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Wha is The Required Number of Users for The
Generation of Aggregated H-ss Traffic?

C. Sansores-Perez, L. Rizo-Dominguez and J. Ramirez-Pacheco.

Abstract—It is well known that network traffic can be well the neccesary(and finite) number of users to approach the limit
modeled by the use ofself-similar processes with parameterd. [ = (3 —min «a;)/2 with minimum variation. It is shown that
The use of this kind of traffic is important for the design and ;- gimylation scenario can be used to effectively generate a
performance evaluation of high performance computer networks. S .

Simulation plays a very important role in the context of perfor- s_elf-5|m|_lar_process withHurst parame_terH, \_NhereH ShOWS ]
mance analysis. In the context of simulation, however, the impact little variation. Thus, we propose a simulation scenario which
of the number of sources has not been sufficiently emphasizedcan be used to study the behaviour of network algorithms
for the generation of synthetic self-similar traffic. In this paper ynderself-similar traffic, and whereff can be effectively and
we describe a simulation scenario suitable for the testing of accurately tuned by the values ef Also, we complement

performance issues underself-similar traffic. Our analysis was . - o
centered on the effect of traffic aggregation over theself-similarity the study presented in [1][4] by including in our study sev-

degree, determining the necessary number of sources to approach€ral estimators oHurstindex. In this context, the paper is
the verified relation H = (3 — min «)/2. Besides, we highlighted organized as follows, section Il reviews fundamentals concepts

the performance of severalHurst parameters estimators for this related toheavy-tail distributions, self-similar processes and
type of simulation scenarios, identifying the most suited ones. the methods for generatirgglf-similar processes frorheavy-
Index Terms—Self-Similar, Heavy-Tail Distributions, Estima- tailed distributions. It also reviews the main estimators for
tors. both of them. Section Ill provides description of the simulation
scenario and points out the differences with the one described
|. INTRODUCTION in [1][4]. Section IV shows the results of the simulation and
Simulation plays an important role for the design, perfofinally section V presents the concluding remarks.
mance evaluation and dimensioning of computer networks.
Diverse network features can be studied with the aid of sim- [l. INTERNET TRAEEIC MODELS
ulation scenarios. The effect of traffic behaviour on @eS A Heavy-Tail Distributions
metrics such aslelay, delay jitter, packet lossetc. is such an , o o .
example[13][14][15]. In this context, packet network traffic has _Heavy—ta|leddlstr|but|ons are d|str|but|on_ _functlons whose
shown to be ofelf-similar nature[2][3]. Thus, current simula- tails P(X > z) and P.(X < —a), for positive z, decrease
tion scenarios must take this behaviour into account. A Weﬁ\ower than exponential rate[34]. The latter, e.g., normal and

known and amply cited simulation scenario is given in [1][4]exponent|al distributions, are said to be of light tails while

whereself-similartraffic was generated by the transmission Ol?areto d|str|but|o_n are sald_to_ ethrleayy .ta|l_s we will
files of sizeZ by an ensemble of — 32 users. A particular concentrate on righheavy-tails i.e., on distributions whose

feature of this scenario is that the distribution of filgs,, survival functionP(X > x), = > 0 behaves as a power law.

transmitted by user is heavy-tailedwith parametery;, giving Let X be a random variable defined on the probability space

rise to highly variable file sizes. In the limit as the number o{H‘Q’ F, P}, we said that¥’ has a heavy right tail if the following

usersi — oo, the traffic in the network node iself-similar 2SYMPtotic behavior holds
with H = (3 — min «;)/2. Unfortunately, theHurst parameter o
obtained in that paper is highly variable and overestimates when PIX >z ~a™"L(z), @ = oo, 1)

a > 1.6 and underestimates when< 1.6. From the above it where L(z) is a slowly varying function, i.e.,
is noted that the scenario described in [1][4] can not be used fan, ,  L(iz)/L(i) = 1 and a € (0,2) is the tail-index.
simulation studies where accurate tuning ofthest parameter \when o > 2, the random variableX has finite mean and

is required. In addition, estimators used to test the presence;gfiance; whem € [1,2), X has infinite variance but finite
self-similarbehaviour are not the most robust. In this paper, Waean; finally whena € (0,1), X has infinite variance and
propose some changes to the simulation scenario and deternyifiite mean. Qualitatively, typical features of sample paths
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E(X"?) = co. For more information on properties, estimatorthus the plot of the empirical quantiles of the exceedances
and methods of generation béavy-taileddistributions please against the theoretical quantiles of the exponential distribution
refer to [5][6][7][24][25][26]. Heavy-tailed distributions hasshould yield a straight line with slopg~!. More formally the

for instance be used to model network delay[36]. plot of

J .
. . log(1 — —1 ). log X1 i1y, 1< j < K}, 5
B. Estimators of tail-index {(—log(1 = 7=7), 108 X k), 1 < J < 4} ®)

Several estimators of the tail-index have been proposed,should yield approximately a—' slope straight line if the
next subsections reviewdill-based and QQ plots used fordistribution of X1, X, ..., X,, satisfies the asymptotic behavior
estimatinga. of (1). The slope of the line is computed by least squares

1) Standard Hill Estimator:Let X1, X5, ..., X,, be a dis- regression through the points in (5) and is called the QQ
crete time series with distributioi’x (x). Now let X,y > estimator, i.e.,

X(z) > ... > X(;,) denote the ordered statistics of time series

X1,..,X,. The Hill estimator ofy = a~! based onk + 1- — Zk 1(Vzk)§ik - Zle(u@k)Hk,n
.. . . . [ N % ’ (6)
upper ordered statistic$, < k < n, is defined according to the k(LSk i) — (A8 bi)?)
following formula: ko= ket .
wherev; , = —log(k—j_l) ad &, = log(X(kt)I)) There are
_ 1 Z o @) two different versions of the QQ-plot, namely the dynamic and
B — 8 Xirin X(k+1) static QQ-plot. The dynamic QQ-plot is similar to thigl plot

and is obtained by plotting(k,1/a= ' ,),1 < k < n} and
finding a stable region in the plot. The static plot is obtained
%y choosing an appropiate value igfplotting the points in (5)
and finding a region where the plots looks linear, then in the
linear region apply (6) which should yield the value@f!.

The parametery is estimated by plotting: versusHy,,, for
1 < k < n and looking for a stable region in the plot. Th
stable region must sit at height Usually theHill estimator
works better when the underlyingeavy-taileddistribution is
Pareto. When the distribution is not of Pareto-type Hié
estimator shows volatility, i.e., irregular erratic behavior.

2) Smooth Hill Estimator: The smooth Hill estimator,
smooHill, is obtained by applying a smoothing technique t&- Self-similarity and long-memory
the standardHill estimator in order to reduce the volatility in
the standardill plot. Let againX ;) > X(3) > ... > X(,,) be
the ordered statistics, thenooHill estimator is defined as

Processes with some form etaling behaviour can be de-
fined as stochastic signals possesing invariance properties on all
or a set of scales(i.e., no characteristic scale can be identified).

. 1 Examples of such processes includelf-similaf29], long-
SO0 Qk,n,u = Sk g (3) memory fractal and multifractal processes[30][27][28][31].
(u= ”“ j=kr 1 The paper deals witkelf-similar and long-memoryprocesses,
whereu € {2,3}. Again a plot ofk versussmoo éy, ., should the most known of them. Striself-similarsignals(H-ss).X =

stabilize at a regiofd. {X:,t € R}, are defined as those for which appropiate changes
3) Alternative Hill Estimator: Another variant of the stan- of scale of time and space do not vary its statistical properties,
dard Hill estimator is the alternativelill estimator,altHill, i.e., processes for whichX,; = a”X,, for any t € R,

which changes the scale of thdill estimator. ThealtHill a, H > 0, where the equality is in terms of finite-dimensional
estimator can be applied to the standHlill estimator and the distributions. Wealkself-similarity, a more often used version,
smooHill estimator. When applied to tremooHill estimator, it is defined as processes for whi@X,;X,, = «*’EX,X,,
results in thealtsmooHill estimator ofé. ThealtHill estimator for any ¢,s €, R, a, H > 0. Note that strict self-similarity
is defined as implies nonstationaritylong-memoryprocesses on the other
, hand is often defined for stationary processes. Long-memory
S [n7] X(z property of finite-variance stationary signalis= {Y;,t € R}
Hppoyn = 0717 Z log( X ) 3 4) s possesed iEY;Y, ;. ~ ¢, | T [*~!(equivalently as its PSD
=1 ([¥T+2) f(w) ~cp | v|P)asT — oo(asv — 0). Indeed, a strong
where[y], is the smallest integer greater of equayter 0. For relationship between these two processes exists and aggifen
the estimation ofx we plot ¢ versusHy,e1,, for 0 < 6 < 1. similar process(H-ss) with stationary increments(Hsssi) possess
The stable region in the plot should be the estimated valuelohg-memoryin its first increment process, i.€EY;Y: . ~
@. erP~1 providedY = A'X(t;1) = X(t + 1) — X(¢) and
4) QQ-Plot: Let X = (X3, X>,...,X,,) bei.i.d observa- X belongs to the space of finite variance H-sssi processes.
tions with common distributiod’. Now let Xy, X(5,...X(,y The above for example holds true for the unique Gaussian
be the upper order statistics of, i.e., X; > X(; iff sssiprocess, namely, fractional Brownian motion(fBm) with
1 < j. Pick k upper order statistics and neglect rést- 1. 0 < H < 1. Many estimators ofHurstindex have been
The distribution of thek exceedancesX(,),.., X(x) should proposed[20][37][38]R/Sstatistic, variance based(aggregated,
be Pareto ifF' is heavy-tailed Taking the logarithm of thé: differenced, detrended), periodogram-based(GPH, cumulated,
exceedances makes its distribution approximately exponentighittle), wavelet based estimators(abry, delbeke)[23][33], etc.
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D. Estimators of theself-similarity parameter index and is defined by:
1) R/S Statistic:: The R/S Statistif5][8][9][10][38] devel- _ OO 2H
oped by E.Hurst when studying Niﬁ river is eﬁ]ned for a Vy(H) = . Yo (7) |7 [ dr ©)

processY (t) in the interval(r;, 7; + n) as
) taking the logarithm at Vd&d,(i,.)) should result in

R (iony iz max (W(ri,m) = min (Wri,n)) @ log(Var(d,(i,.))) = (2H + 1)j + K, whereK is a constant.

S S(ri,n) Abry and Veitch have suggested Harstindex estimator based
whereW (;,n) = Y (1 +u) =Y (r;) —uE(m,n) andE(1;,n)  on this behaviour using Daubechies wavelets[33][19][23]. First
and S(r;,n) denote the mean and standard deviation in thetime averageu; of d.(i.j) is computed at a given scale,
interval (7;, 7; +n). Hurst found that for long-memory records,where ;; is defined asy; = (ni)*lzgil d2(i.j), where
(7) behaves a2 {Z(r;,n)} ~ nfl,H > 0.5, in constrast, n; is the wavelet coefficient number at scaleand n the
short-memory processes folloW{£(r;,n)} ~ n®®. A log- time series points. The estimatetlirstindex is then obtained
log plot of the mean values of tHe/Sstatistic values versus from the slope of a linear regression method for,lpg) =
is an estimator of{. log, (- Y7, d3(4, ), wherei = 1,2,..., [log, (n)].

2) Block averaged methods: Variance and Absolute Mo-5) Sources of inaccuraciestigorithms’ accuracy are often
ment: Consider the aggregated seriBs, ({z;}) = Xi(m) of affected by some parameters suc_h.as cut-off selectlon,_num.ber
a length N time series[11][16]. The sample variance of th€f aggregation levels and the minimum number of points in
block averaged process V&, ({z;})) for long-memongeries _block size in regression basgd method_s. Also other parameters
behaves asymptotically as \(ﬂm({xi})) ~ e¢m~#, wheree Include number of frequencies for periodogram methods, be-

is a constant ang = 2 — 2H. From this result, a log-log plot gining and ending octave, etc. These parameters are sources
of Var(I'y,({z;})) versusm, for different values ofm, and of inaccuracies and bias the esttimates. They must be selected
such thatm, 1 /m; = C € R+ is an estimator offf. The carefully.

absolute moment oK™, AM (™), behaves asymptotically as
AM™) ~ m~P/2 thus a log-log plot ofAM (™ versusm

E. Self-similarity through high-variability

results in a line with slope-3/2 = H — 1 from which H is Self-similar traffic can be generated using the Lamperti
inferred. First method is called the variance method and ttr@nsformation based on a stationary stochastic process or can
latter the absolute moment one. be generated by the superposition of an infinite number of users

3) Periodogram based methods: Periodogram and WhittIeYVhiCh are superposed in a node. In this paper we concentrate

The periodogram/(v) = 1/(2xN) | ZN X,ev |2 for the In the generation okelf-similar traffic based orheavy-tailed
- j=1+*J

series{ X} is also an estimator ofl. The periodogram for a g!str!l;ut!ons. LetX; beha ran(:jom varl_alrélle with Iaeavy-talleﬁ i
long-memorytime series behaves d@v) ~| v [!~27 for v — distribution. Suppose the random variable can represent the file

0, therefore a log-log plot of (v) versusu is used to obtain size of traffic source or the period of transmission between

H. TheWhittle method37][32][21] [38][6] is a non-graphical SUCCESIVe packets. As the number of users oo, then,

MLE estimator strongly related to the periodogram defindg€ traffic aggregated(or superposed at a nodegissimilar
by the following relationQ(n) := [ (I(v)/f(v;n))dv + with self-similarityparamete? = (3 —min «;)/2[17][18][35].

™ log(f(v; 1))dv, wherer is a vector of unknown parameterswe used the high variability of interdepartures times for the

and f(v;n) is the spectral density at frequencyf the studied generation ofself-similar traffic.
function, the value of vectof that minimizes the function Q is l1l. SIMULATION SCENARIO

considered th&Vhittle EstimatorA discretized version of)(n) This section presents the proposed simulation scenario which
is obtained a€)*(n) = Z;Z{lm I(v)dv/f*(vj;n) whereN  generateself-similar traffic with parametetH. This scenario
is the series |ength The/hittle MLE SpeCifieS the functional turns to be an appropiate model for simulations where the
form of the spectral density at all frequencies and ttleeal degree of trafficself-similarity needs to be finely and precisely
Whittle[37][32] [6] assumes only the functional form when adjusted. The simulation scenario is shown by the network
approaches zero, namefyv) ~ G(H) |[v|' """ asv — 0and model of figure 1. In this networkself-similar traffic is
from Q*(n) the task is reduced to minimize the function  generated by an ON/OFF model, where the ON and/or OFF
M M are heavy-tailed [17][18]. Although the required number of in-
R(H) = log 1 11(31)1 —(2H — 1)iz logv; (8) dgpender_]t_ users should pe mﬁm;e alqng this mpdel, in pr.actlce,
szlvj MFI this condition is not feasible giving rise &elf-similar traffic
o _ ) generators using diverse number of sources. This diversity has
Its computation involves the introduction of the parameter 4, important impact over traffiself-similarity generation and
which is an integer less tha$f, ard satisfying;; + § — 0 measurement. For instance, in the works [1][4], oriented to
asN — oo, study the relationship between file sizes aself-similarity
4) Wavelet based methodket d. (i, j) denote the wavelet phenomena, the numbers of sources was set up 0 32
coefficients of a particular finite length sequenge}, it is and its variation seemed not to be significant to their results.
known that folong-memonprocesses the2variance atlevef In contrast, in the experiments we performed, a significant
the coefficients is given by Véi, (i,.)) = %-V,,(H)(27)*#*, relationship between this parameter and the genersédfd
whereV,,(H) depends on the particular wavelet and thest  similar traffic was found and thus, the network configuration
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of figure 1 was proposed in order to calibrate this feature. = 1.2 while bottom plot to Pareto with = 1.8. Note

As shown in the figure 1, the network consistsiafiodes(or that traces behave qualitatively d®avy-tailedprocess, i.e
sources) and output links in a packet switched configurationextreme values occur frequently. As above mentioned, the
The parameter is customizable and represents statistically

independent UDP sources, i.§,;, Ss,...,5; are i.i.d. N; and

N, represents routers through which packets from sousges 700 ‘ [ oo aphaid)
are processed and forwarded to the destination soukgem

our configurationVy; represents the node over which traffic is
superposed and thus represents our measurement point. Quel
length of nodeV; was set up td 000 packets with buffer size of
312.5kB and its output link bandwidth was set up3®.768Mb

and latency of30ms. Each link fromS; to N; and from R;

to N> has a bandwidth o8.2Mb and a latency oR0ms. In
order to obtairself-similar traffic in V¢, the traffic sources;
have a Pareto random variable generator for the inder-departur
time ¢;. Recall that ift; is a Pareto random variable, i@DF

IS given by t Alﬂ “.LA A L\lul " Elxlll\.‘}hl bbbt b Lui“ﬂL n
P(ti < t) =1— ( min )a7 (10) 0 500 1000 1500 2000

t packet Number

where the minimum value of; is t,,;, and « is the tail- 200 ‘ ‘ ‘
index. The Pareto random variable has infinite variance when [— tail index alpha=L.8]
1 < o < 2. In this case tha mean is finite. Then, in order to oo 1
keepE(t) < oo for all sources, the simulation was performed 1607
for « € {1.1,...,1.9}. Eventhough the mean of the inter- 1401
departure time rely upon the value af in our configuration

it is constant, i.e.,E(t) = 500us for all given values of

a. Likewise to normalize the data mean rate for all sources,
tmin Was tuned to each values of, with an initial value

of 0.041ms and fixed packet size @20 bytes. The network
configuration just reviewed was used in all the experiments of
the paper. We used the well-known network simulats+2in

a 2x2.8GHz Quad-Core Intel Xeon Macintosh platform. All
results were obtained from several hundreds of runs execute(
for 300 simulated seconds and varying number of sources.

Fig. 2. Typical Pareto series generated with ns-2.
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IV. RESULTS

A. Generation of Pareto series . . . .
nunmber of extremes values(i.e., of silent periods) ris- 2

In order to check the correctness of our simulation scenariganerated Pareto series occur with a non-negligible probability.
we first test the appropiate generation ledavy-tailedtraces pote that the 'usual’ values are below0Ons and that the

in ns- 2 from which users send the packets (recall that PariQuer the value ofa is the greater this value. Adill-plot
ser_ies simulate_inter-departure t_imes of packets). Figure_Z shoWs| acCDF plot will confirm the appropiate generation of
typical packet inter-departure time series tracen8 2 with  pareto series in our simulation scenario. Figure 3 shows the
a € {1.2,1.8}. Top plot correspond to Pareto series Withyjj pjots associated to traces of figure 2. Top plot corresponds
to Pareto witha = 1.2 while the bottom tax = 1.8. Note that

Hill -plots stabilize in a region and this region corresponds to
the true value ofa. CCDF plots are also helpful for testing

if a given model follows a particular probability distribution
Fx(x). CCDF plots, therefore can be used to test if a series
follows a Pareto distribution. Figure 4 shows the CCDF plots
corresponding to traces presented in figure 2. Again as before
top plot corresponds tms- 2 generated Pareto time series
with @ = 1.2 while bottom plot toa = 1.8. Note from the
figure that both time series follow accurately the reference
line corresponding to an exact Pareto time series with known
«. From the above it is seen that the generation of Pareto
time series withns- 2 is accurate sincélill and CCDF plots
estimate correctly the givea. Similar results were obtained

Fig. 1. Simulation scenario
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Fig. 4. Typical CCDF plots for ns-2 generated Pareto series
Fig. 3. Typical Hill plots for ns-2 generated Pareto series

Self-similar trace(Alpha=1.1)

when analyzing other time series corresponding to a given
source or sources.

B. Generation of Self-Similar series

In this subsection we experimentally verify that aggregate T
traffic from N sources, where each source send packets with e
inter-departure according to a Pareto series, follows and can
be modelled by aelf-similar process of parametdi. Recall
that asN — oo, H = (3 — «)/2. This subsection only test
that ggregate traffic is indeed self-similar process. Figure
5 shows typical traffic traces obtained in a network node in ; : : ‘ ‘ ‘
our simulation scenario. Note that the series obtained behaves
in accordance with aself-similar trace. The bottom trace Fig. 5. Self-Similar Series obtained from Pareto distribugion
corresponds to a trace with = 0.9 and the top plot to a
trace with H = 0.95.

0 20 40 60 8 100 120

0 20 40 60 80 100 120

o . generatingself-similar traffic for performance purposes when

C. Self-similarity and relation N = 32. Precisely generatingelf-similar traffic is important

Figure 6 shows the simulation results when considering 3@ testing the behaviour of algorithms or novel protocols and
traffic sources. The same number of traffic sources was usdrbcking its behaviour under varying degrees of correlation
in [1][4]. As can be noted from the figure, the same kind adr persistence. In fact, this degree can be accurately varied
behaviour is obtained as those of [1][4]. Note that no estimatbased on the tail-index of the traffic source. Figure 7 shows the
can follow the reference linél = (3 —min«;)/2. In fact it is variation of theHurstindex when estimated with five different
noted that the estimatds ~ H,.y + k, wherek is a constant. estimators. Note that variance-type method presents high vari-
From this it can be said that no simulation scenario, neithability. R/Sstatistic presents low variability but unfortunately its
[1][4] nor the proposed by us is capable of finely and accuratddjas is high. From the two figures is concluded that when using
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30 traffic sources in the simulation scenario shown abeed;
similar traffic is effectively generated but thdurstindex of
this generated traffic presents high bias and variability. Figure
8 shows the simulation results when usib@ traffic sources.

Note that significant improvements in the bias are obtained.
In fact, Whittle, wavelet andR/S statistic behave reasonable
well. Periodogram and variance method present high bias ands
variability. Recall that the most robust estimators are those &£
based on wavelets and the MLE estimation ones(Whittle). Our
paper takes these estimators into account and our conclusions’
area based on the results obtained from these. As above, figure
9 shows the standard deviation of the estimations oHbest-
index but when using0 traffic sources. Note that although
R/S statistic shows low bias, the variance is high and thus is
not suggested for deciding which the number of required traffic
sources is. Whittle and wavelet are the most robust among
the estimators[37][38][12][23] studied and thus can be used for
the task of deciding the required number of traffic sources for
obtaining self-similar traffic with low-bias and variance. We
also performed the same kind of analysisribtraffic sources
obtaining similar results as those 80, this behavior can be

<
g
e

0.02

0.00

Issue 1, Volume 3, 2009

Standard deviation of estimators

Periodogram
Variance
R/S Statistic
Wavelet
Whittle

Tail-index

Iaq. 7. \Variation ofHurstindex estimation for 32 users

Self-similarity and heavy-tailedness relationship

observed in Figure 10. From the above figures, we can conclude _
that the required number of users neccesary to generate accurate |
self-similar traffic is at least50 traffic sources. Also, variance s _
andR/Sstatistic methods can not be used for such a task. In 0L§ °
work, Whittle and wavelet based methods were used to decide _
the required number of users for the accurate generation &f ° |
self-similar signals. References [1][4] showed the results for?
30 traffic sources and the methods used to test the presenge’ |
were variance anB/Sstatistic. We suggest that the relationship‘§ )
betweerself-similarityparameter an@oSparameter presented & °
in that paper must be re-evaluated.
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V. CONCLUDING REMARKS

This paper described background informationseif-similar
processes anbeavy-taileddistributions. It reviewed the main
estimators both foself-similarandheavy-tailedstochastic pro-
cesses. It showed the appropiateness of the simulation scenario
first in the generation of Pareto and then aggregsedfesimilar
traces. The correct generation of Pareto was tested with Hill
based estimators while the generation of correct aggregated

Fig. 8.
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Fig. 10. EstimatedHurstindex for 70 users

(5]

(6]
[7]
(8]

[9]

(10]

(11]

(12]

(13]

self-similar traces was tested with time-domain, frequency-
domain and time-scale estimators. It also detailed the simulatiom

scenario for generatingelf-similar traffic from heavy-tailed

sources. This scenario diverges from previous reported res

in two aspectsi) the number of sources and) the increment

W

in the number oHurst parameter estimators evaluated. Based
on extensive simulation results we found that the numb@f!

of independent users impact the accuracy of thast-index

17]

and conclude that the required number of independent traffic

sources must be at least. By incrementing the number

of sources we obtain higher accuracy but with higher co
putational cost. Also, according to variation bfurst-index

fic)

estimation, the Whittle and wavelet methods were the most

suited for this type of simulation scenarios. As further wor

we propose the analysis of the relationshipseff-similarity

fo

parameter anoS performance under the scenario proposed.

Also, it would be interesting to include severself-similar

(20]

traffic flows in the topology to study its relation on adjacent
nodes and also to establish the mathematical relationship am@ng j. Lopez-Ardao, J. Lopez-Garcia, C. Suarez, A. Fernandez and M. Ro-

Hurst-indexes.
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