

Abstract— In this work, probability of collision in Soft Input

Decryption has been analyzed and calculated. Collisions of
cryptographic check values cause wrong verification results.
Therefore, it is important to find an analytical form of a probability
of collisions, which can be used for estimation of an efficiency of
Soft Input Decryption. It is known, that shorter cryptographic check
values cause often collisions. For that reason, the number of
collisions for cryptographic check values has been tested and
compared with the theoretical results.

Keywords—Collisions, Probability of Collisions, Probability of a
Match, Soft Input Decryption.

I. INTRODUCTION

HANNEL coding is a constitutional part of
communication systems, which uses redundant

information for the recognition or correction of errors that
occur during the data transfer over a noisy channel.
Cryptography is increasingly used in modern communication
systems to provide secure information transfer, i.e. to protect
against eavesdropping or manipulation of transmitted
information, or masquerading of data origin.

The cooperation between channel coding and cryptography
has been researched in [1], [2] and [3]: using channel
decoding for the improvement of decryption results and, vice
versa, using cryptography for the improvement of channel
decoding. This concept is called Joint Channel Coding and
Cryptography.

A message with a cryptographic check value is transmitted
over a noisy channel using channel coding and decoding. The
decryption of the cryptographic check value is very fragile,
because all bits of the message and the cryptographic check
value have to be correct. In case that one bit or more of the
input of decryption is wrong, about 50 % of decrypted bits are
false, and the verification of cryptographic check value fails.
This problem can be solved using the method of correction
which is studied in this work and called Soft Input
Decryption: if the decoder is not able to reconstruct the

Manuscript received February 9, 2007; Revised received July 11,

2007.
Nataša Živić is with the Institute for Data Communications Systems,

Electrical Engineering and Informatics Department, University of Siegen,
Siegen, 57076, Germany (e-mail: natasa.zivic@uni-siegen.de).

Christoph Ruland is the manager of the Institute for Data Communications
Systems and a professor at the Electrical Engineering and Informatics
Department, University of Siegen, Siegen, 57076, Germany (e-mail:
christoph.ruland@uni-siegen.de).

original message and cryptographic check value because of a
noisy channel or inefficiency of the channel decoding
algorithm, it is possible to correct the message with the
cryptographic check value using side information of the
channel decoder in form of so called L-values.

Channel decoding can be improved using a message with
cryptographic check value which has been corrected by Soft
Input Decryption. This method is studied in this work as well
and it uses corrected L-values as feedback information to the
channel decoder for improved decoding of those bits which
have not been yet corrected. The feedback method is iterative,
because L-values corrected in one round are used for the
correction of bits in the next iteration.

Collisions of cryptographic check values cause wrong
verification results. The probability of collisions has been
calculated in this paper.

II. CRYPTOGRAPHIC MECHANISMS OF DATA INTEGRITY AND

DATA ORIGIN AUTHENTICATION

Data integrity is the property that data have not been altered
or destroyed in an unauthorized manner [4, 5]. As data can be
changed during the transfer or storing phase, it is important to
check that no modification happened until they were received.

Data origin authentication is the corroboration that the
source of data received is as claimed [5, 6]. It is the
cryptographic service, which proves the identity of the data
origin, i.e. that data were indeed sent by the entity which is
assumed to be the originator.

Hash values, MAC/H-MACs and digital signatures are
considered as redundancy values in this work, because they
have different lengths which influence the coding gain, code
rate and probability of collisions.

A. Hash Functions
A hash function is a one-way function which maps strings

of bits of variable length to fix-length strings of bits,
satisfying two following properties:

- for a given output, it is computationally infeasible to find
an input which maps to this output and

- for a given input, it is computationally infeasible to find a
second input which maps to the same output [7].

The same standard defines a hash code as the string of bits
which is the output of the hash function.

A collision resistant hash function is defined as a hash
function satisfying the following property: it is
computationally infeasible to find any two distinct inputs

Probability of collisions in Soft Input
Decryption

Nataša Živić, Christoph Ruland

C

Issue 1, Volume 1, 2007 21

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

which map to the same output. Computational feasibility
depends on the specific security requirements and
environment [7].

Collision resistant hash functions are used for the
generation of digital signatures.

The most commonly used lengths of hash value are 160,
228 and 256 bits. In this case, the collision probability is
greater than 0.5 after about 280 randomly chosen input
messages according to the birthday paradox.

B. Message Authentication Codes (MAC)
MAC is an application of a symmetric block cipher [4].

Examples of used block cipher algorithm are DES [8], 3–DES
and AES [9].

ISO/IEC 9797-1 specifies MAC algorithms that use a secret
key and an n-bit block cipher to calculate an n-bit MAC.
These mechanisms can be used as data integrity mechanisms
to verify the fact that data have not been altered. MAC
provides only subjective authentication, because identity of
data origin cannot be proven by a third party (at least two
parties are able to generate the same MAC) [10].

MAC can only be used as a message authentication
mechanism to provide assurance that a message has been
originated by an entity in possession of the secret key.

A MAC algorithm is a function which maps a string D of
bits and a secret key K to fixed-length strings of bits,
satisfying the following properties [4]:

- for any key and any input string the function can be
computed efficiently

- for any fixed key, and given no prior knowledge of the
key, it is computationally infeasible to compute a function
value on any new input string.

It should be noted that the birthday paradox applies also on
MACs.

Typical length of the MAC is the block length of the block
cipher, i.e. 64 or 128 bits. Details about the MAC algorithm
are given in [4].

C. Hashed –Message Authentication Codes (H-MAC)
[11] specifies MAC algorithms that use a secret key and a

hash function (or its round - function) with an n-bit result to
calculate an m-bit MAC. These mechanisms can be used as
data integrity mechanisms to verify that data have not been
altered in an unauthorized manner. They can also be used as
message authentication mechanisms to provide assurance that
a message has been originated by an entity in possession of
the secret key [11].

The length of H–MAC is the same as that of underlying
hash function: 64, 160, 228 or 256 bits, but the length can be
adjusted as necessary. For example, for hash functions
RIPEMID–160 and SHA–1 the length of H–MAC is 160 bits.

Collision resistance of H–MAC is defined as for hash
function (see chap. II A.).

An H-MAC algorithm (or hashed cryptographic check
function) computes a function which maps string D of bits and
a secret key K to fixed-length strings of bits (H-MAC or

hashed cryptographic check value), satisfying the following
properties [11]:

- for any key and any input string the function can be
computed efficiently

- for any fixed key, and given no prior knowledge of the
key, it is computationally infeasible to compute a function
value on any new input string.

Details about the H-MAC algorithm are given in [11].

D. Digital Signatures
Digital signatures provide data origin authentication and

support non-repudiation services. They normally use
asymmetric cryptography, even if there are solutions for
symmetric algorithms based digital signatures [12].

There are two types of digital signatures:
1. signatures giving message recovery (Fig. 1) [13]
2. signatures with appendix (Fig. 2) [14, 15].

Signatures giving message recovery can be applied to

“short” messages, which are extended by a onetime pre-
signature before the execution of the signature operation (see
Fig. 1). The decryptor recovers the message from the
signature, if the signature is proved to be correct. “Short
message” means, that the length of the message plus

a)

b)

Fig. 1 Digital Signatures giving message recovery
(simplified): a) Generation b) Verification

Issue 1, Volume 1, 2007 22

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

redundancy is shorter than the length of the private key used
in the signature algorithm. If the message does not contain
enough redundancy for verification, it is added by use of a
hash function. If the message is too long, then message
recovery is partial. In this case the message is divided into
recoverable part (included in the signature) and non-
recoverable part (stored and/or transmitted along with the
signature) [13].

In the case of digital signatures with appendix, the message
has an arbitrary length (Fig. 2). The encryptor generates a
digital signature over a hash value which has been calculated
over the message to be signed. The decryptor computes the
hash value over the received message and verifies the
signature by using the public key. The result of the signature
verification is true or false.

In both cases, the verification result is negative if the input

of the signature verification compared to the output of the
signer is modified, or the public key and private key do not
belong to the same key system. Digital signatures and
messages - as input to the decryptor - have to be delivered
from the channel decoder free of errors or modifications to
verify the signature successfully.

III. SOFT INPUT DECRYPTION

The basic technique which is described and used in this
work is called Soft Input Decryption. It consists of a decryptor
which uses soft output of the channel decoder as soft input.
[1].

The cryptographic mechanism which is used by encryptor
and decryptor generates and verifies cryptographic check
values (hash values, digital signatures, MACs, H-MACs)
providing data integrity, data origin authentication and non

repudiation.
The algorithm of Soft Input Decryption (Fig. 3) is as

follows:
The decryption is successfully completed, if the verification

of the cryptographic check value is successful, i.e. the output
is “true”. If the verification is negative, the soft output of the
channel decoder is analyzed and the bits with the lowest |L|-
values are flipped (XOR “1”), then the decryptor performs the
verification process and proves the result of the verification
again. If the verification is again negative, bits with another
combination of the lowest |L|-values are changed. This
iterative process will stop when the verification is successful
or the needed resources are consumed.

In case that the attempts for correction fail, the number of
errors is too large as a result of a very noisy channel or an
attack, so that the resources are not sufficient to try enough
combinations of flipping bits of low |L|-values.

It may happen that the attempts for correction of SID block
succeed, but the corrected cryptographic value is not equal to
the original one: a collision happens. This case has an
extremely low probability when cryptographic check values
are chosen under security aspects. Collision aspects of
cryptographic check values in Soft Input Decryption are the
subject of this paper.

Soft Input Decryption is block oriented. The block which is

taken from sequential input bits to the channel encoder and
should be corrected by Soft Input Decryption after channel
decoding is called SID block (Soft Input Decryption block).
The SID block may have different contents depending on
cryptographic mechanisms and scenarios [2].

IV. COLLISIONS

Collisions caused by changes of bits of a message and of a
redundancy check value by Soft Input Decryption (SID) will
be analyzed and calculated in this paper.

A redundancy check value RCV is a cryptographic check
value CCV (digital signature, MAC, H-MAC), if

Fig. 3 Algorithm of the Soft Input Decryption

a)

b)

Fig. 2 Digital Signatures with appendix (simplified):

a) Generation b) Verification

Issue 1, Volume 1, 2007 23

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

cryptographic check functions are used or any other
systematic redundancy value added to a message, for example
hash value or CRC. The redundancy check value is the result
of a redundancy check function RCF.

Note: A hash value has characteristics of a cryptographic
check function, but the properties are of a redundancy check
function if the hash value is not combined with any other
cryptographic mechanism. A hash value itself provides no
security.

The problem of collisions is described in Fig. 4.

There are following types of collisions:
Type 1: It may happen that the first verification before Soft

Input Decryption started is successful, although the originally
sent message and the message which resulted in the successful
verification are different. The condition for collision in these
cases is:

trueRCVmessageRCF

messagemessage
==

∧≠
)]')'((

)'[(
 (1)

The collision is caused by modifications during the

transmission over the channel which could not be corrected by
the channel decoder. This type of collision is not an
implication of Soft Input Decryption. For this reason this
collision will not be the subject of this paper.

Type 2: It may happen that RCV” is equal to the originally
sent RCV, and verification is successful, although the
originally sent message and message” are different. The
condition for this type of collision is:

trueRCVmessageRCF
RCVRCVmessagemessage

==
∧=∧≠

)]")"((

)"()"[(
 (2)

This type of collision happens by changing bits by Soft

Input Decryption and is the subject of this chapter. This type
of collision represents a collision in the cryptographic sense
defined for hash functions.

Type 3: It may also happen that RCV” differs from the
originally sent RCV, and a message” differs from originally
sent message, but the verification is successful. The condition
for this type of collision is:

trueRCVmessageRCF
RCVRCVmessagemessage

==
∧≠∧≠

)]")"((

)"()"[(
 (3)

Note: This type of collision does not represent a collision in
the cryptographic sense defined for hash functions.

This condition causes wrong results, although the
verification is successful. Therefore, this event is regarded as
a collision. This type of collision happens by changing bits by
Soft Input Decryption and is also the subject of this paper.

V. THE PROBABILITY OF MATCH

A match is the event, that the verification is successful:

 ")"(RCVmessageRCF = (4)

The probability of a match is defined as:

)]")"([RCVmessageRCFPPmatch == (5)

in any trial of Soft Input Decryption.

The correct match Pcorrect is the case that the message and
redundancy check value are corrected by Soft Input
Decryption and that no collision happened:

trueRCVmessageRCF

messagemessage
==

∧=
)]")"((

)"[(
 (6)

The probability of a match between the message and

redundancy check value will be calculated under following
assumptions:

1. all redundancy check values have the same probability
of appearance

2. bits which are changed in Soft Input Decryption are
randomly distributed over the message and redundancy
check value.

*Note: This assumption is true for CRC, but it is not proven
that it is true for, for example, hash values.

p(match, i) is the probability that a match happens when i
bits of j changed bits are in the message part. Because of
assumption 2., the probability that i bits of j flipped bits are
located in the message part of length of m is given by
hypergeometric distribution [10]:

 ji

j
nm

ij
n

i
m

ipm ,...,1,0,

)(=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

= (7)

For example, if j = 16 and m = n (Fig.53), distribution of i

is symmetrical around the most likely value i = 8, which
means that it is most likely that the same number of changed
bits is located in the message and in the redundancy check
value, as expected. For m > n the distribution is not
symmetrical and positions of lowest |L| -values are mostly in
the message. In the case presented in Fig. 4 with m = 2n, it is

Fig. 4 Description of the problem

Issue 1, Volume 1, 2007 24

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

most likely that 11 positions of the lowest |L| – values are
placed in a message, i.e. 5 positions are in redundancy check
value.

The probability of a match when i bits with the lowest |L|-

values are in a message part is p(match|i). The probability of a
match pmatch,j when j bits are flipped, can be calculated as the
sum of probabilities of matches for each i:

)|()(),(
0 0

, ∑ ∑
= =

==
j

i

j

i
mjmatch imatchpipimatchpp (8)

Flipping j chosen bits within the Soft Input Decryption

algorithm, a set of 2i different messages and a set of 2j-i

different redundancy check values are obtained. The
redundancy check function of each of 2i messages might be
equal to any of 2j-i produced redundancy check values. The
probability that any of 2j-i redundancy check values match to
one specific message is:

 n

ij

matchip
2

2
,

−

= (9)

and the opposite probability that no match with a specific
message occurs is:

 matchimatchi pp ,, 1−= (10)

After 2j attempts of tests, with i bits in the message part, the

probability that no match occurs is:

j

j

n

ij

matchipimatchp
2

2
, 2

2
1)()|(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−==

−
 (11)

So, the probability of a match after 2j attempts with i bits in

the message part is:

j

n

ij

imatchp
2

2

2
11)|(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

−

 (12)

When the number of flipped bits is increased from j-1 to j,

2j-1 tests are performed, because these tests have not been
performed before. If the additionally flipped bit is in a

message part, it happens with the probability of
jnm

im
−+

−
.

Vice versa, if the additionally flipped bit is in a redundancy
check value part, it happens with the probability of

jnm
ijn

−+
−−)(

. Finally, the probability of a match after flipping

up to N bits is given as:

 ,BAPmatch += (13)

where

 ∑∑
−

=

−

= ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−+
−−

=

−
1

1

2

1

1

2

2
11

)(j

i
n

ijN

j

i

j
nm

ij
n

i
m

jnm
ijnA (14)

and

∑∑
=

−

=

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−+
−

=

−
N

j

j

i
n

ij
i

j
nm

ij
n

i
m

jnm
imB

1

1

1

2 1

2

2
11 (15)

Fig. 6 Probability pn (i) when m = 2n (j = 16)

Fig. 5 Probability pn (i) when m = n (j = 16)

Issue 1, Volume 1, 2007 25

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

VI. THE PROBABILITY OF COLLISIONS

A collision as an implication of Soft Input Decryption
happens in case 2. (collision type 2) and 3. (collision type 3)
of Chapter III and can be calculated as:

 correctmatchcoll PPP −= (16)

The correct match (Pcorrect) is one of 2m+n possible matches

of messages and redundancy check values:

 nmcorrectP +=
2

1
 (17)

The collision probability is, using equations (11), (12), (15)

and (16):

 correctcoll PBAP −+= (18)

where A and B are given by equations (14) and (15),
respectively.

VII. COLLISION TESTS

Collision tests were performed by simulations of Soft Input
Decryption using short redundancy check values (up to 24
bits) and messages of various lengths, for N = 8. All
simulations are programmed in C/C++ programming
language. For each point of the curves 50 000 tests are
performed, which is enough for reliability of results [16]. The
transfer of the SID block is simulated by the use of an AWGN
channel. The used convolutional encoder has a code rate r =
1/2 and constraint length m = 2 (Fig. 7). The decoder uses a
MAP algorithm [17].

SHA-1 hash function (160 bits) is used as a redundancy
check function. Shorter redundancy check values used for
tests are got by taking right most bits of the hash value. Soft
Input Decryption tests stopped after the first successful
verification. After each verification it is checked if the
verification is correct or a collision happened. So, the number
of collisions is counted.

The results of tests are shown in Fig. 8 in comparison to the
results of equation (18).

The results of equation (18) depend mainly on the length of
the redundancy check value, and they stay almost constant, if
the length of the message changes (the results change on 7. or
higher decimal position). Tested collision probability of Soft
Input Decryption depends also on the length of the
redundancy check value and has no significant change (on 4.
or higher decimal place) with the change of message length,
but it is lower than the collision probability calculated by
equation (18). The reason that tested collision probability is
lower than the one of equation (18) is that the equation (18) is
got assuming random combinations of changed bits. Soft
Input Decryption uses |L|-values to find the correct message
and not random combinations of changed bits, so that the
probability of the correct match is much higher than that in
equation (17).

For that reason, the results of equation (18) – theoretic
results in Fig. 8, can be used as “the worst case”, i.e. an upper
limit of the collision probability.

VIII. CONCLUSION

This paper analyzes probability of collisions which can
happen using Soft Input Decryption. Collisions are standard
problem in cryptography, as they implicate wrong verification
results. Probability of collisions grows as the length of
cryptographic check values decrease.

Computation of probability of collision has been performed
by subtraction of the probability of match and probability of
the correct match. Additionally, simulations have been
performed for comparison of analytical (theoretical) results
and results of tests. The comparison shows that analytical
results can be used for estimation of the efficiency of Soft
Input Decryption, as the upper bound of probability of
collisions of Soft Input Decryption.

Fig. 8 Comparison of collision results of tests and
theoretical results for up to 28 trials

u

c1

1 2

+

+

c2

Fig. 7 Convolutional encoder r = ½, m = 2

Issue 1, Volume 1, 2007 26

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

REFERENCES
[1] N. Živić, C. Ruland, “Soft Input Decryption”, 4thTurbocode Conference,

6th Source and Channel Code Conference, VDE/IEEE, in Plastics,
Munich, April 2006.

[2] N. Živić, C. Ruland: “Channel Coding as a Cryptography Enhancer”,
Advances in Communications, Proceeding in the 11th WSEAS
international conference on Communications (part of the 2007 CSCC
multiconference), Agios Nikolaos, Crete Island, Greece, July 2007.

[3] N. Živić, C. Ruland, “Feedback in Joint Coding and Cryptography”, 7th
International ITG Conference on Source and Channel Coding
VDE/IEEE, Ulm, January 2008.

[4] ISO/IEC 9797-1, Information technology – Security techniques –
Message Authentication Codes (MACs) – Part 1: Mechanisms using a
block cipher, 1999.

[5] ISO/IEC 13888-1, Information technology – Security techniques – Non-
repudiation – Part 1: General, 2004.

[6] ISO/IEC 9798-1, Information technology – Security techniques – Entity
authentication mechanisms – Part 1: General, 1997.

[7] ISO/IEC 10118-1, Information technology – Security techniques – Hash-
functions – Part 1: General, 2000.

[8] ISO/IEC 8372, Modes of operation for 64-bit block cipher algorithm,
1987.

[9] ISO/IEC 18033-3, Information technology – Security techniques –
Encryption algorithms – Part 3: Block ciphers, 2005.

[10] C. Ruland, Informationssicherheit in Datennetzen, Datacom Verlag,
Bergheim, 1993.

[11] ISO/IEC 9797-2, Information technology – Security techniques –
Message Authentication Codes (MACs) – Part 2: Mechanisms using a
hash- function, 2000.

[12] C. Ruland, “Realizing digital signatures with one-way hash function”,
Cryptologia, Vol XVII, Number 3, July 1993.

[13] ISO/IEC 9796-2, Information technology – Security techniques – Digital
signatures giving message recovery – Part 2: Discrete logarithm based
mechanisms, 2006.

[14] ISO/IEC 14888-1, Information technology – Security techniques –
Digital signatures with appendix – Part 1: General, 1998.

[15] ISO/IEC 15946-4, Information technology – Security techniques –
Cryptographic techniques based on Elliptic Curves – Part 4: Digital
signatures giving message recovery, 2004.

[16] M. Jeruchim, P. Balaban, K. S. Shanmugan, “Simulation of
Communication Systems”, Kluwer Academic/Plenum Publ, New York,
2000.

[17] L. Bahl, J. Jelinek, J., Raviv, F. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate”, IEEE Transactions on
Information Theory, IT-20, March 1974.

Issue 1, Volume 1, 2007 27

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

