
 

 

  
Abstract— In this work, probability of collision in Soft Input 

Decryption has been analyzed and calculated. Collisions of 
cryptographic check values cause wrong verification results. 
Therefore, it is important to find an analytical form of a probability 
of collisions, which can be used for estimation of an efficiency of 
Soft Input Decryption. It is known, that shorter cryptographic check 
values cause often collisions. For that reason, the number of 
collisions for cryptographic check values has been tested and 
compared with the theoretical results. 
 

Keywords—Collisions, Probability of Collisions, Probability of a 
Match, Soft Input Decryption.  

I. INTRODUCTION 

HANNEL coding is a constitutional part of 
communication systems, which uses redundant 

information for the recognition or correction of errors that 
occur during the data transfer over a noisy channel. 
Cryptography is increasingly used in modern communication 
systems to provide secure information transfer, i.e. to protect 
against eavesdropping or manipulation of transmitted 
information, or masquerading of data origin.  

The cooperation between channel coding and cryptography 
has been researched in [1], [2] and [3]: using channel 
decoding for the improvement of decryption results and, vice 
versa, using cryptography for the improvement of channel 
decoding. This concept is called Joint Channel Coding and 
Cryptography.  

A message with a cryptographic check value is transmitted 
over a noisy channel using channel coding and decoding. The 
decryption of the cryptographic check value is very fragile, 
because all bits of the message and the cryptographic check 
value have to be correct. In case that one bit or more of the 
input of decryption is wrong, about 50 % of decrypted bits are 
false, and the verification of cryptographic check value fails. 
This problem can be solved using the method of correction 
which is studied in this work and called Soft Input 
Decryption: if the decoder is not able to reconstruct the 

 
Manuscript received February 9, 2007; Revised received July 11,

2007.
Nataša Živić is with the Institute for Data Communications Systems, 

Electrical Engineering and Informatics Department, University of Siegen,  
Siegen, 57076, Germany (e-mail: natasa.zivic@uni-siegen.de). 

Christoph Ruland is the manager of the Institute for Data Communications 
Systems and a professor at the Electrical Engineering and Informatics 
Department, University of Siegen,  Siegen, 57076, Germany (e-mail: 
christoph.ruland@uni-siegen.de). 

 

original message and cryptographic check value because of a 
noisy channel or inefficiency of the channel decoding 
algorithm, it is possible to correct the message with the 
cryptographic check value using side information of the 
channel decoder in form of so called L-values. 

Channel decoding can be improved using a message with 
cryptographic check value which has been corrected by Soft 
Input Decryption. This method is studied in this work as well 
and it uses corrected L-values as feedback information to the 
channel decoder for improved decoding of those bits which 
have not been yet corrected. The feedback method is iterative, 
because L-values corrected in one round are used for the 
correction of bits in the next iteration.  

Collisions of cryptographic check values cause wrong 
verification results. The probability of collisions has been 
calculated in this paper.  

II. CRYPTOGRAPHIC MECHANISMS OF DATA INTEGRITY AND 

DATA ORIGIN AUTHENTICATION 

Data integrity is the property that data have not been altered 
or destroyed in an unauthorized manner [4, 5]. As data can be 
changed during the transfer or storing phase, it is important to 
check that no modification happened until they were received.  

Data origin authentication is the corroboration that the 
source of data received is as claimed [5, 6]. It is the 
cryptographic service, which proves the identity of the data 
origin, i.e. that data were indeed sent by the entity which is 
assumed to be the originator.  

Hash values, MAC/H-MACs and digital signatures are 
considered as redundancy values in this work, because they 
have different lengths which influence the coding gain, code 
rate and probability of collisions. 

A. Hash Functions 
A hash function is a one-way function which maps strings 

of bits of variable length to fix-length strings of bits, 
satisfying two following properties: 

- for a given output, it is computationally infeasible to find 
an input which maps to this output and 

-  for a given input, it is computationally infeasible to find a 
second input which maps to the same output [7]. 

The same standard defines a hash code as the string of bits 
which is the output of the hash function. 

A collision resistant hash function is defined as a hash 
function satisfying the following property: it is 
computationally infeasible to find any two distinct inputs 
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which map to the same output. Computational feasibility 
depends on the specific security requirements and 
environment [7]. 

Collision resistant hash functions are used for the 
generation of digital signatures.  

The most commonly used lengths of hash value are 160, 
228 and 256 bits. In this case, the collision probability is 
greater than 0.5 after about 280 randomly chosen input 
messages according to the birthday paradox. 

B. Message Authentication Codes (MAC) 
MAC is an application of a symmetric block cipher [4]. 

Examples of used block cipher algorithm are DES [8], 3–DES 
and AES [9]. 

ISO/IEC 9797-1 specifies MAC algorithms that use a secret 
key and an n-bit block cipher to calculate an n-bit MAC. 
These mechanisms can be used as data integrity mechanisms 
to verify the fact that data have not been altered. MAC 
provides only subjective authentication, because identity of 
data origin cannot be proven by a third party (at least two 
parties are able to generate the same MAC) [10]. 

MAC can only be used as a message authentication 
mechanism to provide assurance that a message has been 
originated by an entity in possession of the secret key.  

A MAC algorithm is a function which maps a string D of 
bits and a secret key K to fixed-length strings of bits, 
satisfying the following properties [4]: 

- for any key and any input string the function can be 
computed efficiently 

- for any fixed key, and given no prior knowledge of the 
key, it is computationally infeasible to compute a function 
value on any new input string. 

It should be noted that the birthday paradox applies also on 
MACs. 

Typical length of the MAC is the block length of the block 
cipher, i.e. 64 or 128 bits. Details about the MAC algorithm 
are given in [4]. 

C. Hashed –Message Authentication Codes (H-MAC) 
[11] specifies MAC algorithms that use a secret key and a 

hash function (or its round - function) with an n-bit result to 
calculate an m-bit MAC. These mechanisms can be used as 
data integrity mechanisms to verify that data have not been 
altered in an unauthorized manner. They can also be used as 
message authentication mechanisms to provide assurance that 
a message has been originated by an entity in possession of 
the secret key [11].  

The length of H–MAC is the same as that of underlying 
hash function: 64, 160, 228 or 256 bits, but the length can be 
adjusted as necessary. For example, for hash functions 
RIPEMID–160 and SHA–1 the length of H–MAC is 160 bits. 

Collision resistance of H–MAC is defined as for hash 
function (see chap. II A.).  

An H-MAC algorithm (or hashed cryptographic check 
function) computes a function which maps string D of bits and 
a secret key K to fixed-length strings of bits (H-MAC or 

hashed cryptographic check value), satisfying the following 
properties [11]: 

- for any key and any input string the function can be 
computed efficiently 

- for any fixed key, and given no prior knowledge of the 
key, it is computationally infeasible to compute a function 
value on any new input string. 

Details about the H-MAC algorithm are given in [11].  

D. Digital Signatures 
Digital signatures provide data origin authentication and 

support non-repudiation services. They normally use 
asymmetric cryptography, even if there are solutions for 
symmetric algorithms based digital signatures [12].  

There are two types of digital signatures: 
1.  signatures giving message recovery (Fig. 1) [13] 
2. signatures with appendix (Fig. 2) [14, 15]. 
 

 
 
Signatures giving message recovery can be applied to 

“short” messages, which are extended by a onetime pre-
signature before the execution of the signature operation (see 
Fig. 1). The decryptor recovers the message from the 
signature, if the signature is proved to be correct. “Short 
message” means, that the length of the message plus 

        

a) 

b) 

Fig. 1 Digital Signatures giving message recovery 
(simplified): a) Generation b) Verification 
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redundancy is shorter than the length of the private key used 
in the signature algorithm. If the message does not contain 
enough redundancy for verification, it is added by use of a 
hash function. If the message is too long, then message 
recovery is partial. In this case the message is divided into 
recoverable part (included in the signature) and non-
recoverable part (stored and/or transmitted along with the 
signature) [13].  

In the case of digital signatures with appendix, the message 
has an arbitrary length (Fig. 2). The encryptor generates a 
digital signature over a hash value which has been calculated 
over the message to be signed. The decryptor computes the 
hash value over the received message and verifies the 
signature by using the public key. The result of the signature 
verification is true or false. 

 
In both cases, the verification result is negative if the input 

of the signature verification compared to the output of the 
signer is modified, or the public key and private key do not 
belong to the same key system. Digital signatures and 
messages - as input to the decryptor - have to be delivered 
from the channel decoder free of errors or modifications to 
verify the signature successfully. 

 

III. SOFT INPUT DECRYPTION 

The basic technique which is described and used in this 
work is called Soft Input Decryption. It consists of a decryptor 
which uses soft output of the channel decoder as soft input. 
[1]. 

The cryptographic mechanism which is used by encryptor 
and decryptor generates and verifies cryptographic check 
values (hash values, digital signatures, MACs, H-MACs) 
providing data integrity, data origin authentication and non 

repudiation. 
The algorithm of Soft Input Decryption (Fig. 3) is as 

follows: 
The decryption is successfully completed, if the verification 

of the cryptographic check value is successful, i.e. the output 
is “true”. If the verification is negative, the soft output of the 
channel decoder is analyzed and the bits with the lowest |L|-
values are flipped (XOR “1”), then the decryptor performs the 
verification process and proves the result of the verification 
again. If the verification is again negative, bits with another 
combination of the lowest |L|-values are changed. This 
iterative process will stop when the verification is successful 
or the needed resources are consumed. 

In case that the attempts for correction fail, the number of 
errors is too large as a result of a very noisy channel or an 
attack, so that the resources are not sufficient to try enough 
combinations of flipping bits of low |L|-values. 

It may happen that the attempts for correction of SID block 
succeed, but the corrected cryptographic value is not equal to 
the original one: a collision happens. This case has an 
extremely low probability when cryptographic check values 
are chosen under security aspects. Collision aspects of 
cryptographic check values in Soft Input Decryption are the 
subject of this paper. 

 
Soft Input Decryption is block oriented. The block which is 

taken from sequential input bits to the channel encoder and 
should be corrected by Soft Input Decryption after channel 
decoding is called SID block (Soft Input Decryption block). 
The SID block may have different contents depending on 
cryptographic mechanisms and scenarios [2]. 

IV. COLLISIONS 

Collisions caused by changes of bits of a message and of a 
redundancy check value by Soft Input Decryption (SID) will 
be analyzed and calculated in this paper. 

A redundancy check value RCV is a cryptographic check 
value CCV (digital signature, MAC, H-MAC), if 

        

Fig. 3 Algorithm of the Soft Input Decryption 

        

 
a) 

b) 

Fig. 2 Digital Signatures with appendix (simplified):  

a) Generation b) Verification 
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cryptographic check functions are used or any other 
systematic redundancy value added to a message, for example 
hash value or CRC. The redundancy check value is the result 
of a redundancy check function RCF. 

Note: A hash value has characteristics of a cryptographic 
check function, but the properties are of a redundancy check 
function if the hash value is not combined with any other 
cryptographic mechanism. A hash value itself provides no 
security. 

The problem of collisions is described in Fig. 4. 
 

 
There are following types of collisions: 
Type 1: It may happen that the first verification before Soft 

Input Decryption started is successful, although the originally 
sent message and the message which resulted in the successful 
verification are different. The condition for collision in these 
cases is: 

 

         
trueRCVmessageRCF

messagemessage
==

∧≠
)]')'((

)'[(
               (1) 

 
The collision is caused by modifications during the 

transmission over the channel which could not be corrected by 
the channel decoder. This type of collision is not an 
implication of Soft Input Decryption. For this reason this 
collision will not be the subject of this paper. 

Type 2: It may happen that RCV” is equal to the originally 
sent RCV, and verification is successful, although the 
originally sent message and message” are different. The 
condition for this type of collision is: 

 

trueRCVmessageRCF
RCVRCVmessagemessage

==
∧=∧≠

)]")"((

)"()"[(
           (2) 

 
This type of collision happens by changing bits by Soft 

Input Decryption and is the subject of this chapter. This type 
of collision represents a collision in the cryptographic sense 
defined for hash functions. 

Type 3: It may also happen that RCV” differs from the 
originally sent RCV, and a message” differs from originally 
sent message, but the verification is successful. The condition 
for this type of collision is: 

 

trueRCVmessageRCF
RCVRCVmessagemessage

==
∧≠∧≠

)]")"((

)"()"[(
           (3) 

 

Note: This type of collision does not represent a collision in 
the cryptographic sense defined for hash functions. 

This condition causes wrong results, although the 
verification is successful. Therefore, this event is regarded as 
a collision. This type of collision happens by changing bits by 
Soft Input Decryption and is also the subject of this paper. 

V. THE PROBABILITY OF MATCH 

A match is the event, that the verification is successful: 
 

                      ")"( RCVmessageRCF =                                            (4) 

 
The probability of a match is defined as: 
 

      )]")"([ RCVmessageRCFPPmatch ==                      (5) 

 
in any trial of Soft Input Decryption. 

The correct match Pcorrect is the case that the message and 
redundancy check value are corrected by Soft Input 
Decryption and that no collision happened: 

 

      
trueRCVmessageRCF

messagemessage
==

∧=
)]")"((

)"[(
                (6) 

 
The probability of a match between the message and 

redundancy check value will be calculated under following 
assumptions: 

1. all redundancy check values have the same probability 
of appearance 

2. bits which are changed in Soft Input Decryption are 
randomly distributed over the message and redundancy 
check value. 

*Note: This assumption is true for CRC, but it is not proven 
that it is true for, for example, hash values. 

p(match, i) is the probability that a match happens when i 
bits of j changed bits are in the message part. Because of 
assumption 2., the probability that i bits of j flipped bits are 
located in the message part of length of m is given by 
hypergeometric distribution [10]: 
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For example, if j = 16 and m = n (Fig.53), distribution of i 

is symmetrical around the most likely value i = 8, which 
means that it is most likely that the same number of changed 
bits is located in the message and in the redundancy check 
value, as expected. For m > n the distribution is not 
symmetrical and positions of lowest |L| -values are mostly in 
the message. In the case presented in Fig. 4 with m = 2n, it is 

          

Fig. 4 Description of the problem 
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most likely that 11 positions of the lowest |L| – values are 
placed in a message, i.e. 5 positions are in redundancy check 
value. 

 

 
The probability of a match when i bits with the lowest |L|-

values are in a message part is p(match|i). The probability of a 
match pmatch,j when j bits are flipped, can be calculated as the 
sum of probabilities of matches for each i: 

 

)|()(),(
0 0
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j
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Flipping j chosen bits within the Soft Input Decryption 

algorithm, a set of 2i different messages and a set of 2j-i 

different redundancy check values are obtained. The 
redundancy check function of each of 2i messages might be 
equal to any of 2j-i produced redundancy check values. The 
probability that any of 2j-i redundancy check values match to 
one specific message is: 

                                  n

ij
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=                               (9) 

 
and the opposite probability that no match with a specific 
message occurs is: 
 

                                 matchimatchi pp ,, 1−=                        (10) 

 
After 2j attempts of tests, with i bits in the message part, the 

probability that no match occurs is: 
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So, the probability of a match after 2j attempts with i bits in 

the message part is: 
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When the number of flipped bits is increased from j-1 to j, 

2j-1 tests are performed, because these tests have not been 
performed before. If the additionally flipped bit is in a 

message part, it happens with the probability of
jnm

im
−+

−
. 

Vice versa, if the additionally flipped bit is in a redundancy 
check value part, it happens with the probability of  

jnm
ijn

−+
−− )(

. Finally, the probability of a match after flipping 

up to N bits is given as: 
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Fig. 6 Probability pn (i) when m = 2n (j = 16) 

        

Fig. 5 Probability pn (i) when m = n (j = 16) 
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VI. THE PROBABILITY OF COLLISIONS 

A collision as an implication of Soft Input Decryption 
happens in case 2. (collision type 2) and 3. (collision type 3) 
of Chapter III and can be calculated as: 

 

                          correctmatchcoll PPP −=                         (16) 

 
The correct match (Pcorrect) is one of 2m+n possible matches 

of messages and redundancy check values: 
 

                               nmcorrectP +=
2

1
                              (17) 

 
The collision probability is, using equations (11), (12), (15) 

and (16): 
 

                         correctcoll PBAP −+=                           (18) 

 
where A and B are given by equations (14) and (15), 
respectively. 

VII. COLLISION TESTS 

Collision tests were performed by simulations of Soft Input 
Decryption using short redundancy check values (up to 24 
bits) and messages of various lengths, for N = 8. All 
simulations are programmed in C/C++ programming 
language. For each point of the curves 50 000 tests are 
performed, which is enough for reliability of results [16]. The 
transfer of the SID block is simulated by the use of an AWGN 
channel. The used convolutional encoder has a code rate r = 
1/2 and constraint length m = 2 (Fig. 7). The decoder uses a 
MAP algorithm [17]. 

SHA-1 hash function (160 bits) is used as a redundancy 
check function. Shorter redundancy check values used for 
tests are got by taking right most bits of the hash value. Soft 
Input Decryption tests stopped after the first successful 
verification. After each verification it is checked if the 
verification is correct or a collision happened. So, the number 
of collisions is counted. 

 

 

The results of tests are shown in Fig. 8 in comparison to the 
results of equation (18). 

The results of equation (18) depend mainly on the length of 
the redundancy check value, and they stay almost constant, if 
the length of the message changes (the results change on 7. or 
higher decimal position). Tested collision probability of Soft 
Input Decryption depends also on the length of the 
redundancy check value and has no significant change (on 4. 
or higher decimal place) with the change of message length, 
but it is lower than the collision probability calculated by 
equation (18). The reason that tested collision probability is 
lower than the one of equation (18) is that the equation (18) is 
got assuming random combinations of changed bits. Soft 
Input Decryption uses |L|-values to find the correct message 
and not random combinations of changed bits, so that the 
probability of the correct match is much higher than that in 
equation (17). 

For that reason, the results of equation (18) – theoretic 
results in Fig. 8, can be used as “the worst case”, i.e. an upper 
limit of the collision probability. 

 

 

VIII. CONCLUSION 

This paper analyzes probability of collisions which can 
happen using Soft Input Decryption. Collisions are standard 
problem in cryptography, as they implicate wrong verification 
results. Probability of collisions grows as the length of 
cryptographic check values decrease.  

Computation of probability of collision has been performed 
by subtraction of the probability of match and probability of 
the correct match. Additionally, simulations have been 
performed for comparison of analytical (theoretical) results 
and results of tests. The comparison shows that analytical 
results can be used for estimation of the efficiency of Soft 
Input Decryption, as the upper bound of probability of 
collisions of Soft Input Decryption. 

Fig. 8 Comparison of collision results of tests and 
theoretical results for up to 28 trials 

u

c1

1 2

+

+

c2

Fig. 7 Convolutional encoder r = ½, m = 2 
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