
 

 

  

Abstract— To provide more efficient and flexible alternatives for 
the applications of secret sharing schemes, this paper describes a 
threshold sharing scheme based on exponentiation of matrices in 
Galois fields. A significant characteristic of the proposed scheme is 
that each participant has to keep only one master secret share which 
can be used to reconstruct different group secrets according to the 
number of threshold values. 
 
Keywords— Computer security, cryptography, public-key 

cryptography, threshold schemes, prepositioned secret sharing.  

I. INTRODUCTION 

ecret-sharing schemes are a tool used in many 
cryptographic protocols. The motivation for secret sharing 

is secure key management [1]. In some situations, there is 
usually one secret key that provides access to many important 
files. If such a key is lost (e.g. the person who knows the key 
becomes unavailable, or the computer which stores the key is 
destroyed), then all the important files become inaccessible A 
secret sharing scheme involves a dealer who has a secret, a 
finite set of n participants, and a collection A of subsets of the 
set of participants called the access structure.  

 
A perfect secret sharing scheme for A is a method by which 

the dealer distributes shares to the parties such that: (1) any 
subset in A can reconstruct the secret from its shares, and (2) 
any subset not included in A can never reveal any partial 
information on the secret (in the information theoretic sense). 
Secret sharing schemes were first introduced by Blakley [4] 
and Shamir [22] for the threshold case, that is, for the case 
where the subsets that can reconstruct the secret are all the sets 
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whose cardinality is at least a certain threshold. Secret sharing 
schemes for general access structures were introduced by Ito, 
Saito, and Nishizeki [14]. They tried to realize the general 
access structure by using the multiple shadows assignment 
approach. Later Benaloh and Leichter [3] proposed a simpler 
method of developing a secret sharing scheme by translating 
the access structure into a monotone formula. They also stated 
that there exists access structures for which any generalized 
secret sharing must give some trustee shares which are from a 
domain larger than that of the secret. However, this conclusion 
may only applied to those secret sharing schemes without 
cryptographic assumption. 

 
In general, the ability to redistribute shares of secrets 

between different sets of shareholders is useful for a wide 
range of applications. Consider the following examples: 
• Multiparty signature schemes. Business organizations may 

use digital signature schemes to sign legal documents 
they exchange with counterparties. Such schemes are 
typically asymmetric: an organization generates 
signatures with a private key known only to itself, and the 
counterparties verify signatures with a corresponding 
public key. To prevent a single rogue agent from signing 
documents without proper authorization, the organization 
may require multiple agents to generate signatures with a 
multiparty signature scheme [10]-[11]-[12]-[13]-[19] that 
distribute shares of the private key to the agents. Over 
time, the organization will need to give shares of the 
private key to agents who join, and invalidate the shares 
of agents who leave. Changing the private key each time 
agents join or leave would require revocation of the well-
known public key. A better solution would be to 
redistribute shares of the private key in a way that 
invalidates old shares and obviates the need for public 
key revocation. 

• Distributed key servers: Recent distributed storage systems, 
such as [2]-[6]-[9]-[20]-[24]-[25], use disk space on 
(potentially) untrusted storage devices to store data. 
Clients may encrypt data before handing it off to the 
storage system. One way for clients to store their 
encryption keys is to employ threshold sharing schemes 
to distribute shares of the keys to a set of key servers. Of 
course, since clients must store keys for as long as they 
store the encrypted data, a mobile adversary may have a 
large window of opportunity to compromise multiple key 
servers, and thus obtain enough shares to reconstruct the 
keys. To counter the adversary, the uncompromised key 
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servers could periodically redistribute shares of the keys 
to new, uncompromised servers. The adversary would 
then need to restart the process of compromising servers, 
assuming that old shares cannot be combined with new 
shares to reconstruct the secret. 
 

Both of these applications must support dynamic 
shareholder membership, and protect secrets from mobile 
adversaries. In the multiparty signature system, gents may join 
or leave the organization, while in the storage system, key 
servers may be added or removed for maintenance or security 
purposes. It may also be advantageous to change the threshold 
value of the underlying sharing scheme to accommodate new 
policies. In both applications, the system needs to retain the 
original secrets when generating new shares and invalidating 
old shares. More importantly, to prevent faulty old 
shareholders from corrupting the shares of new shareholders, 
new shareholders must be able to verify the validity of their 
shares after redistribution (i.e., that their shares can be used to 
reconstruct the secret). 
 

Originally the secret sharing scheme are motivated by the 
problem of secure information storage but secret sharing 
schemes have found numerous other applications in 
cryptography and distributed computing, secure multiparty 
computations, threshold cryptography, access control, and 
attribute based encryption [5]-[7]-[14]-[15]-[16]. 

For example a (n, k)-threshold image secret sharing scheme 
[23], where k ≤n, divided a secret image into n shadow images 
(known as the shadows)  in the way that requires at least k 

shadows for the secret reconstruction. 
A major problem with secret sharing schemes is that the 

shares' size in the best known secret sharing schemes realizing 
general access structures is exponential in the number of 
parties within the access structure. Thus, the known 
constructions for general access structures are impractical. 
This is true even for explicit access structures (e.g. access 
structures whose characteristic function can be computed by a 
small uniform circuit). On the other hand, the best known 
lower bounds on the shares' size for sharing a secret with 
respect to an access structure are far from the above upper 
bounds. 

 

We present a new ),( kn verifiable secret distribution 

protocol for Shamir’s threshold sharing scheme, which is 
based on the powers of square matrices in Galois fields and a 
scheme proposed by Charnes, Pieprzyk and Safari-Naini (see 
[8]). The security of the scheme proposed is guaranteed since 
it is based in the well known discrete logarithm problem in 
GF(q). The use of Galois fields of the form GF(2l), called 
binary extension fields, is ubiquitous in a variety of areas 
ranging from cryptography to storage system reliability. These 
algebraic structures are used to compute codewords in linear 
erasure codes, evaluate and interpolate polynomials in 
Shamir’s secret sharing algorithm, compute algebraic 
signatures over variable-length strings of symbols [21] and 

encrypt blocks of data in Rijndael’s cipher. These applications 
typically perform computation in either GF(28) or GF(216). 

We have considered to present the secret sharing scheme as 

an ( kn   , ) scheme, that is, we divide the secret into n parts 

and k of them are needed to recover the secret. 
 

II. MATHEMATICAL BACKGROUND 

 
The field GF(2l) is defined by a set of 2l

 unique elements 
that is closed under both addition and multiplication, in which 
every non-zero element has a multiplicative inverse and every 
element has an additive inverse. Addition and multiplication in 
a Galois field are associative, distributive and commutative. 
The Galois field GF(2l) may be represented by the set of all 
polynomials of degree at most l−1, with coefficients from the 
binary field GF(2) (the field defined over the set of elements 0 
and 1). Thus, the 4-bit field element a = 0111 has the 
polynomial representation a(x) = x2+x+1. 

 
In contrast to finite fields defined over an integer prime, 

the field GF(2l) is defined over an irreducible polynomial of 
degree l with coefficients in GF(2). An irreducible polynomial 
is analogous to a prime number in that it cannot be factored 
into two non-trivial factors. Addition and subtraction in GF(2) 
is done with the bitwise XOR operator, and multiplication is 
the bitwise AND operator. It follows that addition and 
subtraction in GF(2

l
) are also carried out using the bitwise 

XOR operator, while multiplication turns out to be more 
complicated. In order to multiply two elements 

)GF(2  b(x)a(x) l∈⋅ ; we perform polynomial multiplication 

of  b(x)a(x) ⋅  and reduce the product modulo an l-degree 

irreducible polynomial over GF(2). Division among field 
elements is computed in a similar fashion using polynomial 
division. The order of a non-zero field element ord(α) is the 

smallest positive i such that 1=iα . If the order of an element 

)GF(2  l∈α  is 2l−1, then α is primitive. In this case, α 

generates )GF(2l  i. e., all non-zero elements of )GF(2l  are 

powers of α. For a detailed and rigorous explanation of finite 
fields, please refer to [17]. 

III. RESULTS OBTAINED 

We assume that we have a set of all secrets K. The set of 
all shares is S and the set of all participants is P (|K| = n). 
Secret sharing schemes consists of two algorithms. The first is 
called the dealer, is generates and distributes shares among the 
participants. The second is called the combiner, it collects 
shares from the participants and recomputes the secret only for 
sets of shares belonging to the access structure. The formal 
definition is given below. 

 
Definition 1: A secret sharing scheme is a collection of two 
algorithms. The first (the dealer) is a probabilistic mapping 

nSSSKD ×××→ K21:  
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where ),,2,1( niSS i K=⊂ and iS is a subset which is 

used to generate a share for the participants PP i ∈ . The 

second (the combiner) is a function 

KSSSC
tiii →××× K

21
:  

Such that if the corresponding subset of participants 

{ }
tiii PPP ××× K

21
 belongs to the access structure П, it 

produces the secret K∈K . The combiner fails to 
recomputed the secret if the subset of participants does not 
belong to the access structure П. 

 
A perfect secret sharing scheme is called ideal if the length 

of each participants share is equal to the length of the secret. 
An example of a perfect and ideal scheme is the Shamir 

(t,n) threshold scheme. In this scheme any subset of t out of n 
participants can recreate the secret. In this scheme the dealer 
selects at random a polynomial of degree (t-1) over a GF(q). 
The polynomial has the following form 

1
1

2
210)( −

−++++= t

t xaxaxaaxf K  

where the coefficients 1,,1,0 −= tiforai K are chosen 

randomly and uniformly from GF(q). 
The secret key is k = f(0) and the i-th participant’s share is 

)(ifsp ii =→  

for all Ppi ∈ . 

The combiner takes shares from the participants and 
determines f(x). This always succeeds if the combiner has at 
least t different shares, but fails if the number of shares is less 
than t. 

 
We define a conditionally secure Shamir secret scheme 

using exponentiation in Galois fields. This scheme can 
withstand the lost of polynomials bounded number of shares.  
A covert channel cannot occur in a conditionally secure 
Shamir scheme unless the discrete logarithm problem is 
solvable in polynomial time. 

 
IV. CASE ONE 

 
In this scheme we establish that the base of the 

exponentiation is an integer and the exponent is a matrix. More 

exactly, the base is an element belonging to )8(GF  and, 

consequently, is a polynomial. With the aim to simplify the 
computations, we will take its numerical representation, as we 
will show in case one example. 

 

Let us consider a generator g  of )8(GF , which is known 

by all the participants. Let  

1
1

3
3

2
210    )( −

−+++++= k

k xAxAxAxAAxf K , 

the function where 

 ttr MA ×∈    (9 7 ) for 10    −= kr K   

and consider the secret (        )0(    0 ttMAfs ×∈== 9 )7 . 

To begin with, we compute the initial conditions 

)(    ifci =  that the dealer will distribute among all the 

participants, using a public channel. Remark that 

(    tti Mc ×∈ 97) for ni K1    = . 

 
In the next step, each of the participants will compute a 

part of the secret by means of ic

i gs     = . As we can see, this 

computation consists of raising a polynomial to a matrix. This 
type of computation motivates the following definition. 
 

Definition 2: Let ttij MaA ×∈=     )(    (Z7) and 

)8(    GFn ∈ . We define the power function ζ as 

))(GF(  M)    (n    nζ(n, A)  tt

aA ij 8×∈== . 

 

So, ))(GF(  M)  ζ(g, cgs tti

c

i
i 8     ×∈== .     )1(  

To recover the secret, we choose k parts in a random way. 
As  

1
1

3
3

2
210

−
−+++++ k

k iAiAiAiAA K  

and  
1

1
3

3
2

210            )( −
−+++++===

k
ki iAiAiAiAAifc

i gggs
K

 

are matrices, we need to use the above definition.  We can say 

that the element ),( pj  of the matrix is  is as follows 

 
1

,1
2

,2,1,0
−

−++++ k
jpkjpjpjp iaiaiaa

g
K

 (2), 

where jpra ,  is the element ),( pj  of rA .  

We use the following notation 
1

,1
2

,2,1,0    )(
−

−++++=
k

jpkjpjpjp aaiaiaa

jp gif
K

 

so that 

ni

ififif

ififif

ififif

s

tttt

t

t

i K

L

MMM

L

L

,1with

)()()(

)()()(

)()()(

    

21

22221

11211

=



















=  

 

Starting from the expression (2) and performing a break 
down for all the elements of the matrix (remark that the last 
step represents a change in the notation to simplify it) 

)(if jp =
1

,1
2

,2,1,0
−

−++++ k
jpkjpjpjp iaiaiaa

g
K

=

1
,1

2
,2,1,0

−
−

k
jpkjpjpjp iaiaiaa

gggg L =
1

,1
2

,2,1,0 )()()(
−

−
k

jpkjpjpjp iaiaiaa
gggg L =

12

)()()( ,1,2,1,0

−

−

ki

jpk

i

jp

i

jpjp gggg L . 

 

Applying again this break down the matrix is  is: 
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



















=

−−

−−

−−

−−

−−

−−

11

11

11

)()()()(

)()()()(

)()()()(

,1,1,01,11,11,0

2,12,12,021,121,121,0

1,11,11,011,111,111,0

kk

kk

kk

i

ttk

i

tttt

i

tk

i

tt

i

tk

i

tt

i

k

i

i

tk

i

tt

i

k

i

i

gggggg

gggggg

gggggg

s

LLL

MM

LLL

LLL

)3( . 

Now, we substitute i for the index of the participants that 
are included in the authorized set. We suppose, without 
introducing any restriction, that the k authorized participants 
are labeled as 1, 2, …, k. 

 

We obtain 
i

s  as a numerical matrix tt ×  in )1(  and we 

also obtain a matrix tt ×  with 2kt  unknowns in )3( . 

Equating the two expressions for each of the participants, we 

obtain 2t  systems of k equations, with k unknowns each one. 
These systems may be solved by means of logarithms and they 
are compatible with a unique solution, since the determinant of 
the coefficients has the structure of the Vandermonde 
determinant. 

 
From the solutions of the systems we can compute the 

coefficients of the matrices, taking logarithms of rA  in 

base g . From the set of these coefficients, we select some of 

them, that is 0A . This constitutes the original secret that has 

been recovered. 
 
 

V. CASE ONE: EXAMPLE 
 

Let us consider 2    =g  as a generator of )8(GF , and let 

3
3

2
210    )( xAxAxAAxf +++=   

with 

 









=

10

34
     1A , 








=

11

52
    2A , 








=

36

01
    3A , 

whose coefficients are in Z 7  and consider the secret  

0

5 2
s    (0)        

1 0
f A

 
= = =  

 
. 

The administrator computes the initial conditions 

)(    ifci =  









==

51

35
    )1(    1 fc , 









==

24

01
    )2(    2 fc , 









==

24

06
   )3(    3 fc , 









==

22

35
   )4(    4 fc , 









==

66

24
   )5(    5 fc , 









==

43

42
   )6(    6 fc , 

and distributes them to the participants throughout a channel 
that perhaps is not secure.  

Once each participant receives the initial condition 
everyone computes the corresponding part of the secret, 

obtaining ) ,(        
i

c

i
cggs i ζ== ,  









==

72

37
1

1       g  s c , 









==

46

12
2

2      g  s c , 









==

46

15
3

3       g  s
c

, 









==

44

37
4

4       g  s c , 









==

55

46
5

5       g  s
c

, 









==

63

64
6

6       g  s
c

. 

Suppose now that the participants 1, 2, 3 and 4 constitute 
an authorized set and they join their parts in order to recover 
the whole secret. The administrator performs the required tasks 

and obtains 
i

s  











= 3232

3232

15141312111098

76543210    
iiiiii

iiiiii

i
gggggggg

gggggggg
s

.

 

Replacing i by 1, 2, 3 and 4 and equalizing the resulting 
matrices with the numerical contribution of each participant, 
that is 









=








=

72

37
        

15141312111098

76543210
1

gggggggg

gggggggg
s , 









=








=

46

12
        

15
4
14

2
131211

4
10

2
98

7
4
6

2
543

4
2

2
10

2
gggggggg

gggggggg
s , 
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







=








=

46

15
        

6
15

2
14

3
1312

6
11

2
10

3
98

6
7

2
6

3
54

6
3

2
2

3
10

3
gggggggg

gggggggg
s , 









=










=

44

37
        

15
2
14

4
131211

2
10

4
98

7
2
6

4
543

2
2

4
10

4
gggggggg

gggggggg
s . 

 
At last, the administrator must perform the comparison 

between matrices (the comparison is element by element). The 
outcome of this process is that we have four systems of four 
equations. We illustrate with an example of the element )1 ,1(   











=

=

=

=

7

5

2

7

3
2
2

4
10

6
3

2
2

3
10

3
4
2

2
10

3210

gggg

gggg

gggg

gggg

. 

As we have already mentioned theoretically, the system has 
a unique solution since we arrive to a Vandermonde type 
determinant. Consequently, we can solve these four systems 
with no compatibility problem. The solutions for our example 
are: 

2      ,4      ,6      ,7    3210 ==== gggg , 

1      ,7      ,3      ,4    7654 ==== gggg , 

4      ,2      ,1      ,2    111098 ==== gggg , 

3      ,2      ,2      ,1    15141312 ==== gggg . 

As 2    =g , we can easily compute the coefficients of the 

initial matrices. More detailed, from 0g , 4g , 8g  and 12g  we 

can compute the coefficients 0A  and recover the original 

secret: 

5    7log    7    20 =→=g  

2    4log    4    24 =→=g  

1    2log    2    28 =→=g  

0    1log    1    212 =→=g  

and,  therefore  









==

01

25
0 sA . 

 
 

VI. CASE TWO 
 

In this scheme, we have taken a matrix as the base for the 
exponentiation and an integer as the exponent. Certainly, the 
base is a matrix whose elements are in )8(GF  so it is a 

polynomial matrix. To work with, we choose its numerical 

representation. Let us consider ))8((    GFMG tt×∈  a square 

matrix whose elements are generators of )8(GF , and which 

is known by all the participants. Let the function  

1
1

3
3

2
210    )( −

−+++++= k

k xaxaxaxaaxf K ,  

where   

∈  ra  9
7

 for 1,,0   −= kr K   

and consider the secret  

))8((            0)0( GFMGGs tt

af

×∈== . 

As we have seen in case 1 we begin 

computing ∈=   )(    ifc
i

 9
7

 for ni K0= , that is, the 

initial conditions that will be distributed to all the participants 
using a public channel.  

 
Then, each of the participants computes the corresponding 

part of the secret, as ic

i Gs     = . As we see, the operation 

involved in this step consists of a power of matrices, although 
we are not going to perform the usual power of matrices, but 
the power of each of the elements of the matrix. That specific 
operation leads us to the following definition: 

 

Definition 3: Let ))8((    )(    GFMaA ttij ×∈= , and ∈  n  

9 7 . We define the power function ψ  as  

))8((    )(        ) ,( GFMaAnA tt

n

ij

n

×∈==ψ . 

 

Then, ) ,(     ii cGs ψ=  )4(  and each participant obtains a 

part of the secret, which is a matrix of ))8((GFM tt× . 

To recover the secret, we choose k parts in a random way.  
As G  is a matrix and 

∈+++++ −
−

1
1

3
3

2
210

k

k iaiaiaiaa K  Z 7 , 

we need use the definition (2) to compute 
1

1
3

3
2

210)( −
−+++++===

k
ki iaiaiaiaaifc

i GGGs
K

 

where the element ),( pj  of is  is as follows 
1

1
2

210
−

−++++ k
k iaiaiaa

jpg
K

, 

and jpg is the element ),( pj  of the matrix G . 

To simplify we use the following notation 
1

1
2

210    )(
−

−++++=
k

k aaiaiaa

jpjp gif
K

 

so that 

ni

ififif

ififif

ififif

s

tttt

t

t

i K

L

MMM

L

L

,1with

)()()(

)()()(

)()()(

    

21

22221

11211

=



















=

. (4)  
 

Now, we perform a similar break down as we used in the 
case before, for all the elements of the matrix 
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)(if jp =
1

1
2

210
−

−++++ k
k iaiaiaa

jpg
K

=
1

1
2
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−

−
k

k ia

jp
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a

jp gggg L =
1

1
2

210 )()())((
−

−
k

k ia

jp

ia

jp

ia

jp

a

jp gggg L  

(5) 
and we apply a change in the notation rjp

a

jp gg r

,=  obtaining 

the expression 
12

)()())(( 1,2,1,0,

−

−

ki

kjp

i

jp

i

jpjp gggg L . 

We use the previous break down for the expression )5(  

and, as we have already mentioned, we choose the participants 
numbered as 1, 2, …k. 

We obtain 
i

s  as a numerical matrix tt ×  in )4(  and we 

also obtain a matrix tt ×  with 2kt  unknowns in )5( . 

Equating the two expressions for each of the participants, we 

obtain 2t  systems of k equations, with k unknowns each one. 
These systems may be solved by means of logarithms and they 
are compatible with a unique solution, since the determinant of 
the coefficients has the structure of the Vandermonde 
determinant. 

Selecting the solutions that differ in k, and composing the 

matrix kG
a =0  we can recover the secret.  

 
 

VII. CASE TWO: EXAMPLE 
 

Let 

))8((    
35

32
    22 GFMG ×∈








= , 

and  
32245)( xxx    xf +++=  

the function with coefficients in Z 7  with the secret 

(0) 5
2 2

7 2
     ( (8))

4 2
fs   G     G    M GF×

 
= = = ∈ 

 
 

The administrator computes the initial conditions 

∈=   )(    ifci  9 7  

and distributes them  

5    1    1 == )f(c , 1    2    2 == )f(c , 

6    3    3 == )f(c , 5    4    4 == )f(c , 

4    5    5 == )f(c , 2    6    6 == )f(c , 

 
among all the participants throughout a channel that perhaps is 
not secure. 

Once each participant receives the initial condition, 
everyone computes the corresponding part of the secret 

)GF()ψ(G,c G s
i

c

i

i 8 ∈== , 

obtaining 

,
24

27
            5

1
1









=== GGs c

,
35

32
            1

2
2









=== GGs c  

,
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3
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




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4
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


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


=== GGs c  

,
75

72
            4

5
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.
57

54
            2

6
6
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






=== GGs

c
 

 
Suppose now that the participants 1, 2, 3 and 4 constitute 

an authorized set and they join their parts in order to recover 
the whole secret. The administrator performs the required tasks 
and obtains 

.    3232

3232

15141312111098

76543210














=

iiiiii

iiiiii

i
gggggggg

gggggggg
s  

Replacing i by 1, 2, 3 and 4 and equalizing the resulting 
matrices with the numerical contribution of each participant, 
that is, 


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At last, the administrator must perform the comparison 
between matrices (the comparison is element by element). The 
outcome of this process is that we have four systems of four 
equations. We illustrate with an example 











=

=

=

=

7

5

2

7

3
2
2

4
10

6
3

2
2

3
10

3
4
2

2
10

3210

gggg

gggg

gggg

gggg

. 

As we have already mentioned theoretically, the system has 
a unique solution since we arrive to a Vandermonde type 
determinant. Consequently, we can solve these four systems 
with no compatibility problem. The solutions for our example 
are 
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2      ,4      ,6      ,7    3210 ==== gggg , 

3      ,5      ,7      ,2    7654 ==== gggg , 

5      ,7      ,3     ,4    111098 ==== gggg , 

3      ,5      ,7      ,2    15141312 ==== gggg . 

As we can check, 0g , 4g , 8g  and 12g  are the elements 

of the matrix 









===

24

2750 sGG
a

 

 
and we have already recovered the secret. 

 
 

VIII. CASE THREE 
 

We have considered in this scheme than the base as the 
exponent both are matrices. The base is a matrix with elements 
in )8(GF  and therefore a polynomial matrix, but like in the 

previous cases, we choose his numeric representation. 
 

This scheme begins different that second case, but it 
takes place to one point in the process where it follows a 
similar way and it resolve in the same way. 

 

Let be ))8((GFMG tt×∈  a square matrix know for all 

of participants whose elements are generators of GF(8). Let be 
a function 

1
1

2
210    )( −

−++++= k

k xAxAxAAxf L , 

where 

)(    pttr ZMA ×∈  for 1,,0    −= kr K  

and let be a secret value 0    )0(    Afs == . 

 
This scheme begins when administrator computes the 

initial conditions )(    ifci =  and he distribute them between 

the participants using a public channel. Note than 

)(    ptti ZMc ×∈ , with ni ,,1    K= . 

Each participant computed his part of the secret ic

i Gs     = . 

As we can be observed, this operation involves a matrix to the 
power of matrix, and therefore the following definition 
becomes necessary: 

 

Definition 4: Let be ))8((    )(    GFMaA ttij ×∈= , and 

(    )(    ttij MbB ×∈= 9 )7 . We defined the power function γ  

like this 

))8((    )(        ),( GFMaABA tt

b

ij

B ij

×∈==γ . 

 

In order to recover the secret, we randomly choose  k  
parts. On the one hand, we have than 

1
1

2
210            )( −

−++++===
k

ki iAiAiAAifc

i GGGs
L

 

and, for another one, the element of the matrix 
1

1
2

210
−

−++++ k

k iAiAiAA L  

have the form 
1

,1
2

,2,1,0
−

−++++ k

jpkjpjpjp iaiaiaa L  

where jpra ,  is the element ) ,( pj  of the matrix 

1,,0with −= krAr K . 

If we join both expressions and apply the definition 3, we 
obtain 

ni

ififif

ififif

ififif

s

tttt

t

t

i K

L
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,1with
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=
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
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


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

= , 

(6) 

where 
1

1
2

,2,1,0)(
−

−++++=
k

kjpjpjp iaiaiaa

jpjp gif
L

 

and jpg  is the element ),( pj  of the matrix 

tpjG K,1,for = . 

Now, we perform a similar break down as we used in the 
case before, for all the elements of the matrix 

1
,1

2
,2,1,0

1
,1

2
,2,1,0

1
,1

2
,2,1,0

)()())((

)(

,

−
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−

=
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= ++++

k
jpkjpjpjp

k
jpkjpjpjp
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jpkjpjpjp
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a
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a
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gggg

gggg

gif

L
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 (7) 

and we apply a change in the notation 

rjp

a

jp gg jpr

,
, =  

obtaining the expression 

12

)()())(( 1,2,1,0,

−

−

ki

kjp

i

jp

i

jpjp gggg L . 

We use the previous break down for the expression )7(  

and, as we have already mentioned, we choose the participants 
numbered as 1, 2, …, k. 

 

We obtain 
i

s  as a numerical matrix tt ×  in )6(  and we 

also obtain a matrix tt ×  with 2kt  unknowns in )7( . 

Equating the two expressions for each of the participants, we 

obtain 2t  systems of k equations, with k unknowns each one. 
These systems may be solved by means of logarithms and they 
are compatible with a unique solution, since the determinant of 
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the coefficients has the structure of the Vandermonde 
determinant. 

Selecting the solutions that differ in k, and composing the 

matrix kG
a =0  we can recover the secret. 

 
 

IX. CASE THREE: EXAMPLE 
 

Let 

))8((    
35

32
    22 GFMG ×∈


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



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and the function  
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The administrator computes the initial conditions 
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among all the participants throughout a channel that perhaps is 
not secure. 

 

Once each participant receives the initial condition, 
everyone computes the corresponding part of the secret 

) (G,c     G  s i
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obtaining the following parts 
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Suppose now that the participants 1, 2, 3 and 4 constitute 

an authorized set and they join their parts in order to recover 
the whole secret. The administrator performs the required tasks 

and obtains is  


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
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
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= 3232
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Replacing i by 1, 2, 3 and 4 and equalizing the resulting 

matrices with the numerical contribution of each participant, 
that is, 
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At last, the administrator must perform the comparison 
between matrices (the comparison is element by element). The 
outcome of this process is that we have four systems of four 
equations.  






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
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=

=
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4
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gggg

gggg

gggg

gggg

. 

 
As we have already mentioned theoretically, the system has 

a unique solution since we arrive to a Vandermonde type 
determinant. Consequently, we can solve these four systems 
with no compatibility problem, obtaining: 

2      ,4      ,6      ,7    3210 ==== gggg , 

1      ,2      ,4      ,5    7654 ==== gggg , 

2      ,5      ,1     ,5    111098 ==== gggg , 

4      ,3      ,3      ,1    15141312 ==== gggg . 

As we can check, 0g , 4g , 8g  and 12g  are the elements of 

the matrix 









===










15

57
   G     01

25

0 sG
A

 

 
and we have already recovered the secret. 

 

X.   CONCLUSION 
 

The main idea of this paper is to develop a secret sharing 
scheme based on power of matrices in Galois fields.  The 
previous work of Shamir [22] and Charnes, Pieprzyk and 
Safari-Naini [8] have been a reference for the construction of 
our two schemes.  

 
In this work we describe a secret sharing scheme with 

disenrollment capability and which resists cheating. Our 
schemes are secure assuming that calculating the discrete 
logarithm in GF(q) is “difficult” and they use not secure 
channels to distribute to the participants “initial conditions” – 
the shares of the secret key. The updated shadows are now 
used to recover the secret key, which remains the same for 
subsequent updates of shares.  

 
Our modified shadows are related to the original shadows 

via the discrete logarithm. So the participants need to secure 
only one secret key – the initial conditions. If some of the 
modified shadows are acquired by unauthorized users, the 
initial conditions are still secure and new shares are easily 
generated without compromising the security of the system. 

 
We have developed three different cases. In the first case, 

the base of the powers is an integer and the coefficients of the 
exponent function are matrices. In the second case the base is a 
matrix and the exponent is an integer. Finally in the third case 
the base and the exponent are both matrices. 
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