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A Lyapunov Shortest-Path Characterization
for Markov Decision Processes

Julio B. Clempner and Jesus Medel

Abstract�In this paper we introduce a modeling paradigm
for developing decision process representation for shortest-path
problems. Whereas, in previous work attention was restricted to
tracking the net using Bellman's equation as a utility function,
this work uses a Lyapunov-like function. In this sense, we are
changing the traditional cost function by a trajectory-tracking
function which is also an optimal cost-to-target function for track-
ing the net. The main point of the Markov decision process is its
ability to represent the system-dynamic and trajectory-dynamic
properties of a decision process. Within the system-dynamic
properties framework we prove new notions of equilibrium
and stability. In the trajectory-dynamic properties framework,
we optimize the value of the trajectory-function used for path
planning via a Lyapunov-like function, obtaining as a result
new characterizations for �nal decision points (optimum points)
and stability. Moreover, we show that the system-dynamic and
Lyapunov trajectory-dynamic properties of equilibrium, stability
and �nal decision points (optimum points) meet under certain
restrictions.

Index Terms�Lyapunov theory, Bellman's equation, Forward
Decision Process, Markov decision process.

I. INTRODUCTION
hereas previous efforts have restricted attention to track

the net using Bellman's equation as a utility function, this
paper introduces a modeling paradigm for developing decision
process representation, including Markov decision processes
(MDP), using a trajectory function as a tool for path planning
([1], [2]). The main point of this paper is its ability to represent
the system-dynamic and the trajectory-dynamic properties of
a decision process application. We will identify the system-
dynamic properties as those characteristics related only with
the global system behavior, and we will identify the trajectory-
dynamic properties as those characteristics related with the
trajectory function at each state that depends on a probabilistic
routing policy.
Within the system-dynamic properties framework we show

notions of stability. In this sense, we call equilibrium point to
the state in a MDP that does not change, and it is the last state
in the net.
In the trajectory-dynamic properties framework we de�ne

the trajectory function as a Lyapunov-like function. By an
appropriate selection of the Lyapunov-like function, under
certain desired criteria, it is possible to optimize the trajectory.
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By optimizing the trajectory we understand that it is maximum
or minimum reward (in a certain sense). In addition, we
use the notions of stability in the sense of Lyapunov to
characterize the stability properties of the MDP. The core idea
of our approach uses a non-negative trajectory function that
converges in decreasing form to a (set of) �nal decision states.
It is important to point out that the value of the trajectory
function associated with the MDP implicitly determines a set
of policies, not just a single policy (in case of having several
decisions states that could be reached). We call "optimum
point" the best choice selected from a number of possible �nal
decision states that may be reached (to select the optimum
point, the decision process chooses the strategy that optimizes
the reward).
As a result, we extend the system-dynamic framework

including the trajectory-dynamic properties. We show that
the system-dynamic and the trajectory-dynamic properties of
equilibrium, stability and optimum-point conditions converge
under certain restrictions: if the MDP is �nite then we have
that a �nal decision state is an equilibrium point.
The paper is structured in the following manner. Section 2

presents the formulation of the decision model, and all the
structural assumptions are introduced there. Section 3 dis-
cusses the main results of the paper, giving a detailed analysis
of the equilibrium, stability and optimum-point conditions for
the MDP. Finally, in section 4 some concluding remarks and
future work projects are outlined.

II. FORMULATION
The aim of this section is to introduce the decision model

and all the structural assumptions related with the Markov
model ([3], [5], [9]).
Notation 1: As usual let R be the set of real number and

let N be the set of non-negative integers.
De�nition 1: A Markov Decision Process is a 5-tuple

MDP = fS;A;�; Q; Ug (1)

where:
� S is a countable set of feasible states, S � N, endowed
with discrete topology1.

� A is the set of actions, which is a metric space. For each
s 2 S; A(s) � A is the non-empty set of admissible
actions at state s 2 S. Without loss of generality we may
take A=

[
s2S

A(s):

1Note that the existence of a topology on S is trivial, since S is countable.
We introduce it for de�nition compatibilities.
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� � = f(s; a)js 2 S; a 2 A(s)g is the set of admissible
state-action pairs, which is a measurable subset of S�A.

� Q =
�
qijjk

�
is an array of probabilities, where qijjk �

P (sj jsi; ak) representing the probability associated with
the transition from state si to state sj under an action
ak 2 A(si): Note that for any �xed k, Qjk is a stochastic
matrix.

� U : S ! R+ is a trajectory function, associating to each
state a real value. Note that U is a function bounded
from below. ( moreover, it is convenient to use kUk =
sups2S U(s) ).

Interpretation: The control model (1) represents a discrete-
time controlled stochastic system that is observed at time
n 2 N: Denoting by sn and ak the state of the system
and action applied at time n, respectively, the interpretation
of the MDP dynamics is as follows. At each discrete time
n 2 N the state of the system sn = s 2 S is observed.
For every action an = a 2 A(s); the probability of the
system to �nd itself in the next state sn+1 at time n + 1
is P(sn+1jsn = s; ak = a): Considering the previous states
of the trajectory (path, orbit) (s0; s1; :::; sn) the value of the
trajectory function U is obtained and, then the next state sn+1
is selected according to U applying some `criteria'. This is the
Markov property of the decision process in (1).
For each n 2 N the cross product Hn = �n � S is

the set of admissible histories up to time n. The vector
hn = (s0; a0; :::; sn�1; an�1; sn) 2 Hn denotes the history of
the process at time n. Considering the previous states of the
trajectory (s0; s1; :::; sn), and for every action an 2 A(si);
the probability of the system to �nd itself in state sj 2 S
is qijjk: A policy � is a (possibly randomized) measurable
rule for choosing actions, which depends on the current state.
The policy �kji � P (akjsi) represents the probability measure
associated with the occurrence of an action an from state si.
The set of all policies is denoted by �.
We de�ne a process over S as a �nite or in�nite sequence of

elements of S. If p = (s0; s1:::; sn) is a �nite process, we say
that sn is the end state of p, and we denote it last(p) = sn.
For completeness, first(p) = s0 denote the state in which p
starts. Let us de�ne the sample space 
 = (S �A)1 ; i.e. 

represents the set of in�nite processes over S: Let us de�ne
the random variables Xn : 
! S for each n 2 N, so that we
have: Xn(!) = xn for ! = (x0; a0; x1; :::).
Let (
;F) be a measurable space with F a �-algebra of

subsets of the previously de�ned sample space 
. We de�ne
a probabilistic process over S as a pair (S;P), where P is
a probability measure on F . If there is an element s0 2 S
such that X0 = s0, we say that s0 is the initial state of the
probabilistic process (S;P). Let p = (s0; :::; sn) be a �nite
process.
We de�ne the likelihood of p by P(p). Intuitively, P(p) is

the probability measure of p to occur in an execution of the
system. Be aware however that the likelihood function does
not de�ne a probability measure on the set of �nite processes,
since it does not sum to 1.
Let (S;P) be a probabilistic process, and let p =

(s0; :::; s0) be a �nite process over S with P(p) > 0.
Let us consider the mapping g : p ! 
 de�ned by:

g(s0; s1; :::; sn; Xn+1; Xn+2; :::) = (sn; Xn+1; Xn+2; :::).
The mapping g let us de�ne a probability measure P on

(
;F) as follows: 8A 2 F ; P(A) = P(g�1(A)jp); where
P(� jp) is the probability conditional on p. We call the
new probabilistic process (S;P) the probabilistic future of
process p. We denote by the symbol E the expectation under
probability P. By construction, sn = last(p) is the initial state
of the probabilistic future of p.
De�nition 2: Two given processes p and p0 represent a Path

of the following type:
1) OR if one has associated a better probability P to occur
at the same time,

2) AND if they have associated any probability P they
occur at the same time,

3) Concur if they have associated the same probability P
to occur at the same time.

From the previous de�nition we have the following remark.
Remark 1: In a Concur-Path, we have last(p) = last(p0)

and therefore we also have P(p) = P(p0):
Consider an arbitrary sj 2 S and for each �xed action ak 2

A we look at the previous states si of the state sj , denoted
by s�jk = fsh : h 2 �jkg where �jk = fh : (sh; ak; sj)g, that
materialize the concurrent state-action pair (sh; ak) 2 � and
form the sum X

h2�jk

�kjhqhjjk U
(�kjh)

h (2)

Notation 2: With the intention to facilitate the notation we
will represent the trajectory function U as follows:
1) Ui � U(si) representations of the value of U at state
si.

2) Ui � U (�)i for an arbitrary policy �.
Continuing with all the ak's we form the vector indexed by

the sequence k identi�ed by (k0; k1; :::; kf ) as follows:26664
X

h2�jk0

�k0jhqhjjk0Uh;
X

h2�jk1

�k1jhqhjjk1Uh;

:::;
X

h2�jkf

�kf jhqhjjkfUh

37775 (3)

the index sequence k is the set � = fk : ak 2 (sh; ak; sj); and
sh running over the set s�jkg; and f = #(�) is the number
of actions to state sj :
Intuitively, the vector (3) represents all the possible trajec-

tories through the actions ak where (k0; k1; :::; kf ) to a state
sj for a �xed j.
Continuing the construction of the de�nition of the trajec-

tory function U , let us introduce the following de�nition.
De�nition 3: Let MDP = fS;A;�; Q; Ug be a Markov

Decision Process, let (s0; s1; :::; sn) be a realized trajectory of
the system and let L : Rn ! R+ be a continuous map. Then
L is a Lyapunov-like function [6] if it satis�es the following
properties:
1) 9s� such that L(s�) = 0;
2) L(s) > 0 for 8s 6= s�;
3) L(s)!1 when s!1;
4) �L = L(si+1)� L(si) < 0 8i si 6= s�.
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From the previous de�nition we have the following remark.
Remark 2: In the previous de�nition point 3 we state that

L(s)!1 when s!1 meaning that there is no s� reachable
from some s.
Then, formally we de�ne the trajectory function U as

follows:
De�nition 4: For the discrete time n 2 N the trajectory

function U with respect a Markov Decision Process MDP =
fS;A;�; Q; Ug is represented by

Uj =

�
U0 if n = 0

L(�) if n > 0
(4)

where

� =

26664
X

h2�jk0

�k0jhqhjjk0Uh;
X

h2�jk1

�k1jhqhjjk1Uh;

:::;
X

h2�jkf

�kf jhqhjjkfUh

37775 (5)

the function L : D � Rn+ ! R+ is a function that optimizes
the reward through all possible transitions (i.e. trough all the
possible trajectories de�ned by the different ak's), D is the
decision set formed by the k�s : 0 � kl � f of all those
possible transitions (sh; ak; sj), �jk is the index sequence of
the list of previous places to sj through action ak and sh
(h 2 �jkl) is a speci�c previous place of sj through action
ak.
From the above de�nition we have the following remark.
Remark 3:
� Note that the Lyapunov-like function L guarantees that
the optimal course of action is followed (taking into
account all the possible paths de�ned). In addition, the
function L establishes a preference relation because by
de�nition L is asymptotic; this condition gives to the
decision maker the opportunity to select a path that
optimizes the reward.

� The iteration over time n 2 N for U is as follows:
1) for n = 0 the trajectory function value is U0 at state
s0 and for the rest of the states si the value is 0,

2) for n > 0 the trajectory function value is Uj at
each state sj , is computed by taking into account
the value of the previous states si.

Property 1: The function U satis�es the following proper-
ties:
1) 9s4 such that

a) if there exists an in�nite sequence fsig1i=1 with
sn !

n!1
s4 (sn converge at s4) such that 0 �

::: < Un < Un�1::: < U1, then U(s4) is the
in�mum of the in�nite sequence, i.e. U(s4) = 0 ,

b) if there exists a �nite sequence s1; :::; sn with
s1; :::; sn ! s4 (s1; :::; sn converge at s4) and
there exists a constant C 2 R such that C = Un <
Un�1::: < U1, then U(s4) is the minimum of the
�nite sequence, i.e. U(s4) = C, (s4 = sn).

2) there exists a constant C 2 R such that U(si) >
max f0; Cg, 8si such that si 6= s4.

3) 8si; si�1 such that si�1 �U si then 8i �Ui = Ui �
Ui�1 < 0 (a trajectory function U : S ! R is consistent

with the preference relationship of a decision problem
(S;�) if 8w; z 2 S : w �u z if and only if Uw � Uz)

Property 2: The trajectory function U : S ! R+ is a
Lyapunov-like function.

Proof: Straightforward from the previous de�nitions.
Explanation. Intuitively, a Lyapunov-like function can be

considered as routing function and optimal cost function.
In our case, an optimal discrete problem, the cost-to-target
values are calculated using a discrete Lyapunov-like function.
Every time a discrete vector �eld of possible actions is
calculated over the decision process. Each applied optimal
action (selected via some `criteria') decreases the optimal
value, ensuring that the optimal course of action is followed
and establishing a preference relation. In this sense, the criteria
change the asymptotic behavior of the Lyapunov-like function
by an optimal trajectory tracking value. It is important to note,
that the process �nishes when the equilibrium point is reached.
This point determines a signi�cant difference to the use of
Bellman's equation.
De�nition 5: A �nal decision point sf with respect a

Markov Decision Process MDP = fS;A;�; Q; Ug is a state
s where the in�mum of the trajectory function is asymptoti-
cally approached (or the minimum is attained), i.e. U(s) = 0
or U(s) = C.
De�nition 6: An optimum point s4 with respect a Markov

Decision Process MDP = fS;A;�; Q; Ug is a �nal decision
point sf where the best choice is selected `according to some
criteria'.
Assumption 1: Every Markov Decision Process MDP =

fS;A;�; Q; Ug has a �nal decision point.
Remark 4: In case that 9s1; :::; sn, such that U(s1) = ::: =

U(sn) = 0, then s1; :::; sn are optimum points.
Remark 5: The monotonicity of U guarantees that it is

possible to make the search starting from the decision points.
Proposition 1: Let MDP = fS;A;�; Q; Ug be a Markov

Decision Process and let s4 an optimum point. Then U(s4) �
U(s), 8s such that s �U s4.

Proof: We have that U(s4) is equal to the minimum or
the in�mum. Therefore, U(s4) � U(s) 8s such that s �U s4.

Theorem 1: Let MDP = fS;A;�; Q; Ug be a Markov
Decision Process. If s� is an equilibrium point then it is a
�nal decision point.

Proof: Let us suppose that s� is an equilibrium point we
want to show that its trajectory function value has asymptoti-
cally approached an in�mum (or reached a minimum). Since
s� is an equilibrium point, by de�nition, it is the last state
of the net. But, this implies that the routing policy attached
to the transition(s) that follows s� is 0, (in case there is such
a transition(s) i.e., worst case). Therefore, its value can not
be modi�ed and since the trajectory function is a decreasing
function of si an in�mum or a minimum is attained. Then, s�
is a �nal decision point.
Theorem 2: Let MDP = fS;A;�; Q; Ug be a (�nite)

Markov Decision Process (unless s is an equilibrium point).
If sf is a �nal decision point then it is an equilibrium point.

Proof: If sf is a �nal decision point, since the MDP
is �nite, there exists some n such that U(sf ) = C. Let us
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suppose that sn is not an equilibrium point.
case 1. Then, it is not bounded. So, it is possible to �re

some transition of sf in the MDP . Therefore, it is possible
to modify its value. As a result, it is possible to obtain a lower
value than C.
case 2. Then, it is not the last state in the net. So, it is

possible to �re some transition to sf . Therefore, it is possible
to modify the trajectory function value over sf . As a result, it
is possible to obtain a lower value than C.
Corollary 1: Let MDP = fS;A;�; Q; Ug be a �nite

Markov Decision Process (unless s is an equilibrium point).
Then, an optimum point s4 is an equilibrium point.

Proof: From the previous theorem we know that a �nal
decision point is an equilibrium point and since in particular
s4 is �nal decision point then, it is an equilibrium point.
Remark 6: The �nite condition over the MDP can not be

relaxed. Let us suppose that the MDP is not �nite, i.e. s is
in a cycle then, the Lyapunov-like function converges when
n ! 1, to zero i.e., L(s) = 0 but the MDP has no �nal
state therefore, it is not an equilibrium point.

III. CONCLUSION
A formal framework for decision process has been pre-

sented. Stability theory was used to characterize the dynamical
behavior of the MDP. In addition, we show that the MDP
mark-dynamic and trajectory-dynamic properties of equilib-
rium, stability and optimum point converge under some mild
restrictions. There are a number of questions relating classical
planning, that may in the future be addressed satisfactorily
within this approach.
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