
 

 

  
Abstract— In this paper we present a study concerning the 

exchange rate evolution governed by a third-order nonlinear 
determinist discrete system. We present some results concerning the 
unique fixed point of the system, its stability and its attraction 
domain under certain values of parameters and we also present the 
existence of period-two cycles. Given the nonlinear nature of the 
system, its most complex type of behavior is the chaotic dynamics. 
We cannot detect this type of behavior using only analytical tools. 
For this reason, in order to detect the dynamics of the system, we will 
use numerical simulations. It is known that the Lyapunov exponents 
are a tool used to establish the type of behavior in nonlinear 
dynamics. We will calculate their values, in order to establish the 
type of dynamics. From our numerical simulations, we present a case 
in which the system displays a chaotic behavior. For this particular 
case we also consider a corresponding system of the second order. 
From the images of the figures in this paper we can observe a 
similarity between the images of attractors for each particular order 
of the systems. 

 
Keywords— nonlinear system, numerical simulations, chaos, 

attractors.  

I. INTRODUCTION 

CCORDING to [2] a general equation modeling the 
exchange rate evolution is given by: 
 

( )b
tttt SEXS 1+=                (1)  

In the above equation, tS  is the exchange rate at the 

moment t; tX  describes the exogenous variables that drive the 

exchange rate at the moment t; ( )1+tt SE  is the expectation 

held at the moment t in the market about the exchange rate at 
the moment t+1; b is the discount factor that speculators use 
to discount the future expected exchange rate (0<b<1). 

This model allows us to take into account two components 
for forecasting: a forecast made by the chartists ( )1+tct SE  and 

a forecast made by the fundamentalists ( )1+tft SE : 
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where tm  is the weight given by the chartists and tm−1  is the 

weight given by the fundamentalists at the moment t. 
 

The fundamentalists assume the existence of an equilibrium 
exchange rate *S . If at the moment t-1  the exchange rate 

1−tS  is above, respectively below the equilibrium rate *S , the 

fundamentalists expect the future exchange rate 1+tS  to go 

down, respectively increase with the speed α . More 
precisely, if they observe a deviation today, then their 
forecasts is the following: 
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The chartists use the past values  of the exchange rate to 

detect patterns that they extrapolate in the future. An equation 
which gives a general description of the different models used 
by chartists is the following:  
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According to [2] it is possible to specify such a rule in 

general terms, as follows:  
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The exact nature of this rule is determined by the 

coefficients ic . These can be positive, negative, or zero.  

The weight tm , in equation (2), given by chartists is  
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The parameter β  measures the precision degree of the 

fundamentalists' estimation. When the exchange rate is in the 
neighbourhood of the equilibrium rate, chartists' behavior 
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dominates. When the exchange rate differs from the 
fundamental rate, then the expectation will be dominated by 
the fundamentalists.  
 

In this paper we consider the case 1=tX  (which means that 

1* =S ) and for chartists we consider the expectation: 
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In equation (2) we will use the expectations given by the 

equations (3) and (7). In equation (1) we will use the 
expectations given by equation (2). In this way, we obtain the 
following difference equation: 
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In Section 2 we will present some analytical results for 

equation (8) and in Section 3 we will present some numerical 
simulations. 

II. THE EXCHANGE RATE EVOLUTION GOVERNED 

BY A THIRD-ORDER NONLINEAR DETERMINIST 

DISCRETE SYSTEM 

If we denote tt Ss ln= , then equation (8) can be written in 

the form:  
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with Rst ∈ and Zt ∈ . We can rewrite equation (9) in the 

following vectorial form: 
 

( ) ( )1121 ,,,, +−++ = tttttt sssFsss           (10)    

 
where 

33: RRF → ,  ( ) ( ) ( ) ( )( )zyxFzyxFzyxFzyxF ,,,,,,,,,, 321= ,  

is defined in the following way: ( ) zzyxF =,,1 , 

( ) yzyxF =,,2  and ( ) ( ) ( )xzzzzyxF ψϕ +=,,3 , with 
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A.  Steady-state existence, unicity and stability 

A fixed point for system (10) is a point ( )*** ,, xxx  for 

which ( ) ( )****** ,,,, xxxFxxx = . 

We recall that a fixed point ( )*** ,, xxx  is stable if for any 

sufficiently small neighbourhood ( )*** ,, xxxU ∋  there is a 

neighbourhood ( ) ( )*** ,,,, xxxbVU ∋βα  such that 

( ) UzyxF t ∈''' ,,  for every point ( ) ( )βα ,,,, ''' bVzyx U∈  

and all t > 0, where 
timest

t FFF
−

= ... . 

If there is a neighborhood ( ) ( )*** ,,,, xxxbVU ∋βα  so that 

( ) ( )***''' ,,,, xxxzyxF t → , when ∞→t ,  for every point 

( ) ( )βα ,,,, ''' bVzyx U∈ , then the fixed point is 

asymptotically stable (attracting fixed point). 
 

Proposition 1 In the case in which ( )1,0∈b , 0>α  and 

0>β , system (10) has a unique fixed point and  this point is 

(0,0,0). The fixed point (0,0,0) is stable for ( )3165.0,0∈b  

and unstable for ( )1,3165.0∈b . 

 
The equilibrium exchange rate means that money demand is 

equal to money supply. When the discount factor b is in the 
interval (0, 0.3165) the fixed point is stable. In fact, if b is 
small, this means that the exchange rate value is strongly 
influenced by the exogenous variables (which yield the 
equilibrium value of the exchange rate). We have seen that in 
this case it is important to know the equilibrium value, 
because the traders expect that in a neighborhood of 
equilibrium exchange rate, the exchange rates will go back to 
this value for ( )3165.0,0∈b .  

For b = 0.3165, we notice a bifurcation. After the 
bifurcation, the fixed point is unstable and it is surrounded by 
a limit cycle that is stable (we observe this 
from simulations). Within a neighbourhood of the fixed point, 
all the orbits starting outside or inside the closed invariant 
curve, except at the origin, tend towards the limit cycle under 
the iterations of the function F. This is a Neimark-Sacker 
bifurcation. 

Proposition 2 For ( )1,0∈α , 0>β and ( ]2.0,0∈b  the 

fixed point (0,0,0) of system (10)  is globally attractive. 

 

B. Period-two cycles  
We shall now study the existence of cycles of period two. 
 
Proposition 3 i) Under the assumptions ( )1,0∈b , if 
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period two.  
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then system (10) has only one cycle of period two. This cycle 
is ( ) ( ){ }212121 ,,,,, ssssss  where 1s , 2s  are the solutions of 

Issue 3, Volume 1, 2007 104

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

the equation 
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The numbers 1s , 2s  verify the relation 021 <ss . Let 1s  be 

the positive number. 
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From Propositions 1 and 3, we obtain the following 

proposition: 
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system (10)  is only locally attractive.  
 

III.  NUMERICAL SIMULATIONS 

A. Numerical simulations for the system (10) 
 We now recall some notions which will be used in this 

section. We say that a set A is an attracting set with the 
fundamental neighbourhood U, if it verifies the following 
properties (see  [5]):  
1) attractivity: for every open set AV ⊃ , VUF t ⊂   for all 
sufficiently large t.  
2)  invariance:  ( ) AAF t = , for all t.  
3) A is minimal: there is no proper subset of A that satisfies 
conditions 1 and 2.  

The basin of attraction is the set of initial points x so that 
( )xF t  is close to A when  ∞→t .  

 

It is possible to classify the different attractors: attracting 
fixed point, attracting n-cycle, quasiperiodic attractor and 
strange attractor. An attractor, as an experimental object, gives 
a global description of the asymptotic behavior of a dynamical 
system.  

When a deterministic mechanism presents complex 
behavior with intermittence we can conclude  that the series 
evinces chaos under certain conditions. 

The sensitive dependence on initial conditions is one of the 
most essential aspects to identify chaos. We recall that the 
sensitive dependence on initial conditions means that two 
trajectories starting very close together will rapidly diverge 
from each other. 

The strange attractor is associated with a chaotic state of 
time evolution and is characterized by the sensitive 
dependence on initial conditions.  
 

A measure of the average rate of exponential divergence 
exhibited by a chaotic system is given by the Lyapunov 
exponents of the system; the positivity of one from these 
exponents can suggest the presence of chaos.  
 

The Lyapunov exponents 
1λ , 

2λ  and 
3λ are given by  
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where ( )( )21 ,, ++ ttt sssFJ  represents the Jacobian matrix of the 

function F. For a period-p point the Lyapunov exponents 
1λ , 

2λ  and 
3λ are given by  
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We recall now that for an attracting period-p cycle the 
Lyapunov exponents are negative; in case of a bifurcation 
point, at least one Lyapunov exponent is zero; for a limit cycle 
one Lyapunov exponent is zero and the others are negative 
and for a chaotic behavior the highest Lyapunov exponent is 
positive while the sum of the all Lyapunov exponents is 
negative. 

In order to compute the Lyapunov exponents, when system 
(10) displays a chaotic behavior, we use the method proposed 
in [1], based on the Householder QR factorization and the 
implementation method proposed in [8].  
 

We have made many numerical simulations and we have 
found many situations in which the system displays a chaotic 
behavior.  
 

For the particular case where α=2, b=0.95 and the initial 
condition ( ) ( )*210 ,02.0,02.0,, ssss −= , where 
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investigate the ranges of parameter β for which system (10) 
presents a chaotic or a non  chaotic behavior. 

We observe different intervals of values for β  for which, in 
general, system (10) displays a chaotic behavior. These 
intervals are separated by an interval of values of β which 
characterizes a sequence of period-doubling bifurcations for 
system (10). In Figures 1-3 we present the strange attractors 
which characterize different types of intervals of values for β 
for which the system displays a chaotic behavior. 
 

 
1210*6=β  600=β  

 
46=β  12=β  

 
6.4=β  3.2=β  

 
36.1=β  1.1=β  

 
04.1=β  7.0=β  

Fig. 1 Chaotic attractors in the case  b =0.95, 2=α , 
( ) ( )*210 ,02.0,02.0,, ssss −= , in the space ( )1, +tt ss  

In Table 1 we give the values of Lyapunov exponents in the 
case of the strange attractors presented in Figures 1-3. 

The images from these figures seem to represent the same 
attractor which increases and is deformed. 
 

In this case, the fixed point  (0,0,0) is unstable and system 
(10) has no cycles of period two. We observe more values for 
β  for which system (10) displays a chaotic behavior.  

When ( )3165.0,0∈b  (the fixed point (0,0,0) is unstable) 

the influence of speculators increases more and more. For 
certain values of the parameters α and β  and of the 

exchange rate, the behavior is expected to be chaotic. This 
means that the influence of speculators increases and produces 
instability and the forecast of the exchange rate evolution is  
difficult.   
 

 
1210*6=β  600=β  

 
46=β  12=β  

 
6.4=β  3.2=β  

 
36.1=β  1.1=β  

 
04.1=β  7.0=β  

Fig. 2 Chaotic attractors in the case b =0.95, 2=α , 
( ) ( )*210 ,02.0,02.0,, ssss −= , in the space ( )2, +tt ss  

 
Parameter β  also influences the dynamics of the system. 

The speculators have a high influence on the market and 
create instability.  We can see how fast the attractors tend 
towards the equilibrium value when β  decreases.  

When β  is high the evolution of the exchange rate is 

around the equilibrium value and the weight given by the 
fundamentalists tends towards its maximum value 1. When β  
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decreases, this weight also decreases, and the values of the 
exchange rate and the value of equilibrium are not close. 

  
1210*6=β  600=β  

  
46=β  12=β  

  
6.4=β  3.2=β  

  
36.1=β  1.1=β  

  
04.1=β  7.0=β  

Fig. 3 Chaotic attractors in the case b =0.95, 2=α , 
( ) ( )*210 ,02.0,02.0,, ssss −= , in the space ( )21,, ++ ttt sss  

 
TABLE 1 The Lyapunov exponents in the case b =0.95, 2=α , 

( ) ( )*210 ,02.0,02.0,, ssss −=  

β  
1λ  2λ  3λ  

6*1012 0.2387 -0.2572 -0.4318  
600 0.2328 -0.2468 -0.4297  
46 0.2165 -0.2078 -0.4558 
12 0.1925 -0.2225 -0.5905  

6.2 0.174 -0.1869 -0.7605 
4.6 0.2005 -0.1857 -0.8187  
2.3 0.1283 -0.1239 -1.831  

1.36 0.1685 -0.2739 -1.5168  
1.1 0.1702 -0.2348 -1.5861  

1.04 0.1446 -0.4764 -2.0404  
0.7 0.1207 -0.1013 -2.1739  
 
To calculate the Lyapunov exponents we have used the 

implementation method proposed in [8], using a VBA (Visual 
Basic for Applications) program in Excel, and the images 
from Figures 1-3 are made using Mathematica. 
 

B. Numerical simulations for a system of the second order 
Now, for chartists we consider the expectation: 

 

       ( ) 2

3

1

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

−

+

t

t

t

tct

S
S

S
SE         (13)   

 
In equation (2) we will use the expectations given by the 

equations (3) and (13). In equation (1) we will use the 
expectations given by equation (2). In this way, we obtain the 
following difference equation: 
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If we denote tt Ss ln= , then equation (14) can be written 

in the form:  
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with Rst ∈ and Zt ∈ . We can rewrite equation (15) in the 

following vectorial form: 
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For the particular case where α=2, b=0.95, c=2 and the 
initial condition ( ) ( )02.0,02.0, 10 −=ss , we investigate the 

ranges of parameter β for which system (16) presents a 
chaotic or a non  chaotic behavior. 

  
1210*6=β  600=β  

 
46=β  12=β  

 
2.6=β  6.4=β  

 
2.2=β  1=β  

  
8.0=β  4.0=β  

  
2.0=β  13.0=β  

Fig. 4 Chaotic attractors in the case c=2 0s = 0.02,  

1s = -0.02, b =0.95, α =2, space ( )1, +tt ss  

We observe different intervals of values for β  for which 
system (16), in general, displays a chaotic behavior. These 
intervals are [46, ∞ ), [16,28], [6.2,12], [4,4.6], [2.9,3.8], 
[1.7,1.8]. Every two intervals presented here are separated by 
an interval of values of β which characterizes a sequence of 
period-doubling bifurcations for system (16). We present in 
Figure 4 the strange attractors which characterize different 
types of intervals of values for β for which the system 
displays a chaotic behavior. In Table 2 we give the values of 

Lyapunov exponents in the case of the strange attractors 
present in Figure 4. 

TABLE 2 Lyapunov exponents in the case 0s = 0.02,  

1s = -0.02, b =0.95, α =2 

β λ1 λ2 
6*1012 0.3728   -1.2735 
600 0.4029  -1.2158 
46 0.2685  -1.1734   
12 0.3299  -1.341   
6.2 0.2636  -1.9012 
4.6 0.2244  -1.4617 
2.2 0.2033  -1.5614 
1 0.09489  -1.424 
0.8 0.143  -1.5599 
0.4 0.1054  -3.3219 
0.2 0.0787  -2.5733   
0.13 0.0132  -4.1387 

 
From Figures 1 and 4 we can observe a similarity between 

the images of attractors for each particular order of the 
systems. 

IV. CONCLUSION 

Fixing the value of parameters and the initial condition, 
using numerical simulations, we can detect the dynamics 
displayed by the nonlinear systems.  

From the case presented in the Section 3, we can observe 
that the dynamics of nonlinear systems can be very 
complicate. In such a study, the implementation methods are 
very important. If we use a good implementation method, we 
can quickly observe many cases (for example, fixing the 
parameters and initial condition and making only one 
parameter variable). In this way, we can conclude on the 
obtained results. 
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