
 

 

  

Abstract— The objective of this article is to show advantages and 

disadvantages of time-forward simulations as compared to the 

simulations performed backwards in time. The posed general issue is 

then narrowed to the problem of detection of past population 

expansion. The detection of population expansion is relevant in  

population genetics studies and there are plenty of methods used for 

that purpose. One of them utilizes genetic information preserved in 

microsatellites present in great abundance in the genome. We address 

the problem by simulating microsatellites evolution in different 

population growth scenarios. Namely we use time-forward computer 

simulation methods and compare results with results obtained by 

other researchers whiu used coalescent methodology. We argue that 

feed-forward simulation which are based on real life scenarios when 

succeeding generations are picked from the preceding one are 

becoming more and more suitable tool for population genetics with 

the increasing computational capabilities of contemporary 

computerss. 
 

Keywords—time-forward computer simulations, coalescent 

methods, population growth detection tests, short tandem repeat 

motifs/ 

I. INTRODUCTION 

OALESCENT theory enables creating huge amounts of 

samples in quite a short time [1], yet its methods were 

developed some years ago when computers were rather 

expensive and possessed relatively low computational power. 

Over the last years the situation has changed due to invention 

of multi-core processors and overall progress in technology, 

which makes contemporary hardware highly efficient in 

computations and available at reasonable price. What is more, 

some recent research shows that given circumstances, 

coalescent methods might return different results than time-

forward simulation approach.  

 In both coalescent-based and time-forward simulation 

methods we often want to gain sample from population with 
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experienced changes in amount of individuals between 

generations.  

We are simulating changes of some genetic markers caused 

by mutation process and parenthood. Most popular genetic 

markers are microsatellites – short strains of DNA build from 

repeating motifs of length 2-6 nucleotides [2]. Length of 

microsatellite is denoted by amount of such repeated motifs, 

usually 60 or so [3].  

Common mutation in microsatellites are changes in amount 

of repeated motifs [4] (change in length of microsatellite), 

usually we use one-step symmetric stepwise mutation model 

SSMM (microsatellite might change length by one, we assume 

that the probability of addition and deletion of one repeating 

motif is equal) [5].  

Microsatellites became popular between researchers 

because of relative high mutation rate (about 10
-4

 – 10
-5

), and 

the fact that they are spread all over genome [6] (in human 

genome there is over 10 000 known microsatellites [7]), most 

of them is in non coding DNA, so most of microsatellites 

probably don’t have influence on reproductive capabilities of 

individuals. Microsatellites are easy in mathematical analysis.  

During research work we created series of population that 

underwent different kind and magnitude of growth. To 

simulate develop of population we need model providing 

dynamic description of the evolution. We choose Wright – 

Fisher model, it is based on idealized population. Classical 

version of Wright – Fisher model assumes [8]: 

 

• discrete and non overlapping generations, 

 

• haploid individuals in populations, 

 

• constancy of population size, 

 

• equilibrium fitness of individuals in the population, 

 

• lack of geographical or social structure in the 

population, 

 

• no recombination in the population. 

 

Because we simulated populations which size was changing 

in time, we modified model so it allowed for changes in 
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population size. We assume that all experiments were correct 

for Y [9] chromosome or mtDNA [10] in order to bypass 

recombination issues and provide haploid individuals.  

When new generation was created the old one was deleted 

so there were no overlapping generations. During creation of 

new individual all parents could be chosen with equal 

probability, so we eliminate the problems of individuals' 

fitness and geographical or social structure.  

II. SIMULATIONS METHODOLOGY 

In general there are two ways of population history 

simulation. For that purpose we can use coalescent theory or 

time forward simulation 

A. Time-forward Simulations 

In time forward simulation we create succeeding generation 

based on previous one. Every individual in previous 

generation might have influence on current generation. Usually 

we don’t have genetic samples composed of all members of a 

population, but just a few individuals (e.g. 40 as in [11]). 

Amount of analyzed individuals can make difference in 

outcomes (Fig. 1). 
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Fig. 1. Amount of individuals in the sample might have influence on 

coefficients values. Cut off values of 
1
ˆlnβ  ♦ and 

2
ˆlnβ  ■, were 

determined by the 0.05 quantile of the empirical distributions. We 

created 100 unlinked histories with constant amount of individuals 

N = 20 000. Each individual had 30 microsatellites, We took 100 

samples from every generation that number were divisible by 

100 000. For each history we simulated 1 000 000 generation. 

Mutation rate was v = 5 × 10-4. 

 

For simulation we used designed by us software called 

GenSim. The screenshot presenting form used for simulation is 

presented in Fig. 2. The software was written in C# 

programming language in .NET framework. As a 

develompemnt tool the Microsoft Visual Studio 2005 was 

used. In our experiments we tried the same algorithm as a 

random number generator which was formerly used by the first 

author for simulating branching processes in the problem of 

Mitochondrial Eve dating [12]. However, fianally mainly due 

to implementation reasons we used so called Mersenne Twister 

generator. The training sets obtained from siulations were used 

by one layer and two layers perceptrons with the purpose of 

proposing new artificial neural network based test [13]. 

Perceptrons were utilized because these networks are 

universal, contrary to probabilistic neural networks which 

learn much faster but are dedicated primarily for classification 

[14]. Also, due to their fast learning probabilistic neural 

networks can be applied a criterion in optimization of feature 

space [15], but are not a good choice in approximation 

problems considered in our study.  

 

 
 

Fig. 2. Simulation form of the GenSim software. 

 

To make our experiments more real, we took samples of n 

individuals from a populations and each sample contains fewer 

members than the whole population. Algorithm of time 

forward simulation consists of the following steps: 

 

• Prepare initial population of N individuals. All 

individuals have the same amount of unlinked 

microsatellites, initialize each microsatellite with the 

same value. If we don’t want to simulate vanishing 

microsatellites then initial size should be properly 

high. 

 

• Run simulation for 2N to 4N iterations in order to 

reach mutation drift equilibrium [16] and gain real 

sample (see Fig 5).  

 

• During each iteration create another generation of p 

individuals (p value is determined by changing of 

population size).  

 

• For each member of new generation draw parent in 

the previous generation, take microsatellites from the 

parent, and for each, apply mutations according to 

SSMM model (one parent can have many children). 

 

• Create as many generations as needed. 

 

We can save individuals of every generation or just some 
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generations chosen, so there is a possibility to track changes of 

population’s statistical properties such like those presented in 

the Fig 4 (for the definition of coefficients used in the Fig. 4, 

see Section 3). 

B. Simulations of Coalescent 

It is based on observation that not all individuals in a 

population will have children. For constant population size the 

probability of not having a child is about 37% [8]. Coalescent 

doesn’t include those individuals without children into further 

consideration – genealogy of only those individuals which are 

in the sample is created (Fig. 3). 

 

 
 

Fig. 3. The coalescent tree of the sample of five individuals. 

 

Steps to create population using coalescent theory, assuming 

that for each microsatellite we create distinct genealogy, 

include: [8] 

 

• Creation of a sample of n individuals, where n is 

not the size of the population, but just amount of 

individuals that we want to have in final sample. 

Each individual contains m unlinked 

microsatellites. At the beginning all microsatellites 

have the same length. 

 

• repeating until there is only one individual in the 

sample of the following: 

 

 

o choosing whether the subsequent event is 

coalescent or mutation, 

o if its coalescent event choosing two 

individuals to coalescent and merge them, 

thus obtaining n-1 individuals in the 

sample, 

o if its mutation event choosing lineage to 

be mutated, determination of the type of 

mutation and application of it on some 

individuals. 
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(c) 

 

Fig. 4. 
1

ˆlnβ  as a function of 
2

ˆlnβ . Constant population with 

N = 2500 individuals, mutation rate v = 5 × 10-4, each individual has 

30 microsatellites. We took 1000 samples, 40 individuals each from 

a) 10 000, b)  32 000, c) 64 000 generation, for each sample 
1

ˆlnβ  

and 
2

ˆlnβ  were computed. 
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Fig. 5. Values of 
1

ˆln β  (horizontal lines) and 
2

ˆln β  (slant lines) 

for population of N = 2500 individuals directly after simulation start 

(a) and after 10 000 generations from simulation start. Each 

individual has 30 microsatellites, Mutation rate v = 5 × 10-4. 

 

Alternatively, it is also possible to create genealogy tree for 

microsatellite and then to add mutations [17]. In any case, at 

the start of simulation we have a sample of n individuals 

coming from whole generation of N individuals. It is worth to 

notice that N is just parameter in coalescent method and 

doesn’t influence time of simulation. 

III. EXPERIMENTS 

The following sections describe experiments with 

simulations.  

A. Imbalance Indices 

As the statistical information about a population we used 

growth coefficient based on microsatellites , called  the 

imbalance index. Characteristics of the imbalance index are 

described in article [11], authors of which created series of 

samples for populations undergoing growth of different types 

and magnitudes. Simulations performed there were based on 

coalescent methods.  We repeated simulations described  in 

this article using forward simulation method. 
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Fig. 6. 
2

ˆlnβ  as a function of 
1

ˆlnβ . 100 unlinked histories were 

created, each containing N = 2500 individuals, amount of individuals 

in generations were constant, mutation rate v = 5 × 10-4, each 

individual has 30 microsatellites. From 100 000 generation of each 

population 100 samples were taken. Each sample contained 40 

individuals. For each populations mean of 
1

ˆlnβ  and 
2

ˆlnβ  were 

count. Those means were put on graph 

 

There are two estimators of imbalance index: 

 

                              
oPV

θθβ ˆlnˆlnˆln 1 −=                      (1) 

 

and 

 

               ( )∑
=

−=
m

i

iPoiV
m 1

2 )ˆ(ln)ˆ(ln
1ˆln θθβ ,           (2) 

 

where m is the amount of microsatellites, 
Vθ̂  is the allele size 

variance estimator of θ , 
Poθ̂  denotes  the homozygosity 

estimator of θ , and finally the meaning of θ =4Nµ  called 

composite parameter, is connected with the scale of the 

process. The reader interested in more in depth understanding 

of (1) and (2) should refer to [11] where these equations are 

explained in detail. 

B. Initial Simulations 

At the beginning of the simulation we have to initialize 

microsatellites’ lengths in such a way that all microsatellites 

have the same length, and then we run simulation for 2N to 4N 

generations [16]. Observe, that the population in all 

generations has got the same amount of individuals. During 
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this time period values of coefficient are stabilising (Fig. 5) 

and populations reach mutation – drift equilibrium. After this 

pre simulation period, we are able to take significant samples 

from generation and simulate population growth. 
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Fig. 7 Cut off values of 
1

ˆln β and 
2

ˆlnβ  based upon population 

with different constant size 2500 ♦ 5000 ■ and 20 000 ▲. We used 

different amount of histories to count cut off values. We simulated 

1 000 000 generations for each history, we remembered every 

population with number divisible by 105. For each population size, 

we created 120 unlinked histories. Each individual possessed 30 

unlinked microsatellites. Mutation rate v = 5 × 10-4. From each 

history we took 100 samples each contained 4 individuals. For more 

than 100 generations cut off values are stabilizing. 

 

C. Minimal Amount of Unlinked Histories 

Important issue of forward computer simulation is minimal 

amount of unlinked histories that is needed in order to gain 

significant results. Every unlinked history has different 

coefficient values (Fig. 6) and our empirical tests showed us 

that for constant samples of different sizes 60 histories is 

enough to achieve stabilization of imbalance index estimators’ 

cut off values (Fig. 7 and Fig. 8). 
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Fig. 8. Cut off values of (a) 
1

ˆln β  and (b) 
2

ˆlnβ  based upon 

constant size population N = 20 000 individuals and different 

amounts of unlinked histories from 5 to 100. Each sample contains 

100 individuals. All graphs are based on the same histories but 

different samples taken from those histories. 

 

When we take second set of samples from population and 

count cut off values we should gain similar results to those 

obtained in the previous test. If we shuffle the samples the 

results will be more divergent but with increasing amount of 

individuals outcomes being similar.  

In our experiment the test has been performed for constant 

sample of N = 2×10
4
 individuals, which we simulated for 10

6
 

generations and we used generations divisible by 10
5
 to count 

cut off values. Each individual contained 30 microsatellites an 

we took from every generation 100 samples with 40 

individuals each. In our experiments we always used 100 

unlinked histories. 
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IV. RESULTS 
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(c) 

 

Fig. 9. Power of imbalance index’s estimators for different cut off 

values 
1

ˆln β  ▲ and 
2

ˆlnβ  * based on coalescent methods, 
1

ˆln β  ♦ 

and 
2

ˆln β  ■ based on time forward computer simulation. Exponential 

growth from N = 2 500 individuals to (a) 5000, (b) 25 000 and (c) 

250 000 individuals in different time period (amount of generations). 

We simulated 100 unlinked histories for each scenario. Mutation rate 

was v = 5 × 10-4, we took 100 samples from each unlinked histories 

each contains 40 individuals. Individual has 30 microsatellites. 
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(c) 

 

Fig. 10. Power of imbalance index’s estimators for different cut off 

values 
1

ˆln β  ▲ and 
2

ˆln β  * based on coalescent methods, 
1

ˆln β  ♦ 

and 
2

ˆln β  ■ based on time forward computer simulation. Stepwise 

growth from N = 2 500 individuals to (a) 5000, (b) 25 000 and (c) 

250 000 individuals. We simulated 100 unlinked histories. Mutation 

rate was v = 5 × 10-4, we took 100 samples from each unlinked 

histories each contains 40 individuals. Individual has 30 

microsatellites.. 
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We created series of histories for different population 

growth scenarios. In our experiments we achieved different cut 

off values of imbalance index estimator than gained in [11]. 

Power of estimators for new cut off values 
1

ˆln β  = -0,55 and 

2
ˆln β  = -0,81 are lower than that estimated in article [11] for 

cut off 
1

ˆln β  = - 0,32 and 
2

ˆlnβ  = -0,65, as visible in Fig. 9 and 

Fig. 10.  

All conditions of experiments were the same as in [11] and 

the only difference was different method of simulation used in 

our experiments, namely the time forward simulation, giving 

more reliable results. 

V. DISCUSSION 

Our computer simulations performed showed that time 

forward simulation methods might give different results than 

those obtained from coalescent-based methods. Because time 

forward simulation methods are closer to real life scenario it 

might be appropriate to consider using this method of 

simulation especially when we have access to new fast 

computers or we want to count coefficients that we can 

directly apply to samples from real world.  

Moreover, time forward computer simulations let us easier 

create complicated demographic histories and we can have 

access to every individual from every generation of the history 

and for example modify probabilities of having successors. It 

is also easier to model processes connected with geographic 

structure of the population and to test influence of such 

structured population on various, genetically important, 

factors. 
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