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A numerical algorithm for a one-dimensional
nonlinear Timoshenko system

Jemal Peradze and Vladimer Odisharia

Abstract—The boundary value problem for a system of nonlinear
ordinary differential equations is considered for the functions u,w
and y which describe the static behavior of a plate. The functions
u and y are expressed explicitly through the function w for which
a nonlinear integro-differential equation with a boundary condition is
written. For the approximate solution of the problem for w we
apply the algorithm that includes the Galerkin method and the
nonlinear Jacobi iteration. The error of the obtained value of w is
estimated. This value is used for constructing approximations for the
functions U and y and the respective errors are estimated.

Keywords—Error estimate, Jacobi iteration process, nonlinear
Timoshenko system, numerical algorithm.

. INTRODUCTION

HE nonlinear system of Timoshenko plate equations is

important from the theoretical and applied standpoints. I.
Vorovich [7] attributed the topic of the solvability of the
system of Timoshenko equations and construction for it of
approximate algorithms to the range of unsolved problems of
the mathematical theory of plates and shells. After the
publication of the monograph [7], the above-mentioned
problems, as far as we know, still wait for their solution. In this
context, it seems to us that the study of one-dimensional
variants of the Timoshenko system will help get a better
insight into the nature of nonlinearity inherent in these models
and will make it easier to proceed to the investigation of two-
dimensional cases.

If fromthe system of Timoshenko equations for a shell given
in [6], p. 42, we discard the variables t and y and assume

PROBLEM FORMULATION

ky =ky =0, then we obtain the one-dimensional system of
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equations which characterizes the static state of the plate
under the action of axially symmetric load. It has the form

N'=0,
Q' +(Nw) + f =0, @
M'-Q =0,
where
N: Ehz(u/_l_lwrZ],
1-v 2
Eh

=k —(w+W), 2
Q=Kky 2(1+v)("’ ) @
M=Dy".

Here u=u(x), w=w(x), w=w(x) are the functions we
want to define, f = f(x) is given function, Xe[O,l], v,E,

h,D and k§ are the given positive constants, and

3
p-—" _ 0g<yv<0s.
12(1—v?)
Note that system (1) can also be obtained fromthe system of
Timoshenko equations for a plate presented in [1], p. 24.
Using (2) together with the formula for D, (1) can be
rewritten as a system

" 1 12 ' _ 2 Eh '
u +2(w ) =0, K 2(1+V)(W w)
+ Eh2 (u’+1w’2jw’ +f =0, 3)
1-v 2
L Y
6(1—v) ° '

Suppose that the following boundary conditions are fulfilled

u(0)=u@® =0, w(0)=w(@)=0, y'(0)=y'()=0. 4
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I1l. REDUCTION OF THE PROBLEM

Using the first and the third equation from (3) and taking
into account the respective boundary conditions from (4), the
functions u(x) and w(x) can be expressed through the

function w(x) as follows

1
u() = [ 6,0 Hw?(E)de,
0

1 ®)
v(9) = [ 6, (xHW(EE,
0
where
l(x—1), X>E&,
G,(x &) =12
lx x<§&
5% ,
®)
- \/i_ch\/g(x—l)ch\/gf, x> &,
G, (x.&)= S'L_"
(o2
—Sh\/;ch\/gxch\/g(é—l), X<£,
o= 80-v)ks

h2

Applying (5), and (6), from the second equation of system
(3) we obtain the integro-differential equation with respect
to w(x)

Eh
21+v)

S TPPRCR Wt
(ko o W) d.f}w x)

3(1-v)Ek?

—W(Sh\/g(x—l) j choéaw ()de ()

1
+shox[chvo (£ - (§)d§j+ f(x) =0,
which we complement with the corresponding boundary
condition
w(0) =w(1) =0. ®)

Thus problem (3), (4) reduces to problem (7), (8) for the
function w(x) . After solving the latter problem, we construct

the functions u(x) and y(x) by explicit formulas of form (5).

68

Now let us consider the question of approximate solution of
problem (7), (8).

IV. ASSUMPTIONS
Assume that foreach i=1,2,... there exists an integral

1
f, =4j f (x)sinizx dx
0

and the inequality

, 1=12,..., 9)

[0}
|fi|Si_m

is fulfilled with @ and m being some positive constants.

Suppose there exists a solution of problem (7), (8)
representable as a series

W, (X) = ZWi sinizx (10)
i=1
the coefficients of which satisfy the systemof equations
. 2(1— V) =y 2
) gy 2w
el (11)
ki  h*(iz)
4,2
_2=vD ¢ o =12,
Ehirz

Note that the i-th equation of system (11) is a result of the
substitution of (10) into (7) followed by the multiplication of
the obtained equation by sinizx and its integration over x
fromOto 1and also using the formulas

i # ],

1 0,

Isini;zxsin jaxdx=<1 . .

0 s 1= Ji
2

ax

Jeax sinbxdx = 2e > (asinbx —bcosbx), (12)
a“+b
ax
_[eax cosbxdx = ———-(acosbx +bsinbx).
a“+b

V. ALGORITHM

Let us write an approximate solution of problem (7), (8) in the
form
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W, (X) = ani siniznx, (13)

i=1

where the coefficients W,; are found by the Galerkin method

fromthe system of nonlinear equations

W _A-v) +Z(]7ZW)
7+6(1 v) = (14
2
ke h2(iz)’
Mf_o i=12,...,n
Ehirz

which is obtained by means of formulas (12) and is a system of
nonlinear equations with respect to i7ZWni yi=12,...,n

System (14) is solved using the Jacobi nonlinear iteration
process [4]

2(1-v) . 2
1 6d-v) +(I7Z\Nni,k+1)

+7
ke  h%(iz)

IﬂWni,kJrl

+Zn:<j7zwnj k)2 _M fi =0,

(15)
i=1 ' Ehlﬂ'
J#i
k=01..., 1=12,...,n
Here W,; ., is the (K +1) -th iteration approximation of W,; ,

=01 k=01,...
To realize iteration (15), we have to solve a cubic equation
with respect to izw,; ,, at the (k+1)-th iteration step for

each i. Using Cardano’s formula [3] this problem can be taken
off by writing izwy; ., in explicit form. It is pertinent to recall

that for the incomplete cubic equation

v +Ry+5=0 (16)
the a priori real root is equal to
1 1
113 ENE)
2 3)2 2 32
y= _§+ S_+R_ _ § S_+R (]_7)
2 4 27 2 4 27

Let us write (15) in form (16) as follows

(i7z\Nni’k+l)3+ri(i7zVVni’k+1)+ Si :0, | ::LZ...,I’], (18)
where
2(1-v) :
(=
T CYARY) '¢i
ke h*(iz) (19)
2
S, :—2(1;_‘/) f..
Ehirz

In view of (17), for the solution of equation (18) we can write

iﬁWni,k+1:Gi,1_O'i,2v k=0,1,, i=l,2,...,n, (20)
where
1
13
2 3 \2
S: S° T
Cip = <_1)p5|+(7|+§J . p=12. (21)

The solution algorithm of problem (7), (8) under consi-
deration should be understood as the counting carried out by
formula (20). Having  wy;,, i=12.,n, we construct the

approximate value of the function w(x)

W SInizx . (22

Wh k () = z
i=1

VI. DEFINING THE APPROXIMATION ERROR OF THE
FUNCTION w

Let us compare the approximate solution (22) with the n-th
truncation of the exact solution (10)

paW(X) = Zn:wi sinizx . (23)

i=1

This means that the approximation error of the function
w(x) is defined as a difference

PaW(X) = W i (X) (24)

which we write as a sum
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an(X) —Wh k (X) = AWn (X) + AWn,k (X) ' (25)

where Aw,(x) is the Galerkin method error and Aw, , (x) the

Jacobi iteration error which are respectively equal to

AWn (X) = an(X)_Wn(X) )
(26)
AWn,k(x) =W, (X) _Wn,k (X) .
We set the task of estimating the L,(0,1)-norm of
PLW(X) =W, (X) . For this we have to estimate the errors of

the Galerkin method and the Jacobi iteration.

VIl. GALERKIN METHOD ERROR
Let us expand Aw,(x) into a series. Taking (26), (23) and
(13) into account we write

AW, (X) = D AW,;sinizx, @7
i=1
where
AWy =W =Wy, 1=12,.,n (28)
(27) implies
1
| n
H d—l AW, (X) - (lz(iﬁ)z' AW JZ , 1=01. (29)
o Loy \2ia
We will come back to (29) later, while now we denote
. 1S, o
Yin = '”{(24)% +E{Z(J”Wj)
- (30)
+ (—l)'”z(jﬂwn,-)zﬂ,
j=1
gn = Iﬂ- Z(Jﬂwj)zv
e (31)
v, :%iHZ(j;z)z(wj + Wy ) AW,
j=1
-1
a = 2(1—1/){% + M} ,
ke h°(iz) 32)
3 2(1-v?)

P Ehirz

Let us rewrite (11) and (14) as
(a0 + 720+ &)W = i
and
(10 = 720) Wi = B i .

By virtue of (30) and (31) we have y,, =V, and therefore

(7/1n +V, +‘9n)Wi zﬂi 1:i
and
(7/1n _vn)wni :ﬁi fi'

Subtracting the last two equalities from each other and taking
(28) into account, we obtain the equation

V1AW + Vo (W + W) +£,W =0
which we multiply by izAw,; and sumover i=12,...,n.Using

(30), (31) and the inequality

n
ZVH(WI +Wni) |7Z'AWm >0
i=1

following from (31), we see that

3 on i) < 32w | (i)
i=1 i=1

i=n+1

By the Cauchy-Schwarz inequality, we therefore have

L 1
4 . 2 E n 1 . ) E 0 . ,
[;ai(lﬂﬁwni) ] S(Z;('”Wi) J Z('”Wi) . (39)

i=1 “%i i=n+1

Let us estimate the right-hand side of inequality (33). We
introduce into consideration the values

c - 1 (w@d-v?) i
2a-v)| k,Eh )
C :3 M 2
? 7°Eh?

and, keeping in mind (32), rewrite (11) as

(34)
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- 2 - 2
il o+ (jaw;) J—,Bifi =0. @) = n
{ > Cimny)? = - (),
] i

In the sequel we will frequently use relations (32), (9), (34) ] )
and the integral test for convergence of series without  We firstobtain
declaring each time that we have done so. Let n>1.

n n n
. . 2 .
Lemma 1. The estimate Z[ai + (JMNj)ZJ('”Wi) < Z'”ﬁi |fiWi|
= = il
: 1 1 1
>wi < {1+ (1— > 3ﬂ and then
= 2m+3 n2™
1 @, 2
1 1 ]2 iw )| <1 Lsr)
+Cz|:1+ 2m+5(1— n2m+5]i|} {;( 1) J 4iZ:1:ai (ﬂl |)
n n
1 1
is valid. £c1[l+j iz dx]“{“f—xzw dX]
1 1

Proof. We multiply equation (35) by _iwi and sum the
iz

. . h btain (37). [
resulting equality over i=12,...,n. By virtue of the fact that whence we obtain (37)

o0 n H
Z(jﬂWj)z > ﬁzzwjg’ We write Lemma 3. The relation
j=1

5 1
Z(mwi) s(clm

j=1
n 2 9 n 2 2 n 1
ZaiWi + (ZWI J SZ;ﬂJleJ 1 (38)
i=1 i=1

i=1

1 2
+C)p——m——=
_ N 2 (2m+3)n2™3
Hence we have the inequalities

5 takes place.

n n f 2

S| <L $L(gh — _ .

— YT 42 ~ g Yir Proof. Multiply equation (35) by izw; and sumthe obtained

. Ny Ny expression over i=n+1n+2,... . Letus apply
S? 01{1+J.X2m dXJ-’-CZ{l-’-JW dX] )
1 1 0 0

i) = 3 (jw; )2
j=1 j=n+1

which bring us to (36).

Lemma 2. The inequality The result will be as follows

Zn:(iﬂwi)zﬁ{cl{br 1 (1 LH i[‘lﬁ i(jﬂwj)zJ(iﬂWi)zé iizzﬂi|fiwi|.

i-1 2m+1 B n2m+l i=n+1 j=n+1 i=n+1
1 @37
2
ro,|1+ 1 1- 1 Therefore we get
2m+3 I,]2m+3
2
i SlimP| <13 gty
is fulfilled. _ [ vy ~\Wili
i=n+l i=n+1 1
Proof. Multiply equation (35) by izw; and sumthe resulting < T(Ol 1 +c, 1 jdx
- 2m+2 2m+4 !
relation over i=12,....n. LT X x M

Since
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which leads to (38). [

Using the notation from (34) and (32), we introduce into
consideration the value

P N Y P O
0‘1\/5 1 om+1 r.|2m+1

1
1 1
ol g gl

}2
1 1
+] ¢l 1+ 1-——
|: 1( 2m+3( n2m+3j

(39)

N—

which is uniformly bounded both below and above with
respect to n.

From (29), (33), (32) and (36)-(39) it follows that the
estimate

ol

S T( 2mil
Loy F 2m+2Dn
1 (40)

dl
H @Awn ()

m+o)n

is fulfilled for the error of the Galerkin method.

Note that in [2] and [5] the authors considered the
convergence of the Galerkin method, but not its accuracy, for
both the static and the dynamic one-dimensional Timoshenko
system.

VIII. JACOBI ITERATION ERROR

Taking (26), (13) and (22) into account, we represent
AW,  (X) as a series

n

AW, (X) =D~ AW sinizx (41)
i=1

where

Awni,k :Wni _Wni,k y i=l,2,,n (42)

Series (41) implies the formula

1
d' I v2l a2 |2
— AW, (X) = EZ(m) AWy |, 1=01, (43)
o Loy \7 i
to be used later.
Let us represent system (20) as follows
172Wni 11 = 95 (UWeg i, 272Wi g 5oy MW ) (44)

and consider the Jacobi matrix
n
a(Jﬂan,k) ij=

(in this paper this is the second notation connected with the
name of C.Jacobi, 1804-1851).

By virtue of (19)-(21) and (44) the diagonal terms of the
matrix J are equal to zero, while for the nondiagonal terms we
have

1
op, 1. s rP)2(1 1
.—'=—J72an,kri2 s < 2 |
8(]72anyk) 27 4 27 Gi,l O'i’2

If in this equality we use the relations

_ 3 3 _
O0i10i2 =+ Oi2~0j1=F5,

(45)

which follow from (21), then we get

2 -1
o, 2. I
_¢=—J7Z\Nnjyksi Uf1+(—lj +Uii12 .
O(jgix) 3 3
Apply to the latter equality the estimate
)\
O'i‘?l+0'i111222(§|j y

which is obtained from the first relation in (45) and also use
(19). We derive the estimate
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6qu 4(1 1% )|f|j7Z"ank‘
a(JﬂWnJ k) Ehiz Y
’2 (46)
2(1 V) . 2
X W (JﬂWn,-,k)
ki h’z?

Let us use the vector and matrixnorms equal respectively to

Z| IJ| for v=

It is required that for an arbitrary set of values W,

Z|v | and  max

l<J<I‘1

,and M = ( 'J)n,j:I

j=L12,...,n, the elements of the matrix J satisfy the
condition max z _m|< <q<l1.
1<j<nyg a(Jﬁan k)

For this, as follows from (46) and the properties of the
function

g(¢) = 0< &<, a=oconst >0,

&
(a+&?)*’

it suffices that

3 3 1+v 1 6(1- v)
8EhZ V2 y1—v k2 h2rz?
. |f| 47)
xz%ﬁq<1, j=12,...,n
; |

Then, according to the map compression principle, system
(14) has a unique solution w, i=12,...,n, the iteration

process (20) converges, klim Wik =Wy, i =12,...,n, with the
—>0

rate defined by the inequality

n
Wnl_Wni,k| 1q Z| nil — ni,0|: k:O,l,....
i=1

From this, (42) and (43) we obtain the estimate for the Jacobi
iteration error

n
Z | ni1 _Wni,0|’
i=1

”_
L2(0,2) V21-
k=041,....

(48)
=01,

At the end of this section, condition (47) is replaced by the

73

condition which is simpler to verify but is a stricter one. For
this we apply inequality (9), the integral test for convergence
of series and ignore the fact that i= j when carrying out

summation in (47). Eventually we obtain

3

3w [31+v (1 61-v))? 1
2 =+ 2-—|<q<1. (49)
8mehz V2 J1-y {ké hzﬂ'z] [ nmj !

IX. ESTIMATION OF THE APPROXIMATION ERROR OF THE
FUNCTION w

Let us estimate error (24). By (25) we have

|
H%(mw(x)—wn,k(xq

L>(0,1)
|

q'
de Aw, (X) + | AW, i (X)

L,(01) L,(01)
and therefore the application of (40) and (48) gives the
inequality

L

ﬂ_l—l

<

L(0.1)

T

f

G )

d
H dj(DnW(X) - Wy ()
(m+)n2™ " (2m + 3)n?m*3
Ik

X(q

+_—
\/El_q i=1
1=01, k=01,....

(50)

n

| | Wni,l - Wni,0|l

The obtained result can be summarized as follows.

Theorem 1. Let n>1 and q be some numbers from the
interval (0,1) . Assume that the conditions of Subsection IV

and restriction (47) or (49) are fulfilled. Then the approximation
error of the function w(x) is estimated by inequality (50),

where the constants ¢, and c, are calculated by formulas (34),

while the coefficient 7 defined by (39) is uniformly bounded
both below and above.

X. APPROXIMATION OF THE FUNCTIONS U AND

Let us turn to formulas (5). Using p,w(x) and w,(X),we

construct n -th truncation of the functions u(x) and w(x)
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1 12
PaU(0) = [ GL (X, E)(PW(&)) e,
0
1
P (X) = [ G, (x, E)(PyW(&)) dE
0
and the approximation of the same functions
1
Un () = [ Gy (X, O ()dE,
0

1
Vo (09 =[G, (6 )i (£)de,
0

(1)

(52)

By analogy with (24), we define the approximation errors of
the functions u(x) and w(x) through the differences

PU(X) — Up(X) and  pyw(X)—w,(X) and estimate the
L,(0,1) —-normof either of them. From (51) and (52) we obtain

l ’
an(X) —Upk (X) = IGu (X,f) |:((pnw(ég)) jz
0
~(wp ()F e

and

(33)

1
Py (9 =i () = [ G, (O PaW(E) Wy () A (54)
0

Xl. ESTIMATION OF THE APPROXIMATION ERRORS OF THE

FUNCTIONS u AND 1
From (53) and (6) we get

X 2
(PO~ U (9P —%{(x—l)z[ | H(f)déJ
0

X 1 1 2
+2x(x=D[H(&)d¢ | H(r:)de:+x2[ | H(;)dr:] }
0 X X

where

HE = (P ) ~,)"

Therefore

1 /
J M@ = (P09~ (0]
0

(ol

H (Paw(x))

[Pt —un ()

2 (1 2
(pnu(x>—un,k(x))2s[x—§j [j H(&) déJ- (55)
0

1
Let us estimate I |H(&)|dé . Since
0

Wy i (€) = Paw(&) + (W (£) — Paw(E) )

we write

L»(0,1) (56)

] (prw0 ~ w0

Lz(o,n) '

L>(0,1)

Note that by virtue of (23) and (37)

<Ll 1+L[1_ 1 )
Lon 2| 2m+1 p2m

1 1
+Cz|:1+ 2m+3(1_nZT+3\J:| } .

(57)

NI

Now, in view of (55)—(57) and (50) we have

L,(0,1)

N

[
1 1 4
+Cyl 1+ 2m+3(1_ n2m+3)j:|}

1
2
X7 = am T 2 2me3
@m+n°™  (2m+3)n°™

n 2-1
+%qqu i|Wni,1_Wni,0|:| '

(58)

Further, (54) and (6) imply
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(P ()~ prni (0 = \/—[ch\/_ o (x-1) 1

Nz )
sh\/_( Y9 sh2Jo +sh \/_] (61)

x[eh Vo & ( PaW(£) — Wy (£)) 0
0 . ) By (59) and (50) we have
+oh Vox [oh Vo (6 -1) (pwl@)- wny () a5 |

|| pnl//(x) Wk (X)"Lz(O,l) < C0|:T [m

Therefore
C, 2 g gt &,
! —_ ——— YW =W, (62)
[Py () =k @), 1y < Col(PaW(0 ~Woi (0)| . (59) (2m+3)n2m+3J NEErDS [ ""Oq
L,(0,2) L, (0.1) i=1
k=01....
where
The obtained results is formulated as follows.
1 2 Theorem 2. Assume the conditions of Theorem 1 to be
Co = j F (x)dx (60) , o :
fulfilled. Then the approximation errors of the functions u(x)

and w(x) are estimated by inequalities (58) and (62),
and respectively, where the coefficients cy,c, and c, defined by
(61) and (34) do not depend on n, while the coefficient 7,

given by (39), is uniformly bounded with respect to n both
F(x )_ J_ ch’Jo (x— 1)jch Jo&de below and above.
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Substituting this expression into (60), once more performing
integration and applying in particular the formula

I xshxdx = xchx —shx,

we find
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