
 

 

  
Abstract—Detection of the past population growth is one of the 

crucial issues in contemporary population genetics. The importance 
of the problem is especially well understood in the context of neutral 
theory of evolution at molecular level proposed by Kimura. This 
theory often serves as neutral hypothesis in the search for genes 
which underwent natural selection. The conclusions in such studies 
can be false if population expansion was present but not detected and 
therefore not introduced into the model. In the paper we present 
novel statistical test which emerged from application of artificial 
neural networks theory. The test is designed to detect past population 
growths based on genetic microsatellite data. In experimental part of 
our research we created set of samples, using forward in time 
simulation methods. These samples were picked at random from 
simulated populations that had undergone growths of different types 
and intensities. Then, we created and trained series of different 
artificial neural networks and checked power of new tests based on 
these networks. We also compared powers of new tests with powers 
obtained by known methods based on microsatellites. Our studies 
showed that proposed by us new test provides better power in 
detection of population growth than the best currently available tests 
based on microsatellites i.e. Kimmel’s and King’s imbalance indices. 
 

Keywords— stochastic computer simulations, population growth 
detection tests, artificial neural networks, microsatellite loci, single 
step mutation model  

I. INTRODUCTION 
HIS is a well known fact that results of the search for the 
natural selection operating at molecular level are affected 

by population history. Therefore the estimation of the 
probable long-term demographic history of a population, and 
in particular, the detection of the past population growth has 
become one of the main problems in statistical genetics. In the 
last decade, with the advances of new numerical methods and 
the more and more productive computers the forward in time 
simulations started to play the role reserved earlier for 
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coalescent methods.  
On the other hand artificial neural networks have been 

successfully used for years in many scientifically sound 
problems. Neural networks have ability for adaptation and 
generalization of knowledge, and can find hidden patterns in 
input data by inductive machine learning process [1]. 
Therefore they might be successfully used in solving problems 
that are often hard to describe by rule-based algorithms. The 
crucial is point is only the availability the training data 
representing properly the problem considered.  

In the studies dedicated for the detection of population 
growth the researchers often use various statistics computed 
for the same sample and then they try to analyze the results 
and draw conclusions [2]. Our goal was to create a method 
which would be able to encompass knowledge gained from a 
few statistics based on microsatellites.  

Microsatellites are short tandem repeats, STRs [3-5]) which 
are quite abundant in genomes and undergo relatively fast 
mutations. Therefore they are suitable for testing the evolution 
of populations rather than species, and no doubt have found 
applications in various tests for population detection. Using 
such data we propose new statistical test that has a greater 
power for detection of population growth than other available 
microstallite based methods. 

II. COMPUTER SIMULATIONS 
In order to create samples used as training data for artificial 

neural networks we applied time forward computer 
simulation. We used Wright-Fisher [6] model with provided 
dynamic description of the evolution and modified this model 
to allow changes between amounts of individuals in 
generations of population.   

In time forward simulation method we must simulate 
creation of every generation from the second generation to the 
final generation. Number of individuals might vary between 
generations. Each member has constant amount of 
microsatellites. Members of each generation are based on 
members of the previous generation. During creation of 
generation’s member we draw parent of the individual, take 
parent’s microsatellites and run mutation process based on 
single-step stepwise mutation model (SSMM) [7] then we 
assign microsatellites to the child. First generation has N 
members, each member has M unlinked microsatellites, each 
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microsatellite has the same initial value. For first 2N to 4N 
generations we should simulate population of constant size [8] 
in order to achieve genetic drift – mutation equilibrium (we 
call it initializing generations) we don’t use samples from this 
period in our researches. After this time we can simulate 
population growth.  

Our initial population size was 2 500, each individual had 
M = 30 microsatellites and mutation rate was v = 5×10-4. Each 
simulation comprised at least 8N = 20 000 initializing 
generations (we choose rather conservative number 8N to be 
sure about achieving the equilibrium) before we start 
simulating growth.   

We simulated two types of population growth: 
a) exponential growth from N = 2 500 individuals to 5 000, 

25 000 and 250 000. For the same final size of population, 
rate of exponential growth varied because of different times of 
achieving final population size.  We used up to 11 different 
time scales to simulate growths as fast as lasting only 625 
generations to as slow as lasting even 640 000 generations. 
Unique connection of final population size and time of 
reaching final population size is described in this paper as a 
scenario.  

b) stepwise growth from N = 2 500 individuals to 5 000, 
25 000 and 250 000. 

For each scenario of population growth (if not said different 
in experiment description) we created 100 independent  
histories. Because in real life we usually don’t have all 
members of the generation, but just a few representatives we 
took 100 samples from every final generation. Each sample 
contains 40 individuals (one individual couldn’t be found 
twice in one sample, but might be found in several different 
samples). From each individual we gained 30 unlinked 
microsatellites, and as was mentioned the mutation rate was 
set at v = 5x10-4. 

For ten fold stepwise growth from 2 500 to 25 000 
individuals, we created a series of samples with different 
values of simulation parameters like: mutation rate (2.5×10-4, 
5×10-4, 7.5×10-4) amount of individual’s microsatellites (10, 
30, 40), amount of individuals in examined sample (10, 40, 
70). Then we counted power of neural classifier for this cases 
and compared with power obtained by 1̂ln β  (for the definition 
of this coefficient see section 3.4) for the same samples.  

III. ARTIFICIAL NEURAL NETWORKS 
As it was said in the introduction, artificial neural networks 

can use knowledge obtained from several sources feeded to 
network inputs by learning from examples the strength of the 
influence of given input data source on the quantity under 
consideration. The description of formal operation of neural 
network which is relevant for the study id presented in 
following subsections 

A. Architecture 
Fundamental element of artificial neural network is neuron. 

Neuron is a cell with many inputs and one output. Each input 

value xk is multiplied by coefficient wjk signed to this input. 
There is additional input value x0 with fixed value (usually 1) 
and coefficient wj0 usually set at the beginning to -1.The 
artificial neuron output y is given by  
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Neurons in networks are organized in layers. Single layer 

may contain one or more neurons. In our researches we used 
one and two layers networks. In our networks, all outputs 
from previous layer are inputs for every neuron in next layer 
(feed-forward neural networks) all signals are always going 
forward (there is no recursion). Size of network (amount of 
layers and neurons) is significant, if network is too small it 
might be unable to achieve desired global error value during 
learning. Networks with too many neurons or layers might 
remember how to recognize all learning samples and lost 
generalization capabilities.  

Inputs of first layer are fed by samples coefficients, values 
on the input should be normalized.  

Network can have many neurons in last layer, each such 
neuron is one element of output vector. In our networks last 
layer contains always one neuron. We assume that 0 on the 
network output means that population size is constant and 1 
that population experienced expansion. 

Depending on activation function of the last layer we can 
get discrete or continuous value on the network output. In our 
studies we gained continuous values and then compared them 
with the cut off value. 

B. Learning 
To train our networks we used supervised learning: in loop, 

we presented learning samples on the network input and 
modified weights wjk using the steepest descend method (back 
propagation) until we reached desired error value or number 
of iterations.  

It is important to choose correct learning set. Samples in 
learning set should cover uniformly all cases. If some rule 
have significant more samples in learning set than other rules, 
it might have negative influence on the network, because 
during training network can learn how to recognize this 
predominant rule faster than other rules, therefore achieve low 
global error. But during using network wouldn’t be able to 
recognize all other rules correctly.  

Our learning set contains similar amount of samples from 
constant and from growing populations. Samples from 
growing populations came from populations that underwent 
stepwise growth and exponential growth. 

We allowed our networks to learn for 100 000 iterations (in 
each learning session, we saved network better than previous 
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best one in that session). We performed in this way a few 
hundred sessions obtaining several hundred networks. From 
this set of networks we choose the one with the greatest 
power. 

When the network learning was finished we calculated the 
cut off value as 0.95 quantile of the output values generated 
by network for histories with constant population size. Set of 
samples which we used to count power of classifiers 
contained neural network learning set, but this learning set 
was just little fraction (about 5%) of all samples set used in 
further studies. 

C. Detection of Growth 
In order to detect possible growth of the population we 

supplied the trained network with growth detection statistics 
described in the next Section.  

These statistics are designed to detect different histories of 
samples drawn from populations with constant size (Fig. 1a) 
and those which underwent in past a substantial growth (Fig. 
1b).  
 

 
 
Fig. 1. Genealogy trees for genes of 10 individuals drawn at random 
from a population having constant size of 20 000 (a) and population  
of 20 000 individuals which however underwent 8 000 generations 
ago 100 fold growth. The crosses represent mutation events.  
 

The qualitatively different lengths of the branches leading 
from the most recent common ancestor in both genealogies 
presented in Fig. 1 are the reason why the distributions of the 
length of alleles are also different. For the constant population 
size the old branches are long and therefore accumulate a lot 
of mutations what is reflected in two or three modal 
distributions of the allele length (Fig. 2). This is not so for the 
population evolving after significant growth. The 

corresponding genealogy has got short branches leading from 
the most common ancestor, so the mutations accumulate in 
young branches yielding unimodal distributions (Fig. 3). 
 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

94 95 96 97 98 99 100 101 102 103 104

 

0

1000

2000

3000

4000

5000

6000

94 95 96 97 98 99 100 101 102 103 104

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

94 95 96 97 98 99 100 101 102 103 104 105

 

0

1000

2000

3000

4000

5000

6000

7000

94 95 96 97 98 99 100 101 102 103 104 105

 
 

Fig. 2 Histograms of the allele length for constant population size of  
25 000 individuals and with typical for mucrosatellites mutation rate 
equal 0,0005. 
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Fig. 3 Histograms of the allele length for population of the size 
25 000 individuals which underwent 10 fold increase 20 000 
generations ago and having typical for mucrosatellites mutation rate 
equal 0,0005. 

 
 

D. Inputs of the Network 
As inputs of our network we used four growth coefficients 

based on microsatellites: 
a) two estimators of imbalance indices: Kimmel’s 

imbalance index 
 

                           oPV θθβ ˆlnˆlnˆln 1 −=                         (3) 

 
and King’s and Kimmel’s imbalance index 
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In the aforementioned formulas m is the amount of 

microsatellites of each individual, Vθ̂ denotes allele size 

variance estimator of composite parameter θ =4Nv  and Poθ̂ is 

allele size homozygosity estimator ofθ . Moreover,  
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where n is the amount of individuals in the sample, iX  length 

of microsatellite of ith individual and X  is the mean of the 
length of microsatellites among individuals 
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where K is a set of allele length in the sample, and  

                                     
n
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k =                                       (8) 

 
with nk denoting the amount of alleles with length equal to k. 

Additionally,  
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These equations are further described in [7]. 

 
b) inter locus estimator g being the ratio of observed and 

predicted variance of the allele length 
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Observe that in the above formula the nominator denotes 

the observed variance of the allele length given by  
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and the denominator has got the meaning of the variance value 
predicted in drift-mutation equilibrium 
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In these formulas jV̂ is an unbiased estimator of variance of 

the allele length distribution at locus j, and V̂ is the mean of 
unbiased estimators of variance of allele length distributions. 
More detailed description of these equations the reader can 
find in [9]. 

 
c) within locus estimator k 
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whereas 
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In above equations described in detail in [10], 2S  has got 

the meaning of an unbiased estimator of the variance, 4Sig is 
unbiased estimator for the variance squared, and 4Gam  is the 
fourth central moment. Of allele length distribution 

Estimators of imbalance indices and values of inter locus 
estimator g usually receive values from range 0 to 1 so we can 
put them directly on the network input. Value of within locus 
coefficient k should be divided by a number of microsatellites 
n that we used to count this indicator. 

IV. RESULTS 
In our experiments to implement random number generator 

we tried the same algorithm which was formerly used by the 
first author for simulating branching processes in the problem 
of Mitochondrial Eve dating [11]. However, finally, mainly 
due to easier implementation reasons we used so called 
Mersenne Twister generator.  

We used also feed-forward neural network. Namely, one 
layer and two layers perceptrons were utilized because these 
networks are universal, contrary to probabilistic neural 
networks which learn much faster but are dedicated primarily 
for classification [12]. Also, due to their fast learning 
probabilistic neural networks can be applied as a criterion in 
optimization of feature space [13], but they are not a good 
choice in approximation problems considered in our study.  

Having decided to use multilayer perceptrons we tested 
with different amounts of neurons in layers. Interestingly, we 
obtained the greatest power with single layer neural network 
containing only one neuron. For such a simple network there 
is a possibility to give the equation realized by network and 
therefore to define analytically a new test γ defined as 
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Test γ returns values from a range (0,1) with cut off value 

equal to 0,797 at significance level 0.05 (if the test returns 
greater value we assume that sample comes from population 
that experienced growth). 

We compared power of γ, with power achieved by one of 
the most powerful growth detectors, namely estimators of 
imbalance index. Based on empirical distribution of imbalance 
index estimators values for constant population size histories, 
we determined critical values for the tests, 1

ˆln β = -0,51 and 

2
ˆln β = -0,787.  

To obtain these values we created 150 histories of constant 
population size N = 2 500 individuals and we simulated 
100 000 generations. Starting from the 50 000th generation we 
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took samples from every generation divisible by 10 000. From 
each history we took 100 samples, each containing 40 
individuals. 

A. Stepwise Growth 
For small stepwise growth (like two fold growth) there is 

no difference in power of detection between 1
ˆln β and γ (Fig 

4a), actually all tests have low power. 
For ten fold growth there is a visible difference in power of 

tests (Fig 4b), neural network based test γ is able to detect 
growth earlier than methods based on imbalance index and 
signal of expansion stays longer. For 100 fold growth (Fig 
4c), we can detect growth with γ even earlier and for longer 
time.  
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Fig. 4. Powers of 1
ˆln β  (♦), 2

ˆln β  (■) and neural network γ (*) tests. 
Populations experienced stepwise growth from N = 2 500 individuals 
to (a) 5000, (b) 25 000 and (c) 250 000 individuals. 

B. Exponential Growth 
For small growths powers of all tests are low (Fig. 5a). In 

case of greater exponential expansion γ has greater power and 
might detect growth for longer time (Fig. 5 b and c). Fig. 5 
shows us that γ usually give us outcomes better than other 
available tests based on microsatellites. 
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Fig. 5. Powers of 1

ˆln β  (♦), 2
ˆln β  (■) and neural network γ (*) tests. 

Populations experienced exponential growth from N=2 500 
individuals to (a) 5000, (b) 25 000 and (c) 250 000 in different time 
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periods. For each generation marked on the graph we created set of 
100 unlinked histories which final size was reached at marked time. 
  

Differences in power of tests are especially visible for 
populations undergoing growth of bigger rate. In the Fig. 6. it 
is visible that for small growths (left side of the graph, little 
difference in amounts of individuals between two generations) 
powers of 1

ˆln β  and γ are similar but for bigger (right side of 
the graph) growths γ has a greater power. 
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Fig. 6. Power of γ (black) and 2
ˆln β  (gray) for population which 

undergoes exponential growth from N=2 500 to 250 000 individuals 
during 640 000. generations. Statistics are counted for number of 
generations marked on horizontal axis. 
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(b) 

 

Fig. 7. Comparison of power of 1
ˆln β  (♦) and γ (■) for different 

mutation rates.  Mutation rate was (a) v = 2.5×10-4 and (b) 
v = 7.5×10-4. 
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Fig. 8. Comparison of power of γ for different mutation rates during 
stepwise growth from 2 500 to 25 000 individuals. Mutation rate was  
v = 2.5×10-4 (♦), v = 5×10-4 (■) and  v = 7.5×10-4  (▲). 
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Fig. 9. Comparison of power of 1̂ln β  (♦) and γ (■) for different 
amounts of microsatellites possessed by individuals in the sample. 
Each individual has (a) 10 or (b) 40 microsatellites. 
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Fig. 10. Comparison of power of γ for different amounts of 
microsatellites in single individual equal to 10 (♦), 30 (■), 40 (▲). 
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Fig. 11. Comparison of power of 1

ˆln β  (♦) and γ (■) for different 
amounts of individuals in the sample. From each unlinked history we 
took (a) 10, (b) 70 individuals. 
 

C. Changes in the Mutation Rates 
For samples coming from populations with different 

mutation rate power of growth detection is lower that for 
populations with mutation rate equal to v = 5×10-4 (compare 
Fig. 7a, 7b and Fig 8). However power of neural classifier is 

still higher than power of method based on imbalance index 
(Fig. 7). 

D. Changes in the Amount of Microsatellites 
Observe that for 40 microsatellites the power of γ is even 

slightly lesser than that of 1
ˆln β  (Fig. 9b). However for small 

number of microsatellites the power of γ is substantially 
greater than that of 1

ˆln β  (Fig. 9a). With the increasing 
number of microsatellites the power of  γ is falling (Fig. 10) . 

E. Changes in the Amount of Individuals in the Sample 
In general the power of the novel test γ is greater than that 

of 1
ˆln β  (Fig. 11). Note however, that with the increasing 

amount of individuals in the sample falling (Fig. 12) it is 
falling in similar fashion to imbalance to the fall of the power 
of index based test.  
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Fig. 12. Comparison of power of γ for different amounts of 
individuals in the sample: 10 (♦), 40 (■), 70 (▲).  

V. DISCUSSION 
In the paper we demonstrated that artificial neural networks 

may be helpful in detection of population growth. Our study 
proved that properly trained neural network defines a novel 
statistical test γ given by (17) which achieve greater power in 
the detection of population growth, than any other tests based 
on microsatellites as it is showed in Fig. 4, 5. and 6.  

For the greatest possible power of detection, the change in 
sample parameters (for example different amount of 
individuals in the sample taken from population or different 
number of microsatellites) requires in some cases the training 
of the new artificial neural network. Then, as a learning set we 
should use samples from populations with corrected 
parameters.  

However, even without that in majority of cases the power 
of defined in the paper test γ (17) remains greater than that of 
known tests. It can be easy to understand if we take in mind 
that the test γ uses the information involved in other tests and 
the importance of information in any particular test is 
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weighted by the neural network according to the rule learned 
from training data obtained from computer simulations  

It was proved by King, Kimmel, and Chakraborty [7] that 
power of imbalance indices 1

ˆln β  and 2
ˆln β  is greater than 

that of k and g statistics defined by Reich et al. in [9, 10], 
however we showed in this study that addition of information 
covered in these two latter tests can further increase the power 
of resulting γ statistic. 

Therefore, the definition of this test, obtained by the use of 
neural networks techniques we consider as the main novelty 
of the paper. Except for the definition of the formula for γ test, 
we also present in the articlce its critical value at significance 
level 0.05, so the test can be used directly by others researches 
in problems of population growth detection inferred from 
microsatellites. 
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