
 

 

  
Abstract— Although smartcards are widely used, secure 

smartcard interoperability has remained a significant challenge. 
Usually each manufacturer provides a closed environment for their 
smartcard based applications including the microchip, associated 
firmware and application software. While the security of this 
“package” can be tested and certified for example based on the 
Common Criteria, the secure and convenient interoperability with 
other smartcards and smartcard applications is not guaranteed. Ideally 
one would have a middleware that can support various smartcards 
and smartcard applications. In our ongoing research we study this 
scenario with the goal to develop a way to certify secure smartcard 
interoperability in such an environment. Here we discuss and 
experimentally demonstrate one critical security problem: if several 
smartcards are connected via a middleware it is possible that a 
smartcard of type S receives commands that were supposed to be 
executed on a different smartcard of type S’. Such “external 
commands” can interleave with the commands that were supposed to 
be executed on S. Here we demonstrate this problem experimentally 
with a Common Criteria certified digital signature process on two 
commercially available smartcards. Importantly, in some of these 
cases the digital signature processes terminate without generating an 
error message or warning to the user.  
 

Keywords — Common criteria, digital signature, interoperability, 
smartcard  

I. INTRODUCTION 

Smartcards (SC) are becoming increasingly popular in many 
countries and are deployed, for example, as credit cards, health 
cards [1], public transportation service cards [2] and electronic 
identification documents. With these devices users control 
highly sensitive information and may perform security tasks 
such as mobile application security [3], electronic 
authentication and digital signature [4], [5]. As the importance 
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and world-wide spread of SCs increases, the interoperability of 
these devices becomes more important along with their 
security in environments where SCs from different 
manufacturers and issuers are used at the same time. 

The Common Criteria (CC) [6] and the CWA 14169 [7] 
standards are used to certify the correct behavior of a SC in a 
well defined environment, i.e. for a specific target of 
evaluation (TOE). The TOE is precisely described and usually 
comprises a specific microprocessor, a specified firmware and 
specified middleware [6]; however, environments where 
different SCs are used at the same time are usually different 
from the TOE. In particular, a SC could be confronted with 
commands from different processes, be it accidentally, on 
purpose or during an attack. Trusted SC interoperability, 
therefore, requires a careful analysis of how SCs operate in 
such situations and the consideration of these results in the 
design of interoperable systems.  

One goal of current research and development efforts 
regarding SC interoperability is to create a framework that 
enables the concurrent use of different SCs. These efforts 
focus on diverse topics such as standardization [8], [9], [10], 
architectures for SC based authentication services [11], public 
key infrastructure [12], [13] and open protocols [14]. For 
example reference [15] studied the SC interoperability on 
public transit fare payment application using contactless SC. 
The authors propose a new payment protocol to support 
interoperability among different electronic purses and PSAMs 
(Purchase Secure Application Module) issued by different 
manufacturers. 

When several SCs are connected to SC application via a 
middleware commands which are supposed to be executed on 
a certain SC may in fact be executed on a different one. Fig. 1 
illustrates this situation: SC applications give input to and 
receive an output from SCs sharing a common middleware. 
The middleware translates the input into command sequences, 
i.e. into straight line program (SLP) which are supposed to be 
executed on a corresponding SC. The security problem 
mentioned above is indicated in the figure by the dashed 
arrows: commands interleave between the straight line 
programs. As a result a command may be executed on a SC 
different from the intended one. While such situations may 
arise inadvertently due to potential errors in the middleware 
such vulnerabilities can also be exploited in an attack. From a 
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security perspective such events are particularly problematic if 
the SC executing a misdirected command does not 
immediately return an error message. We have observed this 
problem experimentally [4] and refer to such a situation as an 
``anomaly''. 
 
 

 
 

Fig. 1 Middleware 

 
 
However, interoperability problems emerge already with the 

attempt to recognize what type of SC is actually used. In 
practice, this is currently done by detecting the presence of 
certain applications on the SC [16]. Deducing the SC type 
from such information is, at its best, an indirect method which 
might not uniquely identify the SC type, and leave it prone to 
potential attacks. If the SC type is incorrectly identified, 
"external commands" will be sent to the SC. Here, we define 
an "external command" as an Application Protocol Data Unit 
(APDU) sequence that does not correspond to the regular 
APDU sequence supplied to the SC in the executable code of 
the middleware originally used during the security certification 
(e.g. according to CC). In a setting where different SCs 
interact with applications via a middleware, APDUs that are 
supposed to be delivered to a certain SC type S might be 
received by a SC of type S' (e.g., due to routing errors). In 
such situations "external commands'' can interleave with 
regular commands. 

References [17], [18] study the behavior of commercial 
signature SCs during the sequential steps of a digital signature 
process. First the APDUs sent - in the setting used for the CC 
certification - from the middleware to the SC were identified. 
Using a model checking approach, the SCs were then targeted 
with modified APDUs during the digital signature process of a 
fixed document. The experiments showed that certain modified 

commands are accepted by the SCs without errors being 
generated and demonstrated that CC certification is not 
sufficient to address the SC interoperability problem. 

In this paper we address the problem of interleaving 
commands for SC interoperability by analyzing the situation in 
which different applications interact with SCs via a 
middleware. A CC certified digital signature process on a 
commercially available SC is then tested to demonstrate the 
relevance of this problem experimentally. Finally, we discuss 
the complexity of the underlying issues and how the 
experimental test setup may be improved in the future to 
identify and prevent potential interoperability problems of this 
kind. 

II. THE INTEROPERABILITY PROBLEM: INTERLEAVING 

COMMAND SEQUENCES 

 To address the interoperability problem on a fundamental 
level, we consider a straight-line program P1 with steps S1,1, 
S1,2, ..., S1,l. It is assumed that the straight line program P1 has 
been certified to produce a correct result if the sequence of 
commands C1,1, C1,2, ..., C1,l originally associated with these 
steps is executed in the correct order and without 
modifications on a SC of type S. For example, the command 
sequence C1,1, C1,2, ..., C1,l could match the one supplied to S 
in the executable code of the middleware that was used for CC 
certification. We call a command Ci,j “globally legal”  if it is 
processed in step Si,j of program Pi on SC of type S and the 
process Pi has been certified on S. 
 In an environment where several applications interact with 
SCs via a middleware, commands from another straight line 
program P2 may interleave with the commands from P1 on S. 
Here P2 is a straight line program for another SC type S' with 
steps S2,1, S2,2, ..., S2,k and commands C2,1, C2,2, ..., C2,k . Fig. 2 
illustrates the situation and shows how SC S receives 
interleaving commands associated with different steps of the 
two digital signature processes P1 and P2.  
 
 

 
 

Fig. 2 Two Concurrent Signing Sessions 
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 We will now analyze this SC interoperability problem in 
more detail, and in particular we distinguish the following 
cases: 

1) In step S1,j of P1, SC S receives command C1,j and 
processes it without error. The digital signature process makes 
a correct transition to step S1,j+1. 

2) In step S1,j of P1, SC S receives command C2,i 
corresponding to step S2,i of P2 and correctly generates an 
error. At this point the error can be detected and the digital 
signature process can be interrupted. 

3) In step S1,j of P1, SC S receives command C2,i 

corresponding to step S2,i of P2 and processes it without 
generating an error, i.e. the SC recognizes this command as 
“locally legal” . However, in this case, C2,i is not globally 
legal. We refer to this situation as an “anomaly”  since it is 
unknown how the overall signature process will be affected. 
The program may now potentially make a transition to any 
step of the two programs P1 or P2. 
 
 Fig. 3 shows the first case that simply describes the correct 
process P1 without interleaving commands from process P2. 

 
 

 
 

Fig. 3 Correct Process 
  
 
 Fig. 4 illustrates the second case: the digital signature 
process P1 is interrupted by another process P2, but an error is 
generated and this error can be detected by the middleware. 
The process P1 can be terminated in this case. The 
interoperability environment can then be designed to handle 
such situations appropriately. 
 The third possibility (see fig. 2), however, poses the real 
problem for trusted SC interoperability: the “certified” and, 
therefore, trusted process has been modified but no error 
message has been generated. One anomaly can potentially be 
followed by several others and finally the digital signature 
process may terminate with a questionable result. Without 
receiving an error or a warning, a user cannot know whether 
all steps in the digital signature process were completed 
correctly or whether there have been one or more anomalies. 

 
 

Fig. 4 An interleaving command results in an error 
 
 
  In the following we demonstrate experimentally, with a 
commercially available Common Criteria certified SC for 
digital signature, how commands from a different straight line 
program may interleave with the original one. Furthermore, we 
present one example where even though an error is generated 
an external command that intersects the original program can 
render a SC inappropriate for further use. The testing 
environment developed for this purpose, as well as relevant 
details about SCs are described in the next section. 

III.  THE TESTING ENVIRONMENT 

 In our experiments, we study two commercially available 
SCs from two different manufacturers. The core of a SC is its 
microprocessor, which contains on board, a cryptographic 
processor, a small EEPROM random access memory (≈64 
KBytes), an operating system and a memory mapped file 
system [19]. The microprocessor is customized (masked) in 
order to execute APDU sent from external software 
applications through a serial communication line. 
 The ISO 7816 standard [8], specifies the set of APDU that 
can be implemented by any compatible SC microprocessor. In 
particular, an APDU consists of a mandatory header of 4 
bytes: the Class Byte (cla), the Instruction Byte (ins) and two 
parameter bytes (p1, p2). The header can be followed by a 
conditional body of variable length, which is composed by the 
length (in bytes) of the data field (lc), the data field itself and 
the maximum number of bytes expected in the data field of the 
response (le). Responses to any APDU are encoded in a 
variable length data field and two bytes mandatory return 
codes. 
 To probe and analyze the SC behavior we have developed a 
Crypto Probing System (CPS) whose overall architecture is 
shown in fig. 5. As each SC uses a different APDU sequence 
in the digital signature process, the CPS is designed to 
interface with both SCs used in this project. Effectively, it 
therefore acts as a middleware between the external 
applications and the real SCs.  
 The CPS is able to translate its simplified instructions to the 
corresponding sequence of APDUs (cla, ins, p1, p2, length and 
values of the possible annexed data buffer) to be sent to the 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 6, 2012

78



 

 

connected physical SC and to translate the SC responses in a 
common format. Moreover, to further simplify the interface 
with the SC, the CPS is given the globally legal APDUs to be 
sent in each step of the digital signature process (SC 
commands flow), and the CPS is able to generate alternate 
command sequences to test the SC responses in different 
situations. This way, the CPS offers a simple interface for 
testing applications verifying process correctness and 
robustness on different physical devices and in the presence of 
interleaving command sequences. 
 
 

 
 

Fig. 5 Architecture of the Crypto Probing System 

 
 
  The CPS can be invoked via command line, to interactively 
test the command sequences, or used as a daemon, which stays 
in execution and accepts commands on TCP/IP connections. 
The commands sent via command line are parsed and 
interpreted by the CPS based on SC library. The elementary 
instruction of the CPS is made by a single APDU. 
 To meet the requirements of a complete digital signature 
process, globally legal APDUs for the Infineon-CardOS SC 
involve the following steps: 

• step 0 Reset the SC 
• step 1 Change directory to the Master File or root 

directory of the SC file system (SELECT FILE 
command) 

• step 2 Activate the security environment for the digital 
signature (MSE-Manage Security Environment 
RESTORE command) 

• step 3 At file system level, choose the private key to be 
used into the activated security environment (MSE 
SET command) 

• step 4 Transmit the PIN connected to the private key 
used for the digital signature operation (VERIFY PIN 
command) 

• step 5 Compute and send the data buffer ciphered using 
the selected private key and receive the result 
signature (PSO CDS - Perform Security Operation 
Compute Digital Signature command) 

 Globally legal APDUs for the Incrypto SC involve the 
following steps [5]: 

• step 0 Reset the SC 

• step 1 Change directory to the Master File or root 
directory of the SC file system (SELECT FILE 
command) 

• step 2 Change to subdirectory containing the digital 
signature certificate will be used (SELECT FILE 
command) 

• step 3 Activate the security environment for the digital 
signature (MSE-Manage Security Environment 
RESTORE command) 

• step 4 At file system level, choose the private key to be 
used into the activated security environment (MSE 
SET command) 

• step 5 Ask the SC for the random number that will be 
used as challenge for the next commands. It is first 
step for the activation of Secure Messaging (GET 
CHALLENGE command) 

• step 6 Transmit a random number to the SC as a 
challenge for the next commands. It is the second step 
for the activation of Secure Messaging (GIVE 
CHALLENGE command) 

• step 7 Transmit, using the two random number 
previously exchanged and ciphering 3DES with the 
shared 3DES key, the PIN connected to the private 
key used for the digital signature operation (VERIFY 
PIN command) 

• step 8 Ask the SC for the random number that will be 
used as challenge for the next commands. It is first 
step for the activation of Secure Messaging (GET 
CHALLENGE command) 

• step 9 Transmit a random number to the SC as a 
challenge for the next command. It is the second step 
for the activation of Secure Messaging (GIVE 
CHALLENGE command) 

• step10 Compute and send, using the two random 
numbers previously exchanged and ciphering 3DES 
with the shared 3DES key, the data buffer ciphered 
using the selected private key and receive the result 
signature (PSO CDS - Perform Security Operation 
Compute Digital Signature command) 

IV.  RESULTS 

 In this section we present the main experimental results of 
this work. We use the CPS testing environment to show how 
external commands interleave with the globally legal 
commands in a SC based digital signature process. The 
experiments are carried out with two Common Criteria 
certified SCs from STM-Incrypto34 and Infineon-CardOs 
[20], [21]. The main results are shown in figs. 6, 7, and 8 and 
tables I - IV. The left (right) column of fig. 3 presents the 10 
(5) steps of the digital signatures processes with the Incrypto 
(Infineon) SCs (see section III for the details). Note that we do 
not count the initial “RESET” and have given similar steps in 
both processes the same label, although the APDUs associated 
with these steps may be different. 
 P2 represents the digital signature process associated with 
the Infineon SC and the globally legal APDUs of each step are 
given in table I (here RN is short for “random number”). Fig. 6 
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and table II show how the commands “Get Challenge” and 
“Give Challenge” from steps (1,5) and (1,6) from process P1 
interleave with steps (2,1) to (2,5) of process P2 on the 
Infineon SC (central column in fig. 3). No error message is 
generated, and the process P2 terminates as if no interference 
occurred. In fact, our experiments show that “Get Challenge” 
and “Give Challenge” commands of process P1 can interleave 
with process P2 before and after all of its steps. In this case, the 
interleaving commands of two globally legal digital signature 
processes create a result whose trustworthiness has not been 
assured. Because a user cannot distinguish this situation from 
one in which no anomaly occurred, this problem might 
undermine the overall trustworthiness of SC use in an 
interoperable environment. Furthermore, sending the “Get 
Challenge” and “Give Challenge” commands repeatedly to the 
SC could be used by an attacker to put a digital signature 
process effectively on hold. 

 
 

 
 

Fig. 6 Two Concurrent Signing Session, Infineon Smartcard 

TABLE I 
GLOBALLY LEGAL APDUS OF PROCESS P2 IN FIG. 3 (HEXADECIMAL 

REPRESENTATION)  
 

Node Commands Globally legal APDUs 

cla ins p1 p2 lc data le 

2,1 Master File 00 A4 00 00 00 - FF 

2,2 MSE Restore 00 22 F3 30 00 - 00 

2,3 MSE Set 00 22 F1 B6 05 4D 00 83 
01 31 

00 

2,4 Verify 0C 20 00 90 04 PIN 00 

2,5 PSO_CDS 0C 2A 9E 9A 75 00-74 FF 

 
 

TABLE II 
GLOBALLY LEGAL AND MODIFIED APDUS OF PROCESS P2 IN FIG. 3 

(HEXADECIMAL REPRESENTATION)  
 

Node Commands Globally legal and modified APDUs 

cla ins p1 p2 lc data le 

2,1 Master File 00 A4 00 00 00 - FF 

2,2 MSE Restore 00 22 F3 30 00 - 00 

2,3 MSE Set 00 22 F1 B6 05 4D 00 83 
01 31 

00 

1,5 Get 
Challenge 

00 84 00 00 00 - 08 

1,6 Give 
Challenge 

80 86 00 00 08 RN 00 

2,4 Verify 0C 20 00 90 04 PIN 00 

2,5 PSO_CDS 0C 2A 9E 9A 75 00-74 FF 

 
 
The results shown in fig. 4 were obtained with the Incrypto 

SC. As above, P1 represents the digital signature process 
associated with this SC and the globally legal APDUs of each 
step are given in table III. Process P2 contains APDUs that are 
either slightly or substantially different from the globally legal 
APDUs in P1 (see table IV, the modified parts are printed in 
bold font). In particular, certain APDUs are not documented 
for the Incrypto SC: these APDUs are therefore labeled as 
“undefined”. The exact sequence of APDUs in P2 is not part of 
a single digital signature process on any SC we are aware of. 
Nevertheless, these commands could well be part of such 
processes implemented on one or several different SCs. 

The command sequence executed in our experiments is 
shown in the central column of fig. 7. Although this executed 
process contains six additional commands (five of them 
“undefined”) and four modified commands, it terminates 
without any error message. In addition, the sequence can be 
looped back to the first node (1,1) “Master File” after any step 
of the executed process and afterwards continue until the end. 
These examples show how drastically digital signature 
processes can be modified via interleaving commands without 
the associated anomalies being recognized. An interoperable 
environment that does not address this issue may not be 
considered trustworthy and may have vulnerabilities that 
potential attackers could seek to exploit. 
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Fig. 7 Two Concurrent Signing Session, Incrypto Smartcard 

 
 
 
 
 

 
TABLE III 

GLOBALLY LEGAL APDUS OF PROCESS P1 IN FIG. 4 (HEXADECIMAL 

REPRESENTATION)  
 

Node Commands Globally legal APDUs 

cla ins p1 p2 lc data le 

1,1 Master File 00 A4 00 00 00 - FF 

1,2 Change Dir 00 A4 00 00 02 14 00 FF 

1,3 MSE Restore 00 22 F3 03 00 - 00 

1,4 MSE Set 00 22 F1 B6 03 83 01 10 00 

1,5 Get  

Challenge 

00 84 00 00 00 - 08 

1,6 Give  

Challenge 

80 86 00 00 08 RN 00 

1,7 Verify 0C 20 00 9A 08 PIN 00 

1,8 Get  

Challenge 

00 84 00 00 00 - 08 

1,9 Give  

Challenge 

80 86 00 00 08 RN 00 

1,10 PSO_CDS 0C 2A 9E 9A 75 00-74 FF 

 
 

 TABLE IV 
GLOBALLY LEGAL AND MODIFIED APDUS OF THE EXECUTED PROCESS OF  

FIG. 4 (HEXADECIMAL REPRESENTATION)  
 

Node Commands Globally legal and modified APDUs 

cla ins p1 p2 lc data le 

1,1 Master File 00 A4 00 00 00 - FF 

2,k Undefined1 81 86 00 00 02 14 00 00 

2,k+1 Undefined2 8F 86 00 00 02 14 00 00 

2,k+2 Give 
Challenge 

80 86 AC 45 08 RN 00 

1,2 Change Dir 00 A4 00 00 02 14 00 FF 

2,l Undefined1 81 86 00 00 02 14 00 00 

1,3 MSE 
Restore 

00 22 F3 03 00 - 00 

1,4 MSE Set 00 22 F1 B6 03 83 01 10 00 

2,m Get 
Challenge 

00 84 BD 17 00 - 08 

2,m+1 Give 
Challenge 

80 86 AC 45 08 RN 00 

1,7 Verify 0C 20 00 9A 08 PIN 00 

2,n Undefined3 8C 86 00 00 02 14 00 00 

2,n+1 Get 
Challenge 

00 84 BD 17 00 - 08 

2,n+2 Give 
Challenge 

80 86 AC 45 08 RN 00 

1,10 PSO_CDS 0C 2A 9E 9A 75 00-74 FF 

2,p Undefined3 8C 86 00 00 02 14 00 00 

 
 
 Finally, we would like to point out a problem caused by 
interleaving commands that has considerable consequences 
even though an error is generated. In this experiment (shown 
in fig. 8 and table V), P2 contains the “MSE Erase” command. 
This command is usually not part of a digital signature process 
as it erases the Security Environment Object (SEO); however, 
it is conceivable that this command is used by an application 
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interacting with the middleware for some purpose. It may then 
accidentally, or even in an attack, interleave with a digital 
signature process like P1. We observe experimentally that 
“MSE Erase”, executed as shown in the central column of fig. 
8, erases the SEO on the SC without warning, and the digital 
signature process generates an error after the next step S1,3. 
The digital signature function of the SC is herewith 
permanently destroyed and a physical replacement of the SC is 
required. In principal, such vulnerability could be 
systematically exploited in an attack on all SCs issued by the 
digital signature service provider because neither PIN nor 
PUK is required to execute the “MSE Erase” command. 
 
 

 
 

Fig. 8 Signing session with interleaving “MSE Erase” command 

 
 

TABLE V 
MODIFIED APDUS OF PROCESS P2 IN FIG. 5 (HEXADECIMAL REPRESENTATION)  

 

Node Commands Modified  APDUs 

cla ins p1 p2 lc data le 

1,1 Master File 00 A4 00 00 00 - FF 

1,2 Change Dir 00 A4 00 00 02 14 00 FF 

2,k MSE Erase 00 22 F4 03 00 - 00 

1,3 MSE Restore 00 22 F3 03 00 - 00 

MSE Restore returns ERROR, process is terminated 

 

V. CONCLUSION 

The experiments described above show that the problem of 
interleaving command sequences is serious and that it must be 
addressed to ensure a secure and trustworthy environment for 
SC interoperability. 

As stated in the introduction, in previous work [17], [18] a 
C-Murphi model checker [22] has been used to test SC 
behavior in the presence of disturbed commands. Model 
checking can address extended systems which can assume 
millions of different states [23] and can in principal be used to 
identify anomalies. However, the complexity of the 
verification increases exponentially if interleaving commands 
are to be taken into account: assume that for every step of two 
digital signature processes, the input command has only a 16 
bits and assume that the two signature processes consist of 10 
steps each. Even under this strong simplification, a brute force 
model checker may be required to make more than 

1616
10
20 2*

+




  tests. This is due to the fact that in this approach 

all possible sequences that can be obtained by mixing the two 
signature processes are generated. Note that in an 
interoperable environment, possibly tens, if not hundreds, of 
applications may interact concurrently with various SC types 
via some middleware. As a result, a brute force model 
checking approach is clearly not a viable solution, especially if 
it is operated on real SCs as illustrated in the experiments 
described above where the execution of a single command can 
take up to 1 second. 

In future research, we plan to extend the model checking 
approach to avoid brute force testing and to identify errors and 
anomalies effectively. This can be done if one prevents the 
model checker from searching through all possible sequences 
of anomalies and errors by taking the results of the already 
existing CC certification into account. Such an efficient model 
checker can then be integrated into a middleware as a “watch-
dog” to identify an anomaly as it occurs and to prevent 
computational chains with two or more anomalies. In this case, 
it will be possible to extend the Common Criteria to certify the 
anomaly-free interoperability of several SC applications 
interacting via a middleware with different SC types. 
conclusion section is not required. Although a conclusion may 
review the main points of the paper, do not replicate the 
abstract as the conclusion. A conclusion might elaborate on the 
importance of the work or suggest applications and extensions.  
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