6: Compute z (an upper bound at the partial solution).
7: if {j ∈ F : Bj is not in conflict with β1} = ∅ or z is

dominated by some w ∈ L then
8: (Case 1.)
9: Prune the node N . N := N \ {N}.

10: Go backwards of the node N (node N is pruned).
11: Create a new node N ′.
12: Update β1, β0 and F .
13: N := N ∪ {N ′}.
14: if the set β1 of N ′ is smaller than β1 of the predecessor

nodes of N , which are not predecessors of N ′, then
15: Fathom these nodes.
16: end if
17: if β1 = ∅ then
18: Compute the upper bound, z, at this partial solution.
19: if there is a solution in L which dominates z then
20: STOP (no new node can be created).
21: end if
22: end if
23: else
24: (Case 2.)
25: Go deeper down the tree (node N is not pruned).
26: Create a new node N ′.
27: Update β1, β0 and F .
28: N := N ∪ {N ′}.
29: end if
30: end while

C. Didactic example

The method presented in Algorithm 1 is illustrated by the following
example.

Let be:

- M = {a1, a2, a3} the set of three items to be auctioned.
- µ1 = 5, µ2 = 10 and µ3 = 7 (number of available units of the

each item).
- The offers Bj j = 1..7 upon the set M and their revenue

vectors cj (where each of their components is to maximize) are
done as follows:

• B1 = 〈{1, 2, 3}; c1 = (10, 12, 5)〉
• B2 = 〈{1, 3, 2}; c2 = (6, 8, 10)〉
• B3 = 〈{4, 6, 4}; c3 = (7, 5, 14)〉
• B4 = 〈{1, 3, 0}; c4 = (9, 4, 17)〉
• B5 = 〈{5, 2, 0}; c5 = (6, 3, 9)〉
• B6 = 〈{1, 4, 0}; c6 = (13, 11, 6)〉
• B7 = 〈{2, 7, 1}; c4 = (5, 4, 16)〉

The conflict graph is given in Figure 2.

B1 = 〈{1, 2, 3}; c1 = (10, 12, 5)〉 (for instance) means that the
bid B1 contains one unit of item a1, two units of a2 and three units
of a3 and c1 is its revenue vector.

i i4 6

i i i1 5 7

i i2 3

@
@
@

�
�
�

Fig. 2. The conflict graph

The order θ is computed according to the rule (2).

θ = {4, 7, 6, 1, 2, 5, 3}.

There are four efficient solutions, presented in TABLE II.

TABLE II
SOLUTIONS OF THE DIDACTIC EXAMPLE

N Efficient bids Revenue vector
1 {B2, B4, B6} (28,23,33)
2 {B1, B4, B6} (32,27,28)
3 {B1, B2, B4} (25,24,32)
4 {B1, B2, B6} (29,31,21)

D. Experimental results

Numerical experiments are realized upon some randomly gen-
erated instances (no benchmarks have been found in the literature
for the multi-objective case) of different sizes to test and prove
the efficiency of our extended multi-objective branch-and-bound
(MOBB) method. The instance pWDPn−m provides the number of
objectives (p), the type of problem (Winner Determination Problem),
the number of bidders (n) and the number of items (m). We focus
our experiments on a bi-objective case. However, the results remain
valid for a larger number of objectives. The algorithms have been
implemented in matrix laboratory (Matlab R2009a) using a Pentium
PC with dual core processor, FSB 800 Mb, DDR1 2 Go in Windows
operating system. Experimental results are provided in TABLE III.
They show that the CPU time (measured in second) of the MOBB
method depends on the size of (MOWDP’). The complete set of
efficient solutions can be generated in reasonable computational
time only for small problems. For large problems, one can use
metaheuristics or approximate methods.

TABLE III
RESULTS OF THE EXTENDED MOBB METHOD

Instances |E| CPU(t)
2WDP5-3 1 0.23
2WDP7-3 3 0.49
2WDP8-5 3 1.57
2WDP10-3 4 1.20
2WDP10-5 4 2.01
2WDP15-3 7 4.33
2WDP20-3 5 9.14
2WDP20-7 6 25.73
2WDP25-3 7 32.85
2WDP30-3 8 73.76
2WDP30-9 7 100.99
2WDP35-3 14 127.37
2WDP40-3 19 2837.81
2WDP45-3 21 3372.71
2WDP50-3 20 7242.21
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IV. CONCLUSION

In this paper we have described a Multi-Objective Branch-and-
Bound (MOBB) method developed for the Winner Determination
Problem of combinatorial auctions which can be modeled as a multi-
objective multiconstraint knapsack problem. The multi-objective
branch-and-bound used here was initially developed for the bi-
objective knapsack problem presented in [4]. We have adapted it to
the multi-objective combinatorial auctions problem, in order to make
it possible of handling more than one constraint. A didactic example
was presented to illustrate our method.
In future works, we propose to develop better bounds for the multi-
objective branch-and-bound to improve the speed of the method.
More experiments are needed and relations with other combinatorial
problems (knapsack, bin packing, etc) will be examined.

Moreover, one can adapt the newly developed method based on a
differential evolution algorithm (DEA) [19] or other metaheuristics
to solve the multi-objective winner determination problem.

REFERENCES

[1] A. Anderson, M. Tenhunen and F. Ygge, “Integer programming for
combinatorial auction winner determination,” in Proceedings of 4th In-
ternational Conference on Multi-Agent Systems, IEEE Computer Society
Press, July, 39–46, 2000.

[2] T. Buer and G. Pankratz, “A Bi-Objective Winner-Determination Problem
in a Transportation-Procurement Auction,” in Working paper No. 488,
Faculty of Business Administration and Economics, University of Hagen
(Germany), 2010.

[3] S. De Vries and R. Vohray, “Combinatorial auction: A survey,” Tech. rep.,
Department of Managerial Economics and Decision Sciences, Kellogg
School of Management, Northwestern University, 2000.

[4] M. Ehrgott, Multicriteria Optimization (2. ed.), isbn 978-3-540-21398-72,
Springer, 2005.

[5] L. Friedman, “A Competitive Bidding Strategy,” Operations Research, 4,
104–112, 1956.

[6] K. Florios, G. Mavrotas and D. Diakoulaki, “Solving multiobjective,
multiconstraint knapsack problems using mathematical programming and
evolutionary algorithms,” European Journal of Operational Research, Vol.
203, No. 1, 14–21, 2010.

[7] K. Florios and G. Mavrotas, “An improved version of the augmented
e-constraint method (AUGMECON2) for finding the exact pareto set
in multi-objective integer programming problems,” Applied Mathematics
and Computation, Volume 219, Issue 18, 9652-9669, 2013.

[8] Y. Guo, A. Lim, B. Rodrigues, Y. Zhu, “Heuristics for a bidding
problem,” Journal of Computers and Operations Research -Volume 33
no 8: 2179–2188, 2006.

[9] A. Holland, B. O’sullivan, “Towards Fast Vickrey Pricing using Constraint
Programming,” Artificial Intelligence Review, Vol 21, n 3-4/ June, 335–
352, 2004.

[10] H. Hoos, C. Boutilier, “Solving combinatorial auctions using stochastic
local search,” in: Proceedings of the 17th national conference on artificial
intelligence, 22–29, 2000.

[11] N. Nisan, “Bidding and allocation in combinatorial auctions,” in Pro-
ceedings of the ACM Conference on Electronic Commerce (EC-00),
Minneapolis: ACM SIGecom, ACM Press, October, 1–12, 2000.

[12] Rothkopf, H. Michael, “A Model of Rational Competitive Bidding,”
Management Science, 15, 362–372, 1969.

[13] A. Portilla-Figueras, S. Salcedo-Sanz, P. Garcia-Diaz and K. Hackbarth,
“A Genetic Algorithm for Solving the First Price Sealed Bid Auction
in Communication Networks,” Proceedings of the 5th WSEAS Int. Conf.
on Electronics, Hardware, Wireless and Optical Communications, Madrid,
Spain, February 15-17, 2006, 1–6.

[14] M.H. Rothkopf, A. Pekee and M. Ronald, “Computationally manage-
able combinatorial auctions,” Management Science, Vol. 44, No. 8, 1131–
1147, 1998.

[15] T. Sandholm, S. Suri, “Improved Optimal Algorithm for Combinatorial
Auctions and Generalizations,” in Proceedings of the 17th national
conference on artificial intelligence, 9066–97, 2000.

[16] T. Sandholm, S. Suri, A. Gilpin, D. Levine, “CABoB: a fast optimal
algorithm for combinatorial auctions,” in Proceedings of the International
joint conferences on artificial intelligence, 1102–1108, 2001.

[17] T. Sandholm, “Optimal Winner Determination Algorithms,” in P. Cram-
ton et al. (ed.), Combinatorial Auctions, MIT Press, 2006.

[18] B. K. Seljak, “Computer-Based Dietary Menu Planning,” in Proceedings
of the 7th WSEAS International Conference on Evolutionary Computing,
Cavtat, Croatia, June 12-14, 2006, 39–44.

[19] R. Thangaraj and M. Pant, “Differential Evolution Algorithm for Solving
Multi-objective Optimization Problems,” in Proceedings: Recent Ad-
vances in Mathematics, Cambridge, MA, USA, January 30 - February
1, 2013, 40–45.

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS 
DOI: 10.46300/91014.2020.14.14 Volume 14, 2020

ISSN: 2074-1278 86




