
  
Abstract— It is well known that the Ermanno-Bernoulli 

constants derived from the Laplace-Runge-Lenz vector of dynamical 
systems are efficiently used to reduce them to a system of harmonic 
oscillator(s) and conservation law in the context of point and 
nonlocal symmetries of dynamical systems. In this paper, we review 
Ermanno-Bernoulli constants and observe that one can also use 
analogous constants obtained from the Hamilton vector of dynamical 
systems to serve the same purpose. We report the generic natural 
variables for reducing such dynamical systems in two-dimensions 
and three-dimensions to a system of one harmonic oscillator and two 
harmonic oscillators respectively, and a conservation law with some 
examples. We also note that the symmetry groups obtained from the 
reduced systems using the alternative constants are realizations of 
those obtained from Ermanno-Bernoulli constants. We also report 
here that the symmetries of the original dynamical systems can be 
obtained from symmetries of the reduced systems. 
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I. INTRODUCTION 

    In the discussion of the Lie symmetries, first integrals and 
linearization of dynamical systems using the Kepler problem 
as a vehicle, Leach and Andriopoulos (2003) used the 
representation of the Cartesian components of the angular 
momentum L and Laplace-Runge-Lenz vector J  in the 
polar ),,( φθr   coordinate systems, and obtained the 
complete symmetry representation by the Nucci-reduced 
technique and the alternate derivation of the reduction 
through manipulation of the equation of motion and the 
realizations of the Lie symmetry algebra of a certain linear 
system. This suggested the Ermanno-Bernoulli constants 
obtained from the Laplace-Runge-Lenz vector as tools for 
reducing the equation of motion to systems of harmonic 
equations and a conservation law. This phenomenon 
simplified the reduction of the Kepler problem from the sixth-
order nonlinear system to a fifth-order system comprising of 
the above linear system by virtue of using the conserved 
vector J  and L . This analysis was carried out by Leach and 
Nucci (2004) on the MICZ-Kepler problem which possesses 
instead of the conserved L , the Poincaré vector constant of 
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motion P . The symmetry algebra of the reduced system is 
well known [1, 2, 3, 4]. In the sequel, we report herein that 
this idea can be extended to other dynamical systems 
describing motion in a plane and which admits Laplace-
Runge-Lenz vector. We also report that alternative constants 
for reducing the dynamical system using the Hamilton vector 
exist. The symmetry algebraic structures of the reduced 
systems are well known in the Lie symmetry analysis of 
dynamical systems. The paper is organized as following. In 
section 2 we introduced the general technique for reducing 
general dynamical systems using the Ermanno-Bernoulli 
constants and the alternative constants. In sections 3 specific 
examples for two-dimensions are given. In section 4 we give 
examples of the computations of exact symmetries 
transformations using the Lie symmetries of the reduced 
system viz Kepler problem and the generalized Kepler 
problem. Section 5 outlines the same details for the general 
dynamical systems in three-dimensions. Section 6 contains 
concluding remarks.  
                                 
II GENERAL IDEAS OF THEERMANNO-BERNOULLI 
CONSTANTS 
     The most general form of a dynamical system describing 
motion in a plane is 

),()^(21 xxxLxx ��� Fpp =+= ,                              (1) 

where ),( xx �ii pp = are functions of their arguments 

and xxL �^= . We consider those systems (1) which possess 
a Laplace-Runge-Lenz (L.R.L.) vector of the form  

)^(^ 321 xLxxLJ ggg ++= � ,                               (2) 

 where ),(11 Lgg = ),,(22 xx �gg = and ),(33 xx �gg =  

are functions of their arguments, and L=L . We note that 

L satisfies the equation of motion [7] 
LxLxL 2

2
2 )^(^ prp ==�  . 

i.e.  LL 2
2 pr=� ,                                                        (3) 

and LprL 2
2=� . 

 The second equation in (3) implies that the unit vector 
L̂ parallel to the angular momentum L is constant, and that 
the system (1) describes motion in a plane perpendicular to L̂ . 
We write kL L= , and jix 21 xx +=  where Lk ˆ=  and 

ji, are two fixed orthogonal unit vectors in the plane of 
motion. The expression for J in (2) reduces to 

)(                     
)()(

123

212121
ji

jijiJ
xxLg

xxgxxLg
+−+

+++−= ��
                         (4) 
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 so that  
)()()( 32121 ±±±± ±+±=±= xLigxgxLigiJJJ � ,  (5) 

where 
     )(),( 2121 xixxixxx ��� ±=±= ±± . 

Setting θθ sin,cos 21 rxrx ==  where ),( θr  are polar 

coordinates in the plane of motion, ±J  reduce to 

    θθθθ iii LreigregeirrLig ±±± ±+±± 321 )( ��  

               θθ ieLrigrgirrLig ±±+±±= ))(( 321
��  

               θθ ieLrigrgrigLLrg ±±+±−= )( 321 ��  

               θθ ieLrgrLgirgLrg ±+±+−= )]()[( 3121 ��  

               θieLrgrLgirgrLg ±− +±+−= )]()[( 312
12

1 � . 
Hence we have that 
       θieiwwJ ±

± ±= )( * .                                             (6) 
Where  

rgrLgw 2
12

1 +−= − , and LrgrLgw 31* += � . 

So 0=±J�  implies that 

         0)( ** =±+± θ��� iiwwwiw .                               (7) 
That is  
              0* =− ww θ�� , 0* =+ ww θ�� .                          (8) 
Taking θ  as new independent variable equation (8) gives 
           *ww =′ , ww −=′*  0=+′′⇒ ww .               (9) 
We assume also that the equation of motion for L in equation 
(3) possesses the solution 
             constLrV =),,( θ .                                      (10) 

Then the pair ),(),( 21
Vwvv = satisfies the equations 

                       011 =+′′ vv  

                       02 =′v .                                                 (11) 
The two-dimensional form of the dynamical systems (1) is 
equivalent to (11). The constants ±J  are called the Ermanno-
Bernoulli constants. 
The Hamilton vector JLK ^ˆ=  can also be used to obtain 
Quasi- Ermannor-Bernoulli constants given 
by θωω ieiiKKK ±

± ′±=±= )( 1121 . This reduces (1) to 

                   011 =+′′ ωω  

                            02 =′v . 

It turns out that in two dimensions ±± ±= iJK  i.e.  

11 v′−=ω and 11 v=′ω , this corresponds to the reduced 
system by the Ermanno-Bernoulli constants. However this is 
not the case when they are expressed in three-dimensional 
coordinates.   
 

                          
III SOME WELL KNOWN EXAMPLES IN TWO- 
DIMENSIONS 

   A. The Kepler problem  

      The equation of the motion is 
                 xx 3−−= rμ�� ; r=x .                          (12) 

The Laplace-Runge-Lenz vector is xLxJ 1^ −−= rμ� . 

The Ermanno-Bernoulli constants θievivJ ±
± ′±= )( 11  

 yield the expression μ−=
r
Lv

2

1 , and equation (3) 

becomes 0=L� . That is L is constant and 2v  is 

simply θ�2rL = . 

     B. The Generalized Kepler problem 
The equation of motion given by   

         0)3(2
1 =++− xxx g

r
r

g
g μ����� .                            (13) 

 This possesses the Laplace-Runge-Lenz 
vector xLxJ 122 )^( −−− −= rAL μ� , where 

θ�
2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

g
rA .  The corresponding Ermanno-Bernoulli 

constants are θievivJ ±
± ′±= )( 11 , where  

                     2
1

1
−−= A

r
v μ .                                    (14) 

In the calculations to follow in sec. 4, we will use 
μ−= −12

1 rAv  which is a constant multiple of (14) and 

which coincides with the expression for 1v in the Kepler 

problem in 3.1 when 13 =gr .The corresponding equation (3) 
becomes 

                   03
2
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+− L

r
r

g
gL

��� .                         (15) 

Multiplying (15) by 2
1

3 )( −gr we obtain the 

equation 0)( 2
1

3 =⎥⎦
⎤

⎢⎣
⎡

⋅
− Lgr . That is constLgr =−

2
1

3 )( . 

This constant is A , and hence we make the choice 

            θ�
2
1

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

g
rvA .                                      (16) 

     C. Dynamical systems with symmetry groups of the inverse 
cube law equation 
 The most general dynamical system which possesses the Lie 
symmetry group of the equation xx 4−= Gr��  and which also 
describes motion in a plane is [5, 6] 
           )^(4

2
4

1 xLxx −− += rPrP�� ,                          (17) 

where 1P  and 2P are functions of L . Using (3), equation of 
motion for L in polar coordinates ),( θr  is  

              θ��
2

2
2 PLrPL == − .                                  (18) 

That is  .1
2 θ�� =− LP  

Issue 2, Volume 1, 2007 56

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

So defining  

         ∫ ′′= −L LdLPLH )()( 1
2 ,                            (19)   

where ׳ denotes that the integrand is evaluated at time 
variable t ′ . Then the expression (18) implies 
that 0))(( =− ⋅θLH , therefore we take as ),,( LrV θ  in 
(10) the expression 
            .)( constLH =−θ                                     (20) 
The system (17) is known to possess the Hamilton vector 
K and the Laplace-Runge-Lenz vector J  given by [5] 

            )()( 1
22

1
2
1

xxxK 2
1 −−⋅− −== rPLL � , 

and     KLJ ^ˆ−= ,                                                (21)     
provided that 
            )( 22

1
222

1
1 PPLPP +′= .                             (22) 

The expressions for the constants     
               21 iKKK ±=±  ,                                    (23)                                

                21 iJJJ ±=± ,                                       (24)   
turn out to be 

     θieLirrPrLK ±−−−
± ±−= ])[( 11

22
12

1
� ,         (25) 

      θierPriLrLJ ±−−−
± −= )]([ 1

22
112

1
�∓ .        (26) 

Using (10), (20) and (26) the expression for ),( 21 vv in (11) 
are given by  

           2
1

1
1 Lrv −= ,  )(2 θ−= LHv .                                             

 
IV EXACT SYMMETRIES OF THE KEPLER PROBLEM 
AND THE GENERALIZED KEPLER PROBLEM IN TWO-
DIMENSIONS 
  We report here that the symmetries of dynamical systems can 
be accurately calculated from the Lie symmetries of the 
reduced systems. We shall only give few actual calculations. 
The Lie symmetry generators of the reduced dynamical 
system (11) are as follows: 

221 ∂= vV ; 112 ∂= vV ; θ∂=3V ; 14 ∂= ±
±

θieV ; 

][ 11
2

6 ∂±∂= ±
± iveV i

θ
θ ; ][ 1

2
118 ∂±∂= ±

± ivveV i
θ

θ , 

where ii v∂∂=∂ / . 
     
A. The Kepler Problem in 2-dimensions 
We now proceed to find the symmetry transformations 
generated by the vector field 221 ∂= vV αα  in two-
dimensions. The flow of the vector field is the function  
          ),,(),,( 2121 θθ vvvvf =  

 where       01 =
λd
vd

 ;  2
2 v

d
vd

α
λ

= ; 0=
λ
θ

d
d

.       (26) 

Solving system (26) we have the following 
            11 vv =   ;   22 vev αλ= ; θθ = .                 (27) 

The second equation in (27) implies CLL = while the first 
equation implies that μμ −=− −− 1212 rLrL  

 i.e. μμ −=− −− 12122 rLrLC  

where αλeC = , then 

             2C
r
r

= ⇒ rCr 2=                                 (28) 

CLL =  implies that                                                           

         22 rCr θθ �� = ⇒
dt
dCr

td
dr θθ 22 = ,           

 this implies that 

               3C
dt
td

= ,                                                 (29) 

i.e.  tCdt 3+= , where d is an arbitrary constant.  
Consequently the exact symmetry transformations generated 
by the vector field above for the Kepler problem is given by 
equations (28) and (29). If  

)sin,cos(),( 21 θθ rrxx =  denotes the Cartesian 

coordinates of x in the plane of motion then θθ =  implies 
that 
                 xx 2C= ,                                               (30) 
where jix 21 xx +=  is the two dimensional Cartesian 
vector. The transformation defined by (29) and (30) is also a 
three-dimensional symmetry transformation of the Kepler 
problem when x is made three-dimensional. We note that the 
vector fields 2Vα  and 1214 )sincos( ∂+= θαθαV  also 

generate symmetry transformations with θθ = , 22 vv =  

 i.e.                    LL = . 
Applying the same manner of calculations we obtain the 
symmetry transformations 2f , 4f   given by 

                     ),(),( ttf i xx =   

                  xx 1−= iH ;  2−= iH
dt
td

 

where  
             )1( 22

2 rLCrLH −− −+= μμ  

             xα ⋅+= −2
4 1 LH λ , λαeC = ,  

            2211 xx αα +=⋅ xα  .                                 (31) 

The transformations 2f , 4f  are again symmetry 
transformations when x  and xα ⋅  are made three-
dimensional. 
 
    B. Generalized Kepler Problem in 2-dimensions 
   Using the expressions for 1v and 2v  just after (14) and (16)  

i.e. AvrAv =−= −
2

12
1 ,μ , the symmetry transformation 

generated by the vector field 221 ∂= vV αα is given by  
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           xx 2C= ,    
)(

)(
2rCg
rg

dt
td

=                       (32)   

where αλeC = . 
The vector fields iVα  9,...,2=i  generate transformation 

where 22 vv = which implies that 

               
2
1

2 )(
)(

⎭
⎬
⎫

⎩
⎨
⎧

=
rCg

rg
r
r

dt
td

                                (33) 

In particular the transformations 2f , 4f generated by 2Vα , 

and 1214 )sincos( ∂+= θαθαV are given by 

),(),( ttf i xx = where t satisfies (33) and x is given by 

                  xx 1−′= iH ; 4,2=i                               (34) 

where 2H ′ , 4H ′  are obtained from 2H , 4H in (31) by 
replacing L by A . 

                                           
V THE CASE OF THREE-DIMENSION MOTION 

    The reduction of Kepler problem and the MICZ problem to 
a system of harmonic oscillators and a conservation law is 
well known [1, 2]. But it is not reported in the literature the 
generic natural variables for the reduction of the general 
dynamical systems of the form (1) with a LRL vector (2).  We 
report in this section the generic natural variables for reducing 
such systems. In the three dimensional case when expressed in 
spherical coordinates ),,( φθr the Ermanno-Bernoulli 
constants are given by 
           φieuiuiJJJ ±

± ′±=±= )( 1121 .                 (35) 
Similarly, the Quasi- Ermanno-Bernoulli constants are of the 
form  
           φυυ ieiiKKK ±

± ′±=±= )( 1121 .              (36) 

The direction of the angular momentum L̂  in the Cartesian 
coordinates is given by 
                      kjiL 321

ˆˆˆˆ LLL ++= . 

 Similar to J , the constancy of L̂  i.e. 0)ˆ( =⋅L  implies that 

there exists a function 2u  (of x and x� ) such that  

           φieuiuLiLL ±
± ′±=±= )(ˆˆˆ

2221 .                 (37) 
Consequently, we have that 
            φieuiuLiLLL ±

± ′±=±= )( 2221 .              (38) 
We assume that in terms of spherical coordinates the solution 
to the second equation in (3) (corresponding to (10)) takes the 
form .),,,( constLrW =φθ i.e. W depends on x� only 
through L  (the expression for L is given by 
                    )sin( 22242 φθθ �� += rL ).  

Defining Wu =3 , the triple ),,( 321 uuu  satisfies the 
coupled equations, 
              011 =+′′ uu  

              022 =+′′ uu                                                (39) 

                       03 =′u . 

The expressions for ±L , are given in [1], they are as follows 

        φiewiwiLLL ±
± ′±=±= )( 2221 .                   (40) 

where θθφ cossin2
2

�rw = , θ�2
2 rw −=′ . 

Thus the expressions for 2u , 3u in (38) and (39) are as follows 

φieuiuiLLLLiLL ±−
± ′±=±=±= )()(ˆˆˆ

2221
1

21 ,  (41) 

where θθφ cossin21
2

�rLu −= , θ�21
2 rLu −−=′ .                    

   In ref. 1, which deals with the Kepler problem, Leach et al 
reported that ),(),( 3232 Lwuu = where 33 L̂LL = .  For this 
problem there are several choices of these variables viz 

2
1

22 or    wLwu −= , LLLu or    ˆ, 333 = . This is not the 
case with dynamical systems describing motion in a plane 
where L is not constant. We note that the choice 33 L̂u =  

analogous to (38) cannot be made along with  2
1

2u wL−=  

since in this case )(1ˆˆ1ˆ 2
2

2
2

2
2

2
1

2
3 uuLLL ′+−=−−=  

( 3u  must be functionally independent of 2211 ,,, uuuu ′′ ). 

Using the expression for J  just after (13) the generalized 
Kepler problem possesses the three-dimensional Ermanno-
Bernoulli constants     φieuiuJ ±

± ′±= )( 11  

where θθθμ cossin1
222

1
��rrLA

r
u −− −⎟

⎠
⎞

⎜
⎝
⎛ −=  

and       θφ sin22
1

��rrLu −−=′ .                                  (42) 
By replacing A  by L  in (42), we obtain the corresponding 
variables for the Kepler problem as 

            θθθμ cossin1
222

1
��rrLL

r
u −− −⎟

⎠
⎞

⎜
⎝
⎛ −=  

 and       θφ sin22
1

��rrLu −−=′ .                                 (43) 
 
A. Exact symmetry transformations of the Kepler problem in 
3-dimensions 
  We report here also that the symmetries of dynamical 
systems in three-dimensions can be obtained from the Lie 
symmetries of the reduced systems as in section 4. We list 
here the Lie symmetry generators of the reduced system (39). 
They consist of sixteen generators, one viz 1Γ  for the 

conservation law 03 =′u  and the fifteen Lie symmetry 
generators for the pair of harmonic oscillators in (39). They 
are as follows 

331 ∂=Γ u , kj
jk u ∂=Γ2 , 

                   φ∂=Γ3 , j
ij e ∂=Γ φ

4 , 

                   )(2
5 ∂⋅+∂=Γ ± uie i

φ
φ ,  

                   )(6 ∂⋅+∂=Γ ± uiue j
ij

φ
φ                     (44) 

where jj ukj ∂∂=∂= /;2,1, and 2211 ∂+∂=∂⋅ uuu . 
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We now compute the symmetry transformation generated by 
the vector field 11

11
2 ∂=Γ u for the Kepler problem. The 

symmetry transformation generated by this vector field is the 
transformation f given by ),(),( φφ jj ufu = where   

    11 Cuu = , 22 uu = , 33 uu = , φφ = , αλeC =  (45) 
from which it follows that  
               11 uCu ′=′ , 22 uu ′=′ , LL =  .                   (46) 
The relations in (46) imply that 
                 1)(sec 2

2
22

2 =′+ uu θ . 

Thus from the invariance of 2u and 2u′  in (44) and (45) we 

deduce      θθ secsec = ,  
i.e.           θθ = .                                                      (47) 
The relations in (43) imply that                                                        

           θθθμ cotsin1
1

2
1 ′′−⎟

⎠
⎞

⎜
⎝
⎛ −= − uL

r
u .          (48) 

Since L , θ ′and θcot are invariants of this transformation, 
the first relation in (45) becomes  

          =′′−⎟
⎠
⎞

⎜
⎝
⎛ − − θθθμ cotsin1

1
2 uL

r
 

              θθθμ cotsin1
1

2 ′′−⎟
⎠
⎞

⎜
⎝
⎛ − − uCL

r
C ,         (49) 

which reduces to 

                ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ − −− 22

11 L
r

CL
r

μμ ;               (50) 

i.e.                 rHr 1
2
−= , 

where 2H is given in (31). The relation 22 uu ′=′  in (46) 
implies that 

                     θθ �� 2121 rLrL −− =  

i.e.             2
2

2

H
r
r

dt
td

=⎟
⎠
⎞

⎜
⎝
⎛=                                (51) 

In view of the (50), (51) and the relations θθ = , φφ =  in 
(47) and (45) the required transformation is the 
transformation 2f  in (31). We now consider the Hamilton 
vector K which for the Kepler problem is given by [1] 

)^(12 xLxK −−−= rLμ�  (This is a constant multiple of the 
expression for K given just after (11)). This expression for 
K yields the relation 
                 φυυ ieiiKKK ±

+ ′±=+= )( 1121 , 
where  
           θθμθυ �� cos)1(sin 2

1 rLrr −−+= , 

            φθμυ �sin)1( 2
1 rL−−=′ .                            (52) 

We note that one could consider instead of (39), the same 
system of equations with 1u replaced with 1υ , and its Lie 
symmetries to obtain symmetries of the original system. We 

report without proof that the symmetry transformation 
generated by 11∂υ  (where 

11 / υ∂∂=∂ ) is also given by (50), (51) and (47) i.e. the 

transformation 2f  in (31).  
                                              

VI CONCLUDING REMARKS 
    In this paper we note the following:  

1) The Hamilton vector can be used to reduce the 
dynamical system to coupled systems of oscillator(s) 
and a conservation law just as the Laplace-Runge-
Lenz vector is used.  

2) The Lie point symmetry groups of the reduced 
systems are widely known in the literature and the 
backward transformation from the symmetries of the 
reduced systems to symmetries in original variables of 
the dynamical systems is schematically available. We 
note that the symmetry groups from the reduced 
systems using the Quasi-Ermanno-Bernoulli constants 
are isomorphic although, their forms in the original 
variables may defer (realizations). One can obtain 
other nonlocal symmetries of the dynamical system.  

3)  The generating algebras are not altered consequence 
of 2) above. 

4) We obtained here symmetry transformations of 
dynamical systems without any reference to their 
generators in the original variables. 

   We have shown the generic natural variables for 
reducing dynamical systems in two-dimensions and 
three-dimensions to systems of harmonic oscillator(s) 
and a conservation law.  
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