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Abstract—The boundary value problem for a system of nonlinear 

ordinary differential equations is considered for the functions  wu,  

and   which  describe the static behavior of a plate. The functions 

u  and   are expressed explicitly through the function w  for which 

a nonlinear integro-differential equation with a boundary condition is 

written. For the approximate solution of the problem for w  we 

apply the algorithm that includes the Galerkin method and the 

nonlinear Jacobi iteration. The error of the obtained value of w  is 

estimated. This value is used for constructing approximations for the 

functions u  and   and the respective errors are estimated. 

 

Keywords—Error estimate, Jacobi iteration process, nonlinear 

Timoshenko system, numerical algorithm.  

I. INTRODUCTION 

HE nonlinear system of Timoshenko plate equations is 

important from the theoretical and applied standpoints.  I. 

Vorovich [7] attributed the topic of the solvability of the 

system of Timoshenko equations and construction for it of 

approximate algorithms to the range of unsolved problems of 

the mathematical theory of plates and shells. After the 

publication of the monograph [7], the above-mentioned 

problems, as far as we know, still wait for their solution.  In this 

context, it seems to us that the study of one-dimensional 

variants of the Timoshenko system will help get a better 

insight into the nature of nonlinearity inherent in these models 

and will make it easier to proceed to the investigation of two-

dimensional cases.  

II. PROBLEM FORMULATION 

If from the system of Timoshenko equations for a shell given 

in [6], р. 42, we discard the variables t  and  y  and assume 

0 yx kk , then we obtain the one-dimensional system of 
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equations which characterizes the static state of the plate 

under the action of axially symmetric load. It has the form  
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Here ),(xuu   )(xww  , )(x   are the functions we 

want to define, )(xff   is given function,  1,0x , ,,E  

Dh,  and 
2
0k  are the given positive constants,  and 
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Note that system (1) can also be obtained from the system of 

Timoshenko equations for a plate presented in [1], p. 24.  

Using (2) together with the formula for D,  (1) can  be 

rewritten as a system 
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Suppose that the following boundary conditions are fulfilled  
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III. REDUCTION OF THE PROBLEM 

Using the first and the third equation from (3) and taking 

into account the respective boundary conditions from (4), the 

functions )(xu  and )(x  can be expressed through the 

function  )(xw  as follows 
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Applying (5), and (6), from the second equation of system 

(3) we obtain the integro-differential equation with respect 

to )(xw  
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which we complement with the corresponding boundary 

condition 
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Thus problem (3), (4) reduces to problem (7), (8) for the 

function )(xw . After solving the latter problem, we construct 

the functions )(xu  and )(x  by explicit formulas of form (5). 

Now let us consider the question of approximate solution of 

problem (7), (8).  

IV. ASSUMPTIONS 

Assume that for each ,2,1i  there exists an integral 
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and the inequality 
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is fulfilled with   and m being some positive constants. 

Suppose there exists a solution of problem (7), (8) 

representable as a series 
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the coefficients of which satisfy the system of equations  
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Note that the i-th equation of system (11) is a result of the 

substitution of (10) into (7) followed by the multiplication of 

the obtained equation by xisin  and its integration over x  

from 0 to 1 and also using the formulas  
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V. ALGORITHM 

Let us write an approximate solution of problem (7), (8) in the 

form 
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where the coefficients 
niw

 
are found by the Galerkin method 

from the system of nonlinear equations  
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which is obtained by means of formulas (12) and is a system of 

nonlinear equations with respect to ,niwi .,,2,1 ni   

 

System (14) is solved using the Jacobi nonlinear iteration 

process [4] 
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Here lkniw ,  is the )( lk  -th iteration approximation of niw , 

,1,0l   ,....1,0k
 

To realize iteration (15), we have to solve a cubic equation 

with respect to 1, kniwi  at the (k+1)-th iteration step for 

each i. Using Cardano’s formula [3] this problem can be taken 

off  by writing 1, kniwi  in explicit form. It  is  pertinent to recall 

that for the incomplete cubic equation 
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the a priori real root is equal to 
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Let us write (15) in form (16) as follows 

 

    ,,2,1,01,
3

1, niswirwi ikniikni         (18) 

 

where  

 

 

 

.
)1(2

,
)1(61

)1(2

2

1

2

,

222

0

ii

n

ij
j

knji

f
Ehi

s

wj

ihk

r






















 




 (19) 

 

In view of (17), for the solution of equation (18) we can write 
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The solution algorithm of problem (7), (8) under consi-

deration should be understood as the counting carried out by 

formula (20). Having  ,,kniw  ,,..,2,1 ni   we construct the 

approximate value of the function )(xw    
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VI. DEFINING THE APPROXIMATION ERROR OF THE 

FUNCTION w  

Let us compare the approximate solution (22) with the n-th 

truncation of the exact solution (10) 
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This means that the approximation error of the function 

)(xw  is defined as a difference 
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where )(xwn  is the Galerkin method error and )(, xw kn  the 

Jacobi iteration error which are respectively equal to 
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We set the task of estimating the )1,0(2L –norm of 

)()( , xwxwp knn  . For this we have to estimate the errors of 

the Galerkin method and the Jacobi iteration. 

 

VII. GALERKIN METHOD ERROR 

Let us expand )(xwn  into a series. Taking (26), (23) and 

(13) into account we write 
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We will come back to (29) later, while now we denote   

 

,)()1(

)(
2

1
)2(

1

21

1

2









































n

j

nj
l

n

j

jinl

wj

wjli





                 (30) 

  ,)(
2

1

,)(

1

2

1

2















n

j

njnjjn

nj

jn

wwwji

wji





                 (31) 

.
)1(2

,
)(

)1(61
)1(2

2

1

222

0











Ehi

ihk

i

i











 




                       (32) 

 

Let us rewrite (11) and (14) as 
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Subtracting the last two equalities from each other and taking 
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By the Cauchy-Schwarz inequality, we therefore have 
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Let us estimate the right-hand side of inequality (33). We 

introduce into consideration the values  
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and, keeping in mind (32), rewrite (11) as 
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In the sequel we will frequently use relations (32), (9), (34) 

and the integral test for convergence of series without 
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Proof. We multiply equation (35) by iw
i

1
 and sum the 

resulting equality over .,,2,1 ni   By virtue of the fact that 

,)(
1 1

222 


 


j

n

j

jj wwj     we write 

 

.
1

1 1

2

1

222 
 

















n

i

n

i

iii

n

i

iii wf
i

ww 


  

 

Hence we have the inequalities  
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which bring us to (36).  

 

Lemma 2. The inequality 
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is fulfilled. 

Proof. Multiply equation (35) by iwi  and sum the resulting 

relation over .,,2,1 ni 
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whence we obtain (37).  

Lemma 3. The relation 
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takes place.  

Proof. Multiply equation (35) by iwi  and sum the obtained 

expression over ,2,1  nni .  Let us apply 
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The result will be as follows  
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which leads to (38).  

Using the notation from (34) and (32), we introduce into 
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which is uniformly bounded both below and above with 

respect to n. 

     From (29), (33), (32) and (36)–(39) it follows that the 

estimate  
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is fulfilled for the error of the Galerkin method.  

Note that in [2] and [5] the authors considered the 

convergence of the Galerkin method, but not its accuracy, for 

both the static and the dynamic one-dimensional Timoshenko 

system. 

 

VIII. JACOBI ITERATION ERROR 

Taking (26), (13) and (22) into account, we represent 
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to be used later. 

Let us represent system (20) as follows 
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(in this paper this is the second notation connected with the 

name of  C. Jacobi, 1804–1851). 

By virtue of  (19)–(21) and (44) the diagonal terms of the 

matrix J  are equal to zero, while for the nondiagonal terms we 

have  
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If in this equality we use the relations  
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which follow from (21), then we get  
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Apply to the latter equality the estimate 
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which is obtained from the first relation in  (45) and also use 

(19). We derive the estimate 
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Let us use the vector and matrix norms equal respectively to 
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For this, as follows from (46) and the properties of the 
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Then, according to the map compression principle,  system 

(14) has a unique solution ,,,2,1, niwni   the iteration 

process (20) converges, nikni
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From this, (42) and (43) we obtain the estimate for the Jacobi 

iteration error 
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At the end of this section, condition (47) is replaced by the 

condition which is simpler to verify but is a stricter one. For 

this we apply inequality (9), the integral test for convergence 

of series and ignore the fact that ji   when carrying out 

summation in (47).  Eventually we obtain  
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IX. ESTIMATION OF THE APPROXIMATION ERROR OF THE 

FUNCTION w  

     Let us estimate error (24). By (25) we have 
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and therefore the application of (40) and (48) gives the 

inequality 
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The obtained result can be summarized as follows.         

 

Theorem 1. Let 1n  and q  be some numbers from the 

interval )1,0( . Assume that the conditions of Subsection IV 

and restriction (47) or (49) are fulfilled. Then the approximation 

error of the function )(xw  is estimated by inequality (50), 

where the constants 1c  and 2c  are calculated by formulas (34), 

while the coefficient   defined by (39) is uniformly bounded 

both below and above.  

 

X. APPROXIMATION OF THE FUNCTIONS u  AND   

Let us turn to formulas (5). Using )(xwpn  and )(, xw kn , we 

construct n -th truncation of the functions )(xu and )(x  
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By analogy with (24), we define the approximation errors of 
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XI. ESTIMATION OF THE APPROXIMATION  ERRORS OF THE 

FUNCTIONS u  AND   

From (53) and (6) we get 
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Note that by virtue of (23) and (37) 
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Now, in view of (55)–(57) and (50) we have 
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Further, (54) and (6) imply 
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Using the formula  
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and after calculating the integrals we get 
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Substituting this expression into (60), once more performing 

integration  and applying in particular the formula  

 

  shxxchxxshxdx , 

 

we find 
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By (59) and (50) we have 
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  (62) 

 

The obtained results is formulated as  follows.  

 

Theorem 2. Assume the conditions of  Theorem 1 to be   

fulfilled. Then the approximation errors of the functions )(xu  

and )(x  are estimated by inequalities (58) and (62), 

respectively, where the coefficients 10,cc  and 2c  defined by 

(61) and (34) do not depend on  n, while the coefficient  , 

given by  (39), is uniformly bounded with respect to  n both 

below and above. 
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