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Abstract—This article presents the design and analysis of various 

hardware reconfigurable models of RC5 Encryption algorithm. The 
original contribution herein is to determine the effects of loop-
unrolling design concept on improving the encryption performance. 
We show how we determined the optimal design value of the number 
of unrolled loops to implement the RC5 algorithm using 192-bit 
encryption key. The various models tested were based on single-
custom processor with no-loop-unrolling and with various sizes of 
loop unrolled implementations. In this research, various performance 
measures were considered. Namely, these were; the maximum 
frequency of operation, circuit size, throughput and energy 
consumption. To achieve proper comparison results, all models were 
implemented in the same hardware reconfigurable chip, a Field 
Programmable Gate Array (FPGA). The performance metrics of each 
model were evaluated to determine the best hardware model. Verilog 
hardware description language was used to model and test all 
implementations.  

Results revealed that while no-loop-unrolling provided the least 
circuit size, the 3-loop-unrolled approach provided the highest 
encryption throughput. Further, a throughput speed up of 24% was 
achieved as compared to a reference system implemented in a similar 
target device using a Xilinx FPGA family. Comparing our 
implementations on the same Altera FPGA family, a maximum 
throughput speed up of 50% was achieved. 

These results provide a much better ground for applications 
involving high performance embedded data security, such as in 
military communications, nuclear digital instrumentation and control, 
and portable biomedical devices. 
 

I. INTRODUCTION 
ecure data transmission over unreliable medium is 
continuously gaining higher importance. It demands 
improvements in the performance of existing encryption 

algorithms. This is particularly needed in a wide range of 
applications including: virtual enterprise security [1] [2], 
portable network devices [2], and visual cryptography [3]. 
Even though the software implementation of encryption 
algorithms has the advantages of portability, flexibility, and 
ease of use, it provides a limited physical security and agility 
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compared to hardware implementations. Major advantages 
that lead to the hardware implementation include less power 
consumption, small circuit size, hardware reconfigurability, 
cost efficiency, high operating speed and security. 

Symmetric cryptosystems are based on algorithms in which 
identical keys are used for encryption and decryption [4]. The 
secret key used for encryption/decryption should be known 
only to the legitimate senders and receivers in order to protect 
data. Symmetric key algorithms can be further divided into 
block ciphers for fixed transformations on plain-text data, and 
stream ciphers for time varying transformations. 

Block ciphers are the most basic type of ciphers and operate 
on the principle of encrypting/decrypting fixed size blocks. 
The size of the block is algorithm specific. For example, the 
Advanced Encryption System (AES) operates on a block size 
of 128 bits, Data Encryption Standard (DES) [5] works on a 
block size of 64 bits. But, Rivest Cipher 5 (RC5) does not 
have a fixed block size; it can be 32, 64, or 128 bits. That’s 
why the Wireless Application Protocol (WAP) forum for 
example, specifies RC5 as its encryption algorithm for its 
Wireless Transport Level Security (WTLS) clients and servers 
[6]. 

Any particular RC5 algorithm is represented with the 
notation of RC5-w/r/b, where w/r/b are reconfigurable 
parameters. W is the word size in bits, r signifies the number 
of rounds and, b signifies the number of bytes in the secret 
key. The parameters w/r/b are configured such that the 
algorithm gives maximum security [7]. 

RC5 was originally developed for the software 
implementation, but fits hardware implementation as well [8]. 
In general ciphers implemented in software are not efficient 
when compared to their implementations in hardware [9]. The 
hardware implementation of the RC5 algorithm can be done 
using different approaches.  

Various research efforts exploited the System on Chip 
(SoC) implementation or hardware implementation of RC5 
algorithm to provide enhanced security architecture when 
compared with the conventional architecture [10] [11]. 
Enhanced performance measures include: less power 
consumption, allocation of resources, re-configurability, 
architecture efficiency and cost efficiency [12]. 

The potential features of Field Programmable Gate Arrays 
(FPGA) implementation is that it allows SoC modeling. The 
performance evaluation of different hardware models of RC5 
algorithm will be done with FPGA as the target technology. 

As stated before, research has exploited RC5 hardware 
implementations for many advantages such as less power 

Design and Analysis of Various Models of RC5-
192 Embedded Information Security Algorithm 

Omar Elkeelany 

S 

Issue 1, Volume 2, 2008 18

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



consumption, reduced circuit size, reconfigurability, cost 
efficiency, improvement in operating speed, and gaining extra 
security [13], [14]. The work of Skalvos [8], [15], [9] 
proposed hardware architecture of the RC5 core into a FPGA 
device with fewer resources than the conventional 
implementation by introducing the use of shared resources. 
However, the encryption throughput it reported was found less 
than that of the conventional architecture [8]. In cases where 
speed is more desirable than circuit size, more research is 
needed to investigate design choices to achieve the best 
possible encryption rate without demanding a huge increase in 
the circuit size. Specifically, it is not obvious how loop 
unrolling design choice affects the performance of the 
algorithm as well as the effect on circuit size.  

This paper also studies the effect of the loop unrolling 
technique, on implementing RC5 on reconfigurable hardware. 
Loop unrolling is a used generally in system design to 
improve throughput and optimize critical parts of the system 
by duplicating hardware components [16]. 

The rest of the paper is organized as follows. Section 2 
provides an overview of the RC5 encryption algorithm. 
Section 3 presents design methodologies with focus on loop-
unrolling technique. Section 4 provides synthesis results and 
analysis. The paper then concludes in section 5, with insight to 
future work. 

II. RC5 ALGORITHM OVERVIEW AND CONVENTIONAL 
ARCHITECTURE  

As mentioned briefly in section 1, RC5 is a parameterized 
symmetric encryption algorithm. RC stands for “Rivest 
Cipher”, or alternatively, “Ron’s Code” [7]. RC5 parameters 
are; a variable block size, a variable key size and a variable 
number of rounds. Allowable choices for the block size are 32, 
64 and 128 bits. The number of rounds can range from 0 to 
255, while the key size can range from 0 bits to 2040 bits in 
size. 

RC5 has three modules: key expansion, encryption and 
decryption. It is the latest in a family of secret key 
cryptographic methods; RC5 is more secure than RC4 [17] but 
is slower. Generally, implementing ciphers in software is not 
efficient based on its speed in terms of computation and hence 
the use of hardware devices is an alternative [9]. 

The RC5 algorithm uses three primitive operations and their 
inverses. These are: 

(1) Addition/subtraction of words modulo 2W, where w 
is the word size. 

(2) Bit-wise exclusive-OR of words denoted by XOR. 
(3) Rotation: the rotation of word x left by y bits is 

denoted x<<<y. The inverse operation is the rotation 
of word x right by y bits, denoted by x>>>y. 

In the key expansion module, the password key K is 
expanded to a much larger size in a key table S. 

The size of table S is 2(r+1), where r is the number of 
rounds [7]. 

The encryption process takes a plaintext input and produces 
a cipher-text as the output. The key-expansion process must 
have already been performed before this process. The 

decryption process takes a cipher-text as the input and 
produces a plaintext as the output. In general, the same 
plaintext block will always encrypt to the same cipher-text 
when using the same key in a block cipher whereas the same 
plaintext will encrypt to different cipher-text in a stream 
cipher 
[18]. Both processes use the expanded key along with 
segments of the input message to produce their outputs.  

The conventional architecture of RC5, shown in fig. 1, 
performs the encryption and decryption tasks in two separate 
cores. The RC5 Core, shown in the figure, needs to read the 
expanded key, in a sequential way, in order to encrypt the 
plain text given to the core.  

As shown in the figure, the RC5 Core needs to read the 
expanded key, in a sequential way, in order to encrypt the 
plain text. This gives a chance for un-authorized users, if they 
have access to the system to tap and record the memory 
contents. Later on another site they can use their recordings to 
decrypt the ciphered text. What is worse, if they have a 
physical access to the system they will also have access to the 
user-secret key. A basic way to avoid such attack is to 
physically secure the system, which might not be enough, 
especially if the user does not intend to change the secret key 
very often. Our system architecture avoids the damages caused 
by this type of attack and also gives an improved performance 
in terms of throughput by making use of a three loop-unrolling 
technique in its design as discussed in section 3. 

One can use the following equation to calculate encryption 
throughput: 

 

I
MIPSb

CI
bMbpsTh *
*

)( ==   ,     (1) 

 
 

where b is the block size in bits, I is the number of software 
instructions needed per block and C is the cycle time (in micro 
seconds). It is noteworthy that using this equation, one finds 
that other encryption algorithm (i.e. 3DES algorithm) may 
have an encryption throughput of 4 Mbps at 500 MIPS 

 
 

 
 
 
Fig. 1 The Conventional Architecture of the RC5 
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(million instructions per second) rate [19]. 
Table 1 lists all RC5 basic operations and their equivalent 

simple ones, using the same virtual machine used before. In 
this table, one finds that RC5-32/16/16 needs only 160 
instructions to run 16 rounds. Figure 4 shows the computed 
encryption time in micro seconds as function of input packet 
size in blocks of 64 bits. Using eq(1), this yeilds a throughput 
of 200 Mbps (Th=64*500/160). It is clear from this 
comparison that RC5 outperforms more complicated 
encryption algorithms (of equal key length) operating at the 
software level. In section 3, we will show that use of a three 
loop-unrolling technique at the hardware level on RC5 can 
improve this throughput at much slower processing rates. 

III. DESIGN METHODOLOGIES 
Schematic based design methodology is a conventional 

hardware design approach that is been recently replaced by 
hardware description language based (HDL) methods. As the 
architectural complexity increases, schematic design 
methodology becomes no longer a feasible technique [12]. 
Coming to the language based design tools, which are solely 
dependent on the synthesis tools, a rapid improvement in 
synthesis tools has resulted in choosing the HDL based design 
methodology. In this research, Verilog HDL is used to model 
the various RC5 design methods. 

 
Herein, the two investigated hardware models are: 
1. Soft-core general purpose processor based and 
2. Single-custom processor based  
 
The soft-core general-purpose processor based model yields 

a programmable device that can be used in a variety of 
applications. Hence, it offers high flexibility, but typically at 
the cost of design size, and power consumption. 

 
The single-custom processor based model, on the other 

hand, executes a single program, or has a custom hardware to 
perform a single function. It is used to achieve low circuit size, 
low power, and high performance designs. It does not have a 
programming memory since its function is inherently 

integrated in the design. Hence, called single functioned. 
In order to evaluate the performance of these two hardware 

models under investigation, there must be certain parameters 
to be measure in each model. The parameters that best suit to 
evaluate the performance of these hardware models are: 
maximum frequency of operation, resource utilization, 
power/energy consumption, encryption throughput, and cost 
efficiency. 

After acquiring all the parameters, the two models were 
compared to determine the best hardware implementation of 
the RC5 algorithm. 

A. Design Implementations  
The first model is designed by using a soft-core general 

purpose processor. The Nios II soft processor is selected due 
to its ample features and flexibility; and also it is the most 
popular soft microprocessor available in the market today [20] 
[21]. As Nios II is a soft processor defined in HDL, it can be 
implemented in the FPGA by using the Quartus II design tool 
[21]. The System-on-a-programmable-chip (SOPC) Builder 
software [22] was used to add the necessary functional units 
such as memories, I/O interfaces and timers to the Nios II 
processor. It is well known that a general purpose processor by 
itself won’t be a useful system [22].  

Writing software for this processor is similar to other micro-
controller family. The Nios II integrated development 
environment (IDE) interface is used to write the software for 
this processor. The hardware abstraction layer (HAL) of the 
Nios II software serves as a board-support package for Nios II 
processor systems.  The tight integration between SOPC 
Builder and Nios II IDE allows the HAL system library to be 
generated automatically. The HAL system library provides a 
hosted C runtime environment based on the ANSI C standard 
libraries. It also provides generic I/O devices, allowing user to 
write programs that access hardware using the C standard 
library routines. After SOPC Builder generates a hardware 
system, the Nios II IDE can generate a custom HAL system 
library to match the hardware configuration [21]. RC5 
algorithm that is available in C was used to implement the 
same in the Nios II and modifications were made to suit for 
the Nios II processor environment. 

The second model is implemented using a bottom-up design 
methodology in Verilog HDL with Quartus II as the synthesis 
tool. The model was exhaustively tested using ModelSim 
simulations. The results obtained after the simulation are 
compared with the results of RC5 algorithm written in C 
language. 

For both the models the registration of the secret key into 
the system was done with a sequence of short pulses or in 
parallel feed depending on the device support. 

B. RC5 Loop Unrolling Discussion in Single Custom 
Processor 

As mentioned earlier, loop unrolling is a technique used in 
system design to improve the throughput and optimize its 
critical parts. In computer programming languages, loop 
unrolling mechanism is done to instructions that are called in 

 

Step # Block Operation # of 
rounds 

Equivalent 
Operations# 

 
per 
round 

Total 

1&4 32-bit XOR 16 2 32 
2 32-bit data dependent shift 

left 16 2 32 
3&6 32-bit modulo Addition 16 2 32 

5 32-bit data dependent shift 
right 16 2 32 

3&6 32-bit one dimensional 
table lookup 16 2 32 

Total (T) 160 
 
Table 1 RC5 operations per block 
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multiple iterations of the loop by combining them into a single 
iteration [16].  

We propose the use of this technique to improve the 
throughput of the RC5 core. Specifically, we use this 
technique to unroll the r rounds of encryption task into 
duplicate hardware components. In no-unrolling approach 
every block of data requires a number of (Cc) clock cycles to 
complete the entire encryption process.  

If a round of encryption task is done for every clock cycle, 
so to perform r rounds of encryption task, a circuit needs r 
clock cycles. Instead of performing the encryption task once 
per clock cycle we can use loop-unrolling approach to cut 
short the number of cycles required. The unrolling of r rounds 
of encryption task can be done in multiple ways by 
considering the integer factors of r. When r=15, we can have a 
total of 5 cycles with 3 loops-unrolled and performed per 
clock cycle. Or, we can have 3 cycles with 5 loops unrolled 
per cycle. Finally, we can have 15 loops of encryption done in 
a single clock cycle. When compared to no-loop-unrolling 
approach, the first approach requires only five clock cycles, 
which means cutting the number of clock cycles required to 
one third. Similarly second approach requires five times less 
clock cycles and the third approach requires r times less clock 
cycles for encrypting a block of data. Fig. 2 shows the 
pictorial view of the loop unrolling technique, for number of 
rounds, r=15. The penalty for this approach will be the 
increase in chip size. This is because, when a loop unrolling is 
implemented in hardware, the unrolled loop of the task is 
duplicated as extra hardware on the chip. So with the increase 
in number of unrolled loops, the size of hardware increases. 

Loop-unrolling requires more logic elements compared to 
the no-loop-unrolling. This will be seen in detail in the next 
section.  

IV. VERIFICATION, SYNTHESIS AND ANALYSIS RESULTS 
Both investigated models were designed, simulated and 

synthesized using Altera Quartus II development tool. The 
simulation results were observed for the functional correctness 
of the algorithm. Fig. 3 shows the simulation result of Single 
custom model of RC5. After the functional verification is done 
the code was synthesized, placed and routed, and re-simulated 
to check whether the implementation is successful or not. The 
two models were implemented using the same hardware target 
[12]. 

The selection of a target device depended on several 
requirements like available clock speeds, number of I/O pins, 
on chip memory, display interfaces (LEDs, LCD), etc. The 
DE2 development board, which has the Cyclone II 
EP2C35F672C6 FPGA and EPCS16 serial configuration 
device, is selected as the target device. The Cyclone II device 
family has the features of high-density architecture with 4,608 
to 68,416 logic elements, embedded multipliers, advanced I/O 
support, flexible clock management circuitry, etc [23]. 

We used Verilog HDL to implement both conventional (for 
comparison) and the proposed architectures. Various code 
implementations were synthesized using Altera FPGA 
development tools. The result obtained after modeling the 

algorithm tallies with the result obtained from the original 
code in C, which models the conventional architecture. Fig. 4 
shows the circuit used for providing plain-test input, and Fig. 
5 shows the target FPGA board with input test circuit. Fig. 6 
shows two samples of in-circuit verification for plain-text 
input 0x98721827-BE7B1E6F provided to RC5-32/15/16. An 
output is verified on the seven-segment display to show valid 
values of 0xD56280F6 as first word and 0xE836330E on the 
second. 

A. Throughput Analysis of Embedded General Purpose 
Processor 

For throughput analysis, we started with a general purpose 
processor model embedded on the FPGA and implemented the 
RC5 in a high level programming language (C code). An 
embedded processor (NIOS II/s) system was used to execute 
the C code, which was almost same for both RC5-32/15/16 
and RC5-32/15/24 versions. We then inserted timing 
calculation functions to measure throughput. A 50 MHz clock 
was the on-board system clock, so the maximum operating 
frequency could not exceed 50 MHz. Table 2 summarizes the 
resource utilization of the general purpose processor model. 
This model implementation utilizes multipliers, random access 
memory (RAM), and PLL blocks. The embedded multipliers 
are used to speed up multiplier intensive applications. The 
processor need for memory is satisfied by employing 
embedded memories, which consists of M4K (4Kbit) blocks 
that can be configured to provide various memory functions 
like RAM, first-in-first-out (FIFO), or read only memory. In 
addition, potential timing problem can rise from clock skew, 

 
 

Fig. 2 Mechanism of Loop Unrolling (no unrolling, 
3 loops unrolled, 5 loops unrolled). Total number of loops =15. 
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which leaves external memory (i.e., SDRAM) inaccessible. 
Hence, Phase Lock Loop module (PLL) was used.  

Throughput calculation of this model involves the 
calculation of number of cycles required to perform the 
encryption operation. High resolution Altera timing functions 
were used. Of these functions available, alt_timestamp_start() 
function can be used start the counter and a call to 
alt_timestamp() will provide the value of timestamp counter. 
These two functions were used to obtain the number of clock 
pulses required to complete the encryption process. 

The number of cycles required was found to be 1529 for 
both the versions of RC5. Using Fmax of 50 Mhz, Throughput 
was calculated using: 

 
Throughput = Fmax * (64/Cc).           (2) 
 
Fmax is the maximum frequency of operation, 64 is the 

block size, and Cc is the number of clock cycles required to 
encrypt one block. So, 

 
Throughput = 50x106 * (64/1529) 

=2.1 Mbps 
 

 

 
Fig 5: Target FPGA board, with input test circuit  

 

 
 
 
Fig. 3: RC5 Simulation waveforms using blank plaintext for known correct cipher output of 0xb7c4b44a-9faa44d8 

 

 
Fig. 4: Parallel input test circuit for in-circuit verification 
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When we compare this result with discussion presented in 

section 2, we find that this embedded processor runs on 
roughly 5 MIPS, which is so slow to perform high 
performance. However, this solution offer fastest time to 
market design, and minimal design cost. The extra resources 
like multipliers, RAM and PLL are not major contributors to 
cost, especially in bulk production. The bottom line is; the 
performance is poor at the advantage of low cost.   

B. Throughput Analysis of Single Custom Processor 
As explained in section 2, RC5 is a block cipher that works 

on two-word input and two-word output blocks. The number 
of clock cycles required for encryption is dependent on the 
parameter r. No-loop unrolling (conventional) implementation 
needs 15 clock cycles for encrypting a data block of 64 bits 
(two words). The throughput is calculated by (2). As the 
number of loops unrolled increase, it is intuitive that the 
longest path delay of the circuit increase as more components 
are connected in sequence, and fewer resources are shared 
iteratively. Consequently, the maximum clock frequency of 
operation decreases. At the same time, circuit size increases, 
since more components are needed. But, as the maximum 
clocking frequency decreases, the total number of cycles 
needed is also reduced. Hence, it is not obvious, how does the 
size of unrolling (the number of unrolled loops) affect the 
overall throughput of the system. There exists an optimal 
value which achieves the highest rate of encryption (i.e., the 
highest throughput). In this section we study the effect of 
loop-unrolling on RC5 by developing multiple Verilog HDL 
implementations to a same target, Cyclone II- EP2C35F672C6 
FPGA device (for fair comparisons). Fig. 7 summarizes the 
throughput for RC5 implementations using no-unrolling and 
the loop-unrolled implementations and is used in calculating 
Throughput per Logic Elements (TPLE). TPLE is calculated 
by dividing the throughput with its respective number of Logic 
Elements (LEs) required for each implementation. The total 
cost of implementation is proportional to the number of LEs. 
Because, if the number of LEs required increases then the total 
area occupied by the circuit will increase, resulting in increase 
in production costs. So we have to select an implementation 
that gives optimum performance and requires least number of 
LEs. TPLE is a measure of the circuits cost. If the TPLE is 
more, it indicates that the logic elements of the 
implementation are used efficiently to increase the throughput. 
Table 3 compares the FPGA resource utilizations of both RC5 
models based on single-custom processor and general-purpose 
processor. 

 

 
(a) 

 

 
(b) 

 
Fig 6: Correct in-circuit verification for plain-text input 
0x98721827-BE7B1E6F provided to RC5-32/15/16. An 
output is displayed sequentially on (a) first word (b) second 

 
FPGA Resource  Utilization  
Logic elements  3,331 / 33,216  (10 %) 
Registers  1768  
Combinational Elements  1237  
Logic array blocks  319 / 2,076  
I/O pins  365 / 475  
Clock pins  8 / 8  
Total fan-out  19121  
Average fan-out  3.34  
Embedded multipliers  4 / 70  
PLLs  1 / 4  
M4Ks  15 / 105 (14 %)  
Total RAM block bits  69,120 / 483,840  

Table 2: Resource utilization for general-purpose processor  
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In other words, the higher the TPLE the higher the cost 
efficiency will be. Even though the circuit is cost efficient 
there is no guarantee that performance of the circuit will be 
good. So, we should consider the performance as well as the 
cost efficiency into consideration when choosing any approach 
to implement on hardware. Fig 7 indicates that 15-loops 
unrolled approach has the least TPLE, which means that its 
cost will be high, whereas the no-unrolling approach and 3-
rounds unrolled approach indicate less cost among the listed 
implementations. Obviously, the cost of manufacturing no-
unrolling is less due to its small circuit size. However, no-

unrolling implementation provides lower throughput when 
compared with the 3-loops unrolled approach. So, 3-loops 
unrolled approach provides a better alternative as it meets the 
throughput requirements at an affordable cost. Fig. 8 shows 
the throughput vs. the number of loops unrolled for RC5 16  
and 24 byte key sizes. As shown from the figure, the best 
throughput (highest) is associated with the rightmost 
horizontal side of the graph. It is clearly shown that 3-loops 
unrolled outperforms 5 and 15-loops unrolled. The reason 
behind that is the extra increase in the propagation delay of 
higher unrolled loops, downgraded the value of Fmax by a 
rate grater than the improvement of reduced value of required 
clock cycles Cc, see (2). To illustrate how this was in effect, 
table 4 shows the longest path delay and the respective value 
of Fmax on the four loop-unrolling models for both versions 
of RC5 encryption 32/15/16 and 32/15/24. The value of Cc 
parameter required for these models are 15, 5,3 and 1 
respectively. 

 In addition, the achieved encryption throughput of 3-loops 
unrolled is higher than that reported of the related work of 207 
Mbps using a Xilinx VirtexII-1000 FPGA device [8]. Hence, 
3-loops unrolled offered a maximum throughput improvement 
of 24% compared to the work related. Comparing 
implementations on the same Altera Cyclone II- 
EP2C35F672C6 FPGA, a maximum throughput speed up of 
50% is achieved for 192 bit key. (i.e., comparing throughput 
speedup of 3-loops unrolled to no-unrolling in Fig. 7) 

 

 
Fig. 7 Throughput per Logic Elements for various RC5 

implementations 
 

 

 
 

 
Fig. 8 Throughput vs. Number of Rounds Unrolled in RC5 

implementations using 128 and 192 bit key 

 

FPGA 
Resources 

Single-Custom 
Processor 

Soft-core 
Processor 

Registers 1299 1974 
PLLs 0 1 

Total memory 
bits 

0/483,840 46592/483,840 

Logic array 
blocks 

330/2076 319/2076 

I/O pins 307/475 365/475 
Clock pins 5/8 8/8 

Maximum fan-
out 

1500 1906 

Total fan-out 24520 20469 
Average fan-out 3.68 3.77 

Embedded 
multipliers 

0/70 4/70 

Logic elements 5050/33216 3184/33216 
 
Table 3: Resource utilization comparison of single purpose (SCP) 
and soft-core general-purpose processor (GPP) 
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C. Energy Evaluations of Single Custom Processor 
An estimate of power consumption can be made with FPGA 

development tools after the synthesis and place-and-route 
phases. For Altera FPGA devices, the PowerPlay power 
analyzer tool performs after synthesis power estimation. It 
calculates a close estimate for power consumption by using 
inputs from the resource utilization phase (Fitter report), signal 
activities from the functional simulation and operating 
condition of the design (junction temperature and board 
cooling solution settings). One of these features is the toggle 
rate, which is how often the output changes with respect to the 
input clock signal [24]. Table 5 summarizes the power and 
energy consumption generated with a toggle rate of 25% 
(assuming that toggle rate is same for all implementations). It 
is shown from the table that the no-loop-unrolling consumes 
the most energy and that the 3-loops unrolled consume the 
least energy. This is due to the fact that it experiences the 
minimum encryption time per block (or highest throughput). 

V. CONCLUSION 
We presented two hardware models of the RC5 algorithm 

and from the summary of the results we can observe both the 
models have their advantages and disadvantages. 

In this paper, various hardware implementations of RC5 
algorithm were presented using variable sizes of loop 
unrolling technique, and implemented on FPGA. The 
performance evaluation suite involved calculating maximum 
frequency of operation, circuit size (in terms of the number of 
Logic Elements, power consumption, throughput computation, 
and cost efficiency. With the aid of performance evaluation 

Parameter RC5-32/15/16 RC5- 32/15/24 
Fmax 42.15 MHz 40.09 MHz 

Longest Path Delay 
 (or clock period) 

23.72 ns 24.941 ns 

Worst Case Setup (tsu) 
and Hold (th) times 

tsu = 8.519 ns 
th = 4.206 ns 

tsu = 9.605 ns 
          th = 4.198 ns 

(a) 
 

Parameter RC5-32/15/16 RC5- 32/15/24 
Fmax 20.03 MHz 20.03 MHz 

Longest Path Delay 
 (or clock period) 

49.92 ns 49.92 ns 

Worst Case Setup (tsu) 
and Hold (th) times 

tsu = 9.920 ns 
th = 4.104 ns 

tsu = 9.920 ns 
          th = 4.104 ns 

(b) 
 

Parameter RC5-32/15/16 RC5- 32/15/24 
Fmax 10.48 MHz 10.38 MHz 

Longest Path Delay 
 (or clock period) 

95.41 ns 96.33 ns 

Worst Case Setup (tsu) 
and Hold (th) times 

tsu = 9.556 ns 
th = 4.616 ns 

tsu = 9.110 ns 
          th = 4.695 ns 

(c) 
 

Parameter RC5-32/15/16 RC5- 32/15/24 
Fmax 3.22 MHz 3.19 MHz 

Longest Path Delay 
 (or clock period) 

310.55 ns 313.47 ns 

Worst Case Setup (tsu) 
and Hold (th) times 

tsu = 13.224 ns 
th = 4.815 ns 

tsu = 13.424 ns 
          th = 4.739 ns 

(d) 
 

Table 4 Timing Analysis of (a) no loop unrolling (b) 3, (c) 5, (d) 15 loop unrolling respectively 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Approach Power (mW) Energy (nJ) 
No-unrolling 138.27 51.728 
3 loop-unrolling 140.0 34.944 
5 loop-unrolling 141.79 40.975 
15 loop-unrolling 145.82 45.71 
 

Table 5 Power and Energy consumption for various RC5 
models under test 
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tools, it is concluded that, of all the implemented models, 3-
loops unrolled approach can be selected to achieve highest 
throughput. However, only if the user requirements are such 
that the model should fit in least circuit size with moderate 
throughput, the no-loop-unrolled can be used. 

The achieved encryption throughput of 3-loops unrolled is 
higher than that reported of the related work of 207 Mbps 
using a Xilinx VirtexII-1000 FPGA device [8]. Hence, 3-loops 
unrolled offered a maximum throughput improvement of 24% 
compared to the work related. Comparing implementations on 
the same Altera Cyclone II- EP2C35F672C6 FPGA, a 
maximum throughput speed up of 50% is achieved for 192 bit 
key. 

It was shown that, when we integrated the maximum 
operating frequency (Fmax) into the required number of 
cycles to operate, the soft-core general-purpose processor was 
found to be less than 100 times slower than the single custom 
processor (although it operates at higher frequency). Even 
though the second model is faster there is price paid for it. It 
incurs extra time of design, and longer time to market. 
However, when we compare the resource utilization of the two 
models, we show that the single custom processor generally 
uses a lot less resources in terms of multipliers, memory, 
PLLs, registers etc. So, in high volume production, it can also 
be cheaper than the first model. Since the resource utilization 
is less for the second model the manufacturing cost will be 
less. 

In future work, the author would like to investigate the 
effect of loop-unrolling of other encryption algorithms such as 
RC5 [25], and AES.  
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