

Keywords— Cryptography, FPGA design and analysis, RC5
encryption, Loop-unrolling

Abstract—This article presents the design and analysis of various

hardware reconfigurable models of RC5 Encryption algorithm. The
original contribution herein is to determine the effects of loop-
unrolling design concept on improving the encryption performance.
We show how we determined the optimal design value of the number
of unrolled loops to implement the RC5 algorithm using 192-bit
encryption key. The various models tested were based on single-
custom processor with no-loop-unrolling and with various sizes of
loop unrolled implementations. In this research, various performance
measures were considered. Namely, these were; the maximum
frequency of operation, circuit size, throughput and energy
consumption. To achieve proper comparison results, all models were
implemented in the same hardware reconfigurable chip, a Field
Programmable Gate Array (FPGA). The performance metrics of each
model were evaluated to determine the best hardware model. Verilog
hardware description language was used to model and test all
implementations.

Results revealed that while no-loop-unrolling provided the least
circuit size, the 3-loop-unrolled approach provided the highest
encryption throughput. Further, a throughput speed up of 24% was
achieved as compared to a reference system implemented in a similar
target device using a Xilinx FPGA family. Comparing our
implementations on the same Altera FPGA family, a maximum
throughput speed up of 50% was achieved.

These results provide a much better ground for applications
involving high performance embedded data security, such as in
military communications, nuclear digital instrumentation and control,
and portable biomedical devices.

I. INTRODUCTION
ecure data transmission over unreliable medium is
continuously gaining higher importance. It demands
improvements in the performance of existing encryption

algorithms. This is particularly needed in a wide range of
applications including: virtual enterprise security [1] [2],
portable network devices [2], and visual cryptography [3].
Even though the software implementation of encryption
algorithms has the advantages of portability, flexibility, and
ease of use, it provides a limited physical security and agility

Manuscript received October 30, 2008: Revised version received
December 16, 2008. This work was supported in part by the Center of
Manufacturing Research and the Department of Electrical and Computer
Engineering at Tennessee Technological University.

Omar Elkeelany is Assistant Professor of Electrical and Computer
Engineering at Tennessee Technological University, Cookeville, TN 38505
USA (phone: 931-372-3677; fax: 931-372-3436; e-mail: OElkeelany@
TnTech.edu).

compared to hardware implementations. Major advantages
that lead to the hardware implementation include less power
consumption, small circuit size, hardware reconfigurability,
cost efficiency, high operating speed and security.

Symmetric cryptosystems are based on algorithms in which
identical keys are used for encryption and decryption [4]. The
secret key used for encryption/decryption should be known
only to the legitimate senders and receivers in order to protect
data. Symmetric key algorithms can be further divided into
block ciphers for fixed transformations on plain-text data, and
stream ciphers for time varying transformations.

Block ciphers are the most basic type of ciphers and operate
on the principle of encrypting/decrypting fixed size blocks.
The size of the block is algorithm specific. For example, the
Advanced Encryption System (AES) operates on a block size
of 128 bits, Data Encryption Standard (DES) [5] works on a
block size of 64 bits. But, Rivest Cipher 5 (RC5) does not
have a fixed block size; it can be 32, 64, or 128 bits. That’s
why the Wireless Application Protocol (WAP) forum for
example, specifies RC5 as its encryption algorithm for its
Wireless Transport Level Security (WTLS) clients and servers
[6].

Any particular RC5 algorithm is represented with the
notation of RC5-w/r/b, where w/r/b are reconfigurable
parameters. W is the word size in bits, r signifies the number
of rounds and, b signifies the number of bytes in the secret
key. The parameters w/r/b are configured such that the
algorithm gives maximum security [7].

RC5 was originally developed for the software
implementation, but fits hardware implementation as well [8].
In general ciphers implemented in software are not efficient
when compared to their implementations in hardware [9]. The
hardware implementation of the RC5 algorithm can be done
using different approaches.

Various research efforts exploited the System on Chip
(SoC) implementation or hardware implementation of RC5
algorithm to provide enhanced security architecture when
compared with the conventional architecture [10] [11].
Enhanced performance measures include: less power
consumption, allocation of resources, re-configurability,
architecture efficiency and cost efficiency [12].

The potential features of Field Programmable Gate Arrays
(FPGA) implementation is that it allows SoC modeling. The
performance evaluation of different hardware models of RC5
algorithm will be done with FPGA as the target technology.

As stated before, research has exploited RC5 hardware
implementations for many advantages such as less power

Design and Analysis of Various Models of RC5-
192 Embedded Information Security Algorithm

Omar Elkeelany

S

Issue 1, Volume 2, 2008 18

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

consumption, reduced circuit size, reconfigurability, cost
efficiency, improvement in operating speed, and gaining extra
security [13], [14]. The work of Skalvos [8], [15], [9]
proposed hardware architecture of the RC5 core into a FPGA
device with fewer resources than the conventional
implementation by introducing the use of shared resources.
However, the encryption throughput it reported was found less
than that of the conventional architecture [8]. In cases where
speed is more desirable than circuit size, more research is
needed to investigate design choices to achieve the best
possible encryption rate without demanding a huge increase in
the circuit size. Specifically, it is not obvious how loop
unrolling design choice affects the performance of the
algorithm as well as the effect on circuit size.

This paper also studies the effect of the loop unrolling
technique, on implementing RC5 on reconfigurable hardware.
Loop unrolling is a used generally in system design to
improve throughput and optimize critical parts of the system
by duplicating hardware components [16].

The rest of the paper is organized as follows. Section 2
provides an overview of the RC5 encryption algorithm.
Section 3 presents design methodologies with focus on loop-
unrolling technique. Section 4 provides synthesis results and
analysis. The paper then concludes in section 5, with insight to
future work.

II. RC5 ALGORITHM OVERVIEW AND CONVENTIONAL
ARCHITECTURE

As mentioned briefly in section 1, RC5 is a parameterized
symmetric encryption algorithm. RC stands for “Rivest
Cipher”, or alternatively, “Ron’s Code” [7]. RC5 parameters
are; a variable block size, a variable key size and a variable
number of rounds. Allowable choices for the block size are 32,
64 and 128 bits. The number of rounds can range from 0 to
255, while the key size can range from 0 bits to 2040 bits in
size.

RC5 has three modules: key expansion, encryption and
decryption. It is the latest in a family of secret key
cryptographic methods; RC5 is more secure than RC4 [17] but
is slower. Generally, implementing ciphers in software is not
efficient based on its speed in terms of computation and hence
the use of hardware devices is an alternative [9].

The RC5 algorithm uses three primitive operations and their
inverses. These are:

(1) Addition/subtraction of words modulo 2W, where w
is the word size.

(2) Bit-wise exclusive-OR of words denoted by XOR.
(3) Rotation: the rotation of word x left by y bits is

denoted x<<<y. The inverse operation is the rotation
of word x right by y bits, denoted by x>>>y.

In the key expansion module, the password key K is
expanded to a much larger size in a key table S.

The size of table S is 2(r+1), where r is the number of
rounds [7].

The encryption process takes a plaintext input and produces
a cipher-text as the output. The key-expansion process must
have already been performed before this process. The

decryption process takes a cipher-text as the input and
produces a plaintext as the output. In general, the same
plaintext block will always encrypt to the same cipher-text
when using the same key in a block cipher whereas the same
plaintext will encrypt to different cipher-text in a stream
cipher
[18]. Both processes use the expanded key along with
segments of the input message to produce their outputs.

The conventional architecture of RC5, shown in fig. 1,
performs the encryption and decryption tasks in two separate
cores. The RC5 Core, shown in the figure, needs to read the
expanded key, in a sequential way, in order to encrypt the
plain text given to the core.

As shown in the figure, the RC5 Core needs to read the
expanded key, in a sequential way, in order to encrypt the
plain text. This gives a chance for un-authorized users, if they
have access to the system to tap and record the memory
contents. Later on another site they can use their recordings to
decrypt the ciphered text. What is worse, if they have a
physical access to the system they will also have access to the
user-secret key. A basic way to avoid such attack is to
physically secure the system, which might not be enough,
especially if the user does not intend to change the secret key
very often. Our system architecture avoids the damages caused
by this type of attack and also gives an improved performance
in terms of throughput by making use of a three loop-unrolling
technique in its design as discussed in section 3.

One can use the following equation to calculate encryption
throughput:

I
MIPSb

CI
bMbpsTh *
*

)(== , (1)

where b is the block size in bits, I is the number of software
instructions needed per block and C is the cycle time (in micro
seconds). It is noteworthy that using this equation, one finds
that other encryption algorithm (i.e. 3DES algorithm) may
have an encryption throughput of 4 Mbps at 500 MIPS

Fig. 1 The Conventional Architecture of the RC5

Issue 1, Volume 2, 2008 19

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

(million instructions per second) rate [19].
Table 1 lists all RC5 basic operations and their equivalent

simple ones, using the same virtual machine used before. In
this table, one finds that RC5-32/16/16 needs only 160
instructions to run 16 rounds. Figure 4 shows the computed
encryption time in micro seconds as function of input packet
size in blocks of 64 bits. Using eq(1), this yeilds a throughput
of 200 Mbps (Th=64*500/160). It is clear from this
comparison that RC5 outperforms more complicated
encryption algorithms (of equal key length) operating at the
software level. In section 3, we will show that use of a three
loop-unrolling technique at the hardware level on RC5 can
improve this throughput at much slower processing rates.

III. DESIGN METHODOLOGIES
Schematic based design methodology is a conventional

hardware design approach that is been recently replaced by
hardware description language based (HDL) methods. As the
architectural complexity increases, schematic design
methodology becomes no longer a feasible technique [12].
Coming to the language based design tools, which are solely
dependent on the synthesis tools, a rapid improvement in
synthesis tools has resulted in choosing the HDL based design
methodology. In this research, Verilog HDL is used to model
the various RC5 design methods.

Herein, the two investigated hardware models are:
1. Soft-core general purpose processor based and
2. Single-custom processor based

The soft-core general-purpose processor based model yields

a programmable device that can be used in a variety of
applications. Hence, it offers high flexibility, but typically at
the cost of design size, and power consumption.

The single-custom processor based model, on the other

hand, executes a single program, or has a custom hardware to
perform a single function. It is used to achieve low circuit size,
low power, and high performance designs. It does not have a
programming memory since its function is inherently

integrated in the design. Hence, called single functioned.
In order to evaluate the performance of these two hardware

models under investigation, there must be certain parameters
to be measure in each model. The parameters that best suit to
evaluate the performance of these hardware models are:
maximum frequency of operation, resource utilization,
power/energy consumption, encryption throughput, and cost
efficiency.

After acquiring all the parameters, the two models were
compared to determine the best hardware implementation of
the RC5 algorithm.

A. Design Implementations
The first model is designed by using a soft-core general

purpose processor. The Nios II soft processor is selected due
to its ample features and flexibility; and also it is the most
popular soft microprocessor available in the market today [20]
[21]. As Nios II is a soft processor defined in HDL, it can be
implemented in the FPGA by using the Quartus II design tool
[21]. The System-on-a-programmable-chip (SOPC) Builder
software [22] was used to add the necessary functional units
such as memories, I/O interfaces and timers to the Nios II
processor. It is well known that a general purpose processor by
itself won’t be a useful system [22].

Writing software for this processor is similar to other micro-
controller family. The Nios II integrated development
environment (IDE) interface is used to write the software for
this processor. The hardware abstraction layer (HAL) of the
Nios II software serves as a board-support package for Nios II
processor systems. The tight integration between SOPC
Builder and Nios II IDE allows the HAL system library to be
generated automatically. The HAL system library provides a
hosted C runtime environment based on the ANSI C standard
libraries. It also provides generic I/O devices, allowing user to
write programs that access hardware using the C standard
library routines. After SOPC Builder generates a hardware
system, the Nios II IDE can generate a custom HAL system
library to match the hardware configuration [21]. RC5
algorithm that is available in C was used to implement the
same in the Nios II and modifications were made to suit for
the Nios II processor environment.

The second model is implemented using a bottom-up design
methodology in Verilog HDL with Quartus II as the synthesis
tool. The model was exhaustively tested using ModelSim
simulations. The results obtained after the simulation are
compared with the results of RC5 algorithm written in C
language.

For both the models the registration of the secret key into
the system was done with a sequence of short pulses or in
parallel feed depending on the device support.

B. RC5 Loop Unrolling Discussion in Single Custom
Processor

As mentioned earlier, loop unrolling is a technique used in
system design to improve the throughput and optimize its
critical parts. In computer programming languages, loop
unrolling mechanism is done to instructions that are called in

Step # Block Operation # of
rounds

Equivalent
Operations#

per
round

Total

1&4 32-bit XOR 16 2 32
2 32-bit data dependent shift

left 16 2 32
3&6 32-bit modulo Addition 16 2 32

5 32-bit data dependent shift
right 16 2 32

3&6 32-bit one dimensional
table lookup 16 2 32

Total (T) 160

Table 1 RC5 operations per block

Issue 1, Volume 2, 2008 20

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

multiple iterations of the loop by combining them into a single
iteration [16].

We propose the use of this technique to improve the
throughput of the RC5 core. Specifically, we use this
technique to unroll the r rounds of encryption task into
duplicate hardware components. In no-unrolling approach
every block of data requires a number of (Cc) clock cycles to
complete the entire encryption process.

If a round of encryption task is done for every clock cycle,
so to perform r rounds of encryption task, a circuit needs r
clock cycles. Instead of performing the encryption task once
per clock cycle we can use loop-unrolling approach to cut
short the number of cycles required. The unrolling of r rounds
of encryption task can be done in multiple ways by
considering the integer factors of r. When r=15, we can have a
total of 5 cycles with 3 loops-unrolled and performed per
clock cycle. Or, we can have 3 cycles with 5 loops unrolled
per cycle. Finally, we can have 15 loops of encryption done in
a single clock cycle. When compared to no-loop-unrolling
approach, the first approach requires only five clock cycles,
which means cutting the number of clock cycles required to
one third. Similarly second approach requires five times less
clock cycles and the third approach requires r times less clock
cycles for encrypting a block of data. Fig. 2 shows the
pictorial view of the loop unrolling technique, for number of
rounds, r=15. The penalty for this approach will be the
increase in chip size. This is because, when a loop unrolling is
implemented in hardware, the unrolled loop of the task is
duplicated as extra hardware on the chip. So with the increase
in number of unrolled loops, the size of hardware increases.

Loop-unrolling requires more logic elements compared to
the no-loop-unrolling. This will be seen in detail in the next
section.

IV. VERIFICATION, SYNTHESIS AND ANALYSIS RESULTS
Both investigated models were designed, simulated and

synthesized using Altera Quartus II development tool. The
simulation results were observed for the functional correctness
of the algorithm. Fig. 3 shows the simulation result of Single
custom model of RC5. After the functional verification is done
the code was synthesized, placed and routed, and re-simulated
to check whether the implementation is successful or not. The
two models were implemented using the same hardware target
[12].

The selection of a target device depended on several
requirements like available clock speeds, number of I/O pins,
on chip memory, display interfaces (LEDs, LCD), etc. The
DE2 development board, which has the Cyclone II
EP2C35F672C6 FPGA and EPCS16 serial configuration
device, is selected as the target device. The Cyclone II device
family has the features of high-density architecture with 4,608
to 68,416 logic elements, embedded multipliers, advanced I/O
support, flexible clock management circuitry, etc [23].

We used Verilog HDL to implement both conventional (for
comparison) and the proposed architectures. Various code
implementations were synthesized using Altera FPGA
development tools. The result obtained after modeling the

algorithm tallies with the result obtained from the original
code in C, which models the conventional architecture. Fig. 4
shows the circuit used for providing plain-test input, and Fig.
5 shows the target FPGA board with input test circuit. Fig. 6
shows two samples of in-circuit verification for plain-text
input 0x98721827-BE7B1E6F provided to RC5-32/15/16. An
output is verified on the seven-segment display to show valid
values of 0xD56280F6 as first word and 0xE836330E on the
second.

A. Throughput Analysis of Embedded General Purpose
Processor

For throughput analysis, we started with a general purpose
processor model embedded on the FPGA and implemented the
RC5 in a high level programming language (C code). An
embedded processor (NIOS II/s) system was used to execute
the C code, which was almost same for both RC5-32/15/16
and RC5-32/15/24 versions. We then inserted timing
calculation functions to measure throughput. A 50 MHz clock
was the on-board system clock, so the maximum operating
frequency could not exceed 50 MHz. Table 2 summarizes the
resource utilization of the general purpose processor model.
This model implementation utilizes multipliers, random access
memory (RAM), and PLL blocks. The embedded multipliers
are used to speed up multiplier intensive applications. The
processor need for memory is satisfied by employing
embedded memories, which consists of M4K (4Kbit) blocks
that can be configured to provide various memory functions
like RAM, first-in-first-out (FIFO), or read only memory. In
addition, potential timing problem can rise from clock skew,

Fig. 2 Mechanism of Loop Unrolling (no unrolling,
3 loops unrolled, 5 loops unrolled). Total number of loops =15.

Issue 1, Volume 2, 2008 21

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

which leaves external memory (i.e., SDRAM) inaccessible.
Hence, Phase Lock Loop module (PLL) was used.

Throughput calculation of this model involves the
calculation of number of cycles required to perform the
encryption operation. High resolution Altera timing functions
were used. Of these functions available, alt_timestamp_start()
function can be used start the counter and a call to
alt_timestamp() will provide the value of timestamp counter.
These two functions were used to obtain the number of clock
pulses required to complete the encryption process.

The number of cycles required was found to be 1529 for
both the versions of RC5. Using Fmax of 50 Mhz, Throughput
was calculated using:

Throughput = Fmax * (64/Cc). (2)

Fmax is the maximum frequency of operation, 64 is the

block size, and Cc is the number of clock cycles required to
encrypt one block. So,

Throughput = 50x106 * (64/1529)

=2.1 Mbps

Fig 5: Target FPGA board, with input test circuit

Fig. 3: RC5 Simulation waveforms using blank plaintext for known correct cipher output of 0xb7c4b44a-9faa44d8

Fig. 4: Parallel input test circuit for in-circuit verification

Issue 1, Volume 2, 2008 22

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

When we compare this result with discussion presented in

section 2, we find that this embedded processor runs on
roughly 5 MIPS, which is so slow to perform high
performance. However, this solution offer fastest time to
market design, and minimal design cost. The extra resources
like multipliers, RAM and PLL are not major contributors to
cost, especially in bulk production. The bottom line is; the
performance is poor at the advantage of low cost.

B. Throughput Analysis of Single Custom Processor
As explained in section 2, RC5 is a block cipher that works

on two-word input and two-word output blocks. The number
of clock cycles required for encryption is dependent on the
parameter r. No-loop unrolling (conventional) implementation
needs 15 clock cycles for encrypting a data block of 64 bits
(two words). The throughput is calculated by (2). As the
number of loops unrolled increase, it is intuitive that the
longest path delay of the circuit increase as more components
are connected in sequence, and fewer resources are shared
iteratively. Consequently, the maximum clock frequency of
operation decreases. At the same time, circuit size increases,
since more components are needed. But, as the maximum
clocking frequency decreases, the total number of cycles
needed is also reduced. Hence, it is not obvious, how does the
size of unrolling (the number of unrolled loops) affect the
overall throughput of the system. There exists an optimal
value which achieves the highest rate of encryption (i.e., the
highest throughput). In this section we study the effect of
loop-unrolling on RC5 by developing multiple Verilog HDL
implementations to a same target, Cyclone II- EP2C35F672C6
FPGA device (for fair comparisons). Fig. 7 summarizes the
throughput for RC5 implementations using no-unrolling and
the loop-unrolled implementations and is used in calculating
Throughput per Logic Elements (TPLE). TPLE is calculated
by dividing the throughput with its respective number of Logic
Elements (LEs) required for each implementation. The total
cost of implementation is proportional to the number of LEs.
Because, if the number of LEs required increases then the total
area occupied by the circuit will increase, resulting in increase
in production costs. So we have to select an implementation
that gives optimum performance and requires least number of
LEs. TPLE is a measure of the circuits cost. If the TPLE is
more, it indicates that the logic elements of the
implementation are used efficiently to increase the throughput.
Table 3 compares the FPGA resource utilizations of both RC5
models based on single-custom processor and general-purpose
processor.

(a)

(b)

Fig 6: Correct in-circuit verification for plain-text input
0x98721827-BE7B1E6F provided to RC5-32/15/16. An
output is displayed sequentially on (a) first word (b) second

FPGA Resource Utilization
Logic elements 3,331 / 33,216 (10 %)
Registers 1768
Combinational Elements 1237
Logic array blocks 319 / 2,076
I/O pins 365 / 475
Clock pins 8 / 8
Total fan-out 19121
Average fan-out 3.34
Embedded multipliers 4 / 70
PLLs 1 / 4
M4Ks 15 / 105 (14 %)
Total RAM block bits 69,120 / 483,840

Table 2: Resource utilization for general-purpose processor

Issue 1, Volume 2, 2008 23

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

In other words, the higher the TPLE the higher the cost
efficiency will be. Even though the circuit is cost efficient
there is no guarantee that performance of the circuit will be
good. So, we should consider the performance as well as the
cost efficiency into consideration when choosing any approach
to implement on hardware. Fig 7 indicates that 15-loops
unrolled approach has the least TPLE, which means that its
cost will be high, whereas the no-unrolling approach and 3-
rounds unrolled approach indicate less cost among the listed
implementations. Obviously, the cost of manufacturing no-
unrolling is less due to its small circuit size. However, no-

unrolling implementation provides lower throughput when
compared with the 3-loops unrolled approach. So, 3-loops
unrolled approach provides a better alternative as it meets the
throughput requirements at an affordable cost. Fig. 8 shows
the throughput vs. the number of loops unrolled for RC5 16
and 24 byte key sizes. As shown from the figure, the best
throughput (highest) is associated with the rightmost
horizontal side of the graph. It is clearly shown that 3-loops
unrolled outperforms 5 and 15-loops unrolled. The reason
behind that is the extra increase in the propagation delay of
higher unrolled loops, downgraded the value of Fmax by a
rate grater than the improvement of reduced value of required
clock cycles Cc, see (2). To illustrate how this was in effect,
table 4 shows the longest path delay and the respective value
of Fmax on the four loop-unrolling models for both versions
of RC5 encryption 32/15/16 and 32/15/24. The value of Cc
parameter required for these models are 15, 5,3 and 1
respectively.

 In addition, the achieved encryption throughput of 3-loops
unrolled is higher than that reported of the related work of 207
Mbps using a Xilinx VirtexII-1000 FPGA device [8]. Hence,
3-loops unrolled offered a maximum throughput improvement
of 24% compared to the work related. Comparing
implementations on the same Altera Cyclone II-
EP2C35F672C6 FPGA, a maximum throughput speed up of
50% is achieved for 192 bit key. (i.e., comparing throughput
speedup of 3-loops unrolled to no-unrolling in Fig. 7)

Fig. 7 Throughput per Logic Elements for various RC5

implementations

Fig. 8 Throughput vs. Number of Rounds Unrolled in RC5

implementations using 128 and 192 bit key

FPGA
Resources

Single-Custom
Processor

Soft-core
Processor

Registers 1299 1974
PLLs 0 1

Total memory
bits

0/483,840 46592/483,840

Logic array
blocks

330/2076 319/2076

I/O pins 307/475 365/475
Clock pins 5/8 8/8

Maximum fan-
out

1500 1906

Total fan-out 24520 20469
Average fan-out 3.68 3.77

Embedded
multipliers

0/70 4/70

Logic elements 5050/33216 3184/33216

Table 3: Resource utilization comparison of single purpose (SCP)
and soft-core general-purpose processor (GPP)

Issue 1, Volume 2, 2008 24

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

C. Energy Evaluations of Single Custom Processor
An estimate of power consumption can be made with FPGA

development tools after the synthesis and place-and-route
phases. For Altera FPGA devices, the PowerPlay power
analyzer tool performs after synthesis power estimation. It
calculates a close estimate for power consumption by using
inputs from the resource utilization phase (Fitter report), signal
activities from the functional simulation and operating
condition of the design (junction temperature and board
cooling solution settings). One of these features is the toggle
rate, which is how often the output changes with respect to the
input clock signal [24]. Table 5 summarizes the power and
energy consumption generated with a toggle rate of 25%
(assuming that toggle rate is same for all implementations). It
is shown from the table that the no-loop-unrolling consumes
the most energy and that the 3-loops unrolled consume the
least energy. This is due to the fact that it experiences the
minimum encryption time per block (or highest throughput).

V. CONCLUSION
We presented two hardware models of the RC5 algorithm

and from the summary of the results we can observe both the
models have their advantages and disadvantages.

In this paper, various hardware implementations of RC5
algorithm were presented using variable sizes of loop
unrolling technique, and implemented on FPGA. The
performance evaluation suite involved calculating maximum
frequency of operation, circuit size (in terms of the number of
Logic Elements, power consumption, throughput computation,
and cost efficiency. With the aid of performance evaluation

Parameter RC5-32/15/16 RC5- 32/15/24
Fmax 42.15 MHz 40.09 MHz

Longest Path Delay
 (or clock period)

23.72 ns 24.941 ns

Worst Case Setup (tsu)
and Hold (th) times

tsu = 8.519 ns
th = 4.206 ns

tsu = 9.605 ns
 th = 4.198 ns

(a)

Parameter RC5-32/15/16 RC5- 32/15/24
Fmax 20.03 MHz 20.03 MHz

Longest Path Delay
 (or clock period)

49.92 ns 49.92 ns

Worst Case Setup (tsu)
and Hold (th) times

tsu = 9.920 ns
th = 4.104 ns

tsu = 9.920 ns
 th = 4.104 ns

(b)

Parameter RC5-32/15/16 RC5- 32/15/24
Fmax 10.48 MHz 10.38 MHz

Longest Path Delay
 (or clock period)

95.41 ns 96.33 ns

Worst Case Setup (tsu)
and Hold (th) times

tsu = 9.556 ns
th = 4.616 ns

tsu = 9.110 ns
 th = 4.695 ns

(c)

Parameter RC5-32/15/16 RC5- 32/15/24
Fmax 3.22 MHz 3.19 MHz

Longest Path Delay
 (or clock period)

310.55 ns 313.47 ns

Worst Case Setup (tsu)
and Hold (th) times

tsu = 13.224 ns
th = 4.815 ns

tsu = 13.424 ns
 th = 4.739 ns

(d)

Table 4 Timing Analysis of (a) no loop unrolling (b) 3, (c) 5, (d) 15 loop unrolling respectively

Approach Power (mW) Energy (nJ)
No-unrolling 138.27 51.728
3 loop-unrolling 140.0 34.944
5 loop-unrolling 141.79 40.975
15 loop-unrolling 145.82 45.71

Table 5 Power and Energy consumption for various RC5
models under test

Issue 1, Volume 2, 2008 25

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

tools, it is concluded that, of all the implemented models, 3-
loops unrolled approach can be selected to achieve highest
throughput. However, only if the user requirements are such
that the model should fit in least circuit size with moderate
throughput, the no-loop-unrolled can be used.

The achieved encryption throughput of 3-loops unrolled is
higher than that reported of the related work of 207 Mbps
using a Xilinx VirtexII-1000 FPGA device [8]. Hence, 3-loops
unrolled offered a maximum throughput improvement of 24%
compared to the work related. Comparing implementations on
the same Altera Cyclone II- EP2C35F672C6 FPGA, a
maximum throughput speed up of 50% is achieved for 192 bit
key.

It was shown that, when we integrated the maximum
operating frequency (Fmax) into the required number of
cycles to operate, the soft-core general-purpose processor was
found to be less than 100 times slower than the single custom
processor (although it operates at higher frequency). Even
though the second model is faster there is price paid for it. It
incurs extra time of design, and longer time to market.
However, when we compare the resource utilization of the two
models, we show that the single custom processor generally
uses a lot less resources in terms of multipliers, memory,
PLLs, registers etc. So, in high volume production, it can also
be cheaper than the first model. Since the resource utilization
is less for the second model the manufacturing cost will be
less.

In future work, the author would like to investigate the
effect of loop-unrolling of other encryption algorithms such as
RC5 [25], and AES.

ACKNOWLEDGMENT
The author would like to acknowledge the Masters students:

Suman Nimmagadda and Adegoke Olabsi for their thorough
research work related to this paper. The author also
acknowledges the Center for Energy Systems Research and
The Department of Electrical and Computer Engineering at
Tennessee Technological University for supporting this
research.

REFERENCES
[1] M. M. Zanjireh, A. Kargarnejad and Tayebi, M. A. “Virtual Enterprise

Security: Importance, Challenges and Solutions.” WSEAS Transactions
on Information Science & Applications, volume 4, no. 4, pages 879–
884, 2007.

[2] Lee, Tsang-Yean and Lee, Huey-Ming. “Encryption and Decryption
Algorithm of Data Transmission in Network Security.” WSEAS
Transactions on Information Science & Applications, volume 3, no. 12,
pages 2557–2562, 2006.

[3] Chao, Kun-Yuan and Lin, Ja-Chen. “Fault-Tolerant and Non-Expanded
Visual Cryptography for Color Images.” WSEAS Transactions on
Information Science & Applications, volume 3, no. 11, pages 2184–
2191, 2006.

[4] Schubert, A. and Anheier, W. “Efficient VLSI Implementation of
Modern Symmetric Block Ciphers.” In “The ICECS99,” , 1999.

[5] G. Rouvroy, J. J.-Quisquater, F. X.-Standaert and D.-Legat, J. “Efficient
uses of FPGAs for implementations of DES and its experimental liner
cryptanalysis.” IEEE Transactions on Computers, volume 52, no. 4,
pages 473–482, 2003.

[6] RSA Security. “RSA Security Algorithm.” URL
http://www.rsasecurity.com/press release.asp?doc-id=172&id=1034
(Accessed: April 23, 2006)

[7] L.-Rivest, R. “The RC5 Encryption Algorithm.”In “The 1994 Leuven
Workshop on Fast Software Encryption (Springer 1995),” pages 86–96,
1994.

[8] N. Sklavos, C. Machas and Koufopavlou, O. “Area Optimized
Architecture and VLSI Implementation of RC5 Encryption Algorithm.”
In “The IEEE ICECS 2003,” volume 1, December 2003.

[9] Sklavos, N. and Koufopavlou, O. “Mobile Communications World:
Security Implementation Aspects- A State of the Art.” Computer
Science Journal of Moldova,Institute of Mathematics and Computer
Science, volume 11, no. 2, 2003.

[10] Olabisi, A. System on Chip Architecture for RC5 with Enhanced
Security. Master’s thesis, May 2006.

[11] N. Sklavos, K. Touliou and Efstathiou, C. “Security & Privacy
Architectural Modeles: On the Hardware & Software Integration
Platforms.” WSEAS Transactions on Information Science &
Applications, volume 3, no. 5, pages 965–971, 2006.

[12] A.J. Elbirt, B. Chetwynd, W. Yip and Paar, C. “An FPGA
Implementation and Performance Evaluation of the AES Block Cipher
Candidate Algorithm Finalists.” In “The AES Candidate Conference
2000,” pages 13–27, 2000.

[13] Olabisi, A. and Elkeelany, O. “Integrated design of RC5 algorithm.” In
“The IEEE 39th Southeastern Symposium on System Theory,” , 2007.

[14] Nimmagadda, S. and Elkeelany, O. “Performance evaluation of different
hardware models of RC5 algorithm.” In “The IEEE 39th Southeastern
Symposium on System Theory,” , 2007.

[15] N. Sklavos, A. P.-Fournaris and Koufopavlou, O. “WAP Security:
Implementation Cost and Performance Evaluation of a Scalable
Architecture for RC5 Parameterized Block Cipher.” In “The IEEE
Mediterranean Electrotechnical Conference (IEEE MELECON’04),” ,
May 2004.

[16] Ken, K. and Randy, A. Optimizing Compilers for Modern Architectures:
A Dependence-based Approach- Loop unrolling technique and its
advantages and disadvantages. A Morgan Kaufmann, 2001.

[17] F. Scott, M. Itsik and Adi, S. “Weakness in the Key Scheduling
Algorithm of RC4.” In “The 8th Annual Workshop on SAC,” , August
2001.

[18] Sessions, J. B. Fast Software Implementations of Block Ciphers.
Master’s thesis, 1998.

[19] Elkeelany O., and Olabisi A., "Performance Comparisons, Design and
Implementation of RC5 Symmetric Encryption Core." Journal of
Computers, no 1, pages 48-55, 2008.

[20] Altera Corporation. “Nios Processor.” URL
http://www.altera.com/products/ip/processors/nios2/ni2-index.html
(Accessed: April 23, 2006)

[21] Altera Corporation. “Nios II Processor.” URL
http://www.altera.com/literature/hb/nios2/n2cpu nii51004.pdf#
(Accessed: April 23, 2006)

[22] Altera Corporation. “SOPC Design Tool.” URL
http://www.altera.com/education/univ/materials/manual/labs/tut sopc
introduction verilog.pdf (Accessed: April 23, 2006)

[23] Altera Corporation. “DE2 user manual.”, 2006.URL
http://www.altera.com/

[24] Xilinx Inc. “How to calculate toggle rate.” URL
http://www.xilinx.com/ise/powertools/wpt help/app docs/calculating
toggle rates.htm (Accessed: April 23, 2006)

[25] Riaz, M. and M.-Heys, H. “The FPGA Implementation of the RC6 and
CAST-256 Encryption Algorithms.” In “The IEEE Canadian Conference
on Electrical and Computer Engineering,” pages 367–372, 1999.

Omar S. Elkeelany received the B.Sc. and M.Sc.
degrees in Computer Science and Automatic Control
from the University of Alexandria, Egypt 1992 and
1998 respectively. In 2004, he received the Ph.D.
degree from the University of Missouri-Kansas City
(UMKC) in Engineering and Networking disciplines.

While being at UMKC, he served as an adjunct
faculty of electrical engineering department. In May
2004, after he received the Ph.D. degree, he joined the
research team of Wideband Corporation, where he

Issue 1, Volume 2, 2008 26

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

http://www.altera.com/products/ip/processors/nios2/ni2-index.html�
http://www.altera.com/literature/hb/nios2/n2cpu�
http://www.altera.com/education/univ/materials/manual/labs/tut%20sopc%20introduction%20verilog.pdf�
http://www.altera.com/education/univ/materials/manual/labs/tut%20sopc%20introduction%20verilog.pdf�
http://www.altera.com/�
http://www.xilinx.com/ise/powertools/wpt%20help/app%20docs/calculating%20toggle%20rates.htm�
http://www.xilinx.com/ise/powertools/wpt%20help/app%20docs/calculating%20toggle%20rates.htm�

worked in the design and development of layer 3 network routers. In August
2005, he joined Tennessee Technological University, Cookeville, TN USA as
an Assistant Professor.

Dr. Elkeelany is a member of the Institute of Electronic and Electrical
Engineers (IEEE), and the Eta Kappa Nu honorary society. He has a
distinguished educational record being the recipient of the UMKC
Outstanding Doctoral Interdisciplinary Ph.D. Student Award in 2004, the
UMKC Chancellor’s Interdisciplinary Ph.D. Merit Award in 2001-2002 and
the UMKC Outstanding Graduate Student Award from the School of
Engineering, during 1999, 2000 and 2002. He received his B.Sc. degree with
Distinction and degree of honor. In May 2005, Dr. Elkeelany received the
Doctor of Research degree from the International Institute of Science and
Technology. In 2008, Dr. Elkeelany was recognized as a lifetime member of
The Strathmore’s Who’s Who.

Issue 1, Volume 2, 2008 27

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

	INTRODUCTION
	RC5 Algorithm Overview and Conventional Architecture
	Design Methodologies
	Design Implementations
	RC5 Loop Unrolling Discussion in Single Custom Processor

	Verification, Synthesis and analysis results
	Throughput Analysis of Embedded General Purpose Processor
	Throughput Analysis of Single Custom Processor
	Energy Evaluations of Single Custom Processor

	Conclusion
	Acknowledgment
	References

