

Abstract— Ad hoc networks are a relatively new and promising

communication technology. Its key aspect is represented by the

specific routing protocols that assure the ad hoc manner of inter node

message exchange. But like any other communication technology, ad

hoc networks raise specific security problems, especially related to

the routing protocols. Although researchers had been very kind with

this field and lots of papers were written regarding this aspect, we see

no use of these networks in real life applications. A possible

explanation would be the lack of user confidence in the security of

these special wireless networks. As a countermeasure we propose the

use of formal validation methods, model checking in particular, to

formally prove the security properties of these protocols. The idea is

not necessary new. What represent the novelty are the used tools:

HLPSL and AVISPA. Until now researchers used in this matter only

mathematical methods or tools like SPIN, that cannot be automated

or the possible automation degree is very low. On the contrary,

AVISPA offers the possibility to highly automate the modeling the

model checking of these protocols.

Keywords—formal verification, model checking, HLPSL,

AVSIPA, implicit on-demand secure ad hoc routing protocol, ad hoc

networks, ARAN.

I. INTRODUCTION

he existence and the functioning of ad hoc networks are

based on specific routing protocols. Unlike in the wired

networks, were special nodes exist that perform routing, in the

ad hoc networks every node must act as a router for the

messages of the others. Because no infrastructure exists, the

nodes that want to communicate but are not in one another’s

communication area must rely on the intermediate nodes (with

whom both share direct link) to forward their messages. This

means that when a node wants to send some data to another

one, it first has to determine the path in the network that the

data must follow in order to reach the destination. This is

Manuscript received May 21, 2010: Revised version received May 21,

2010.

F. A. Mihai-Lica Pura is with the Military Technical Academy, Bucharest,

ROMANIA (corresponding author to provide phone: +40-021-335-64-60;

fax: +40-021-335-64-60; e-mail: puramihai@yahoo.com).

S. B. Victor-Valeriu Patriciu is with the Military Technical Academy,

Bucharest, ROMANIA (corresponding author to provide phone: +40-021-

335-64-60; fax: +40-021-335-64-60; e-mail: vip@mta.ro).

T. C. Ion Bica is with the Military Technical Academy, Bucharest,

ROMANIA (corresponding author to provide phone: +40-021-335-64-60;

fax: +40-021-335-64-60; e-mail: ibica@mta.ro).

called the route discovery phase. After that follows the data

forwarding phase, in which the actual message is sent to the

destination using the path previously determined.

These actions are performed by the routing protocols and

are transparent for the user. By the way in which the routing

protocols accomplish their task, they are divided into three

categories: pro-active, re-active and hybrid. Pro-active routing

protocols are characterized by the fact that they initiate and

complete the route discovery phase for every node in the

network, after the network initialization. Re-active routing

protocols are also called on-demand and they execute the route

discovery phase only when a node demands for a path (when

the node needs so send data to another node). Hybrid protocols

use both previous techniques, but for different partitions of the

network. We will focus in our paper only on on-demand ad

hoc routing protocols.

 The information about the forwarding path is called routing

information. It consists from the next node to which the current

node must send the data in order to get to the destination.

Taken into consideration the response of the route discovery

phase, on-demand ad hoc routing protocols can be classified in

implicit and explicit. The route discovery phase of an explicit

on-demand routing protocol, returns to the source node the

whole path from it to the destination. In the case of implicit

on-demand routing protocols, the route discovery phase

returns to the source node only the next node to whom it

should send a packet in order to reach the destination. In fact,

this kind of protocols modifies the ARP tables of all the nodes

in the corresponding path with this next node information.

The routing protocols which are concerned with security of

routing information are called secure routing protocols. For an

in-depth analysis of the vulnerabilities and possible attacks on

routing protocols please see [14, 15]. Before using such a

protocol in a real application, it should be verified if it

accomplishes the intended security properties. In [3] are

presented the current evaluation techniques for secure routing

protocols. The author goes from visual inspection, through

simulation and analytical proof systems to formal verification

through model checking, presenting the advantages that the

former technique has. This is also the field of our work: using

model checking tools to verify the security properties of

implicit on-demand secure routing protocols.

The rest of the paper is organized as fallows. In section 2 we

Modeling and formal verification of implicit on-

demand secure ad hoc routing protocols in

HLPSL and AVISPA

MIHAI-LICA PURA, VICTOR-VALERIU PATRICIU, ION BICA

T

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 3, 2009

25

present the formal framework of formal analysis that has been

already used to verify secure routing protocols. In the third

section we present AVISPA model checker and the models

that it uses for the components necessary for the verification of

secure routing protocols, in relation to the models used in

formal analysis and we prove the correspondence between

them. In section 4 we present ARAN, an implicit on-demand

secure routing protocol and the way we had modeled it for

AVISPA’s model checker. Section 5 presents the results of

formal verification and the last section contains some

conclusions.

II. RELATED WORK

When developing a secure routing protocol is important to

be able to prove that it has the desired security properties. One

of the most used techniques is formal analysis. Formal analysis

is based on a mathematical modeling of the analyzed system.

To model the system means to model its components. For

secure routing protocols the system is represented by the

network, the adversary and by the routing protocol itself. So

the analysis starts by specifying the models used for the

network, for the adversary and for the secure routing protocol.

Having established this formal framework, one can specify

what are the security properties required for the secure routing

protocol. After establishing the objectives, the model allows

the proving or the disproving of the validity of the properties

for the secure routing protocol. Examples of this approach can

be found in [1], with the case study of TinyOS which is proved

to be insecure, in [2], with the analysis of SRP, DV-SRP and

SLSP, and in [4], with the analysis of SRP and Ariadne.

 In the formal framework enumerated above, the network is

considered to be the collection of all the honest nodes and the

adversary. The nodes are considered static ([1]), and they are

considered to have a single antenna and a unique name in the

network. If the adversary has more than one antenna, it is

modeled as more than one node. Given the fact that the ad hoc

networks are wireless networks, when a node sends a message,

all the nodes in its communication range receive that message

too. By analyzing the contents of the message, every node will

then establish if it should drop or process the message ([3]).

Generally, it is assumed that the wireless links between the

nodes are symmetric, which means that if a node A can receive

a transmission form a node B, node B can also receive a

transmission form node A ([4]).

The adversary is a node of the network that deviates and

actively disrupts the network operation ([2]). From the point of

view of its resources, the adversary is considered as the most

powerful node in the network: it uses a device with a powerful

antenna and an unconstrained energy supply ([1]). If more than

one adversary exists in the network, it is assumed that they can

communicate in out-of-the-band channels (using different

frequencies or a wired connection). Regarding the secure

routing protocol, it is assumed that the adversary nodes can

generate any messages and can replay or modify any received

messages ([2], [3]). Also, in [1] it is proved that an adversary

can also delete original messages and inject its own fabricated

messages instead. Based on these two operations, the

adversary can also re-order message sequences. The only

restriction imposed for the adversary is that it has a finite

processing power and so it cannot mount cryptanalytic attacks

in order to compromise a symmetric or an asymmetric key, nor

can it inverse one-way and hash functions ([2]). The actions

that the adversary will perform are of course dependent on the

secure routing protocol targeted, but, generally speaking, it

will try to shorten the network life time, degrade the packet

delivery ratio, increase its control over traffic and increase

network delay ([1]).

The routing protocol is modeled as a distributed algorithm

that operates on the collection of the nodes and their direct

communication links ([4]). The input of the protocol is a pair

of identities: the identity of the source node, and the identity of

the destination node. After a finite time interval, the routing

algorithm outputs the route between the two nodes, to the

source node. When the output is obtained by the source node,

it is said that the protocol had discovered the route ([2]).

III. AVISPA FORMAL ANALYSIS FRAMEWORK

Our purpose was to automate the formal analysis of secure

routing protocols. It was not hard to find the start point in this

research. To conclude the previous section about formal

analysis frameworks, we highlight the fact that formal analysis

is in fact a formal verification process. The system that needs

to be analyzed (verified) is first formalized (modeled)

according to some previous established assumptions. Then, the

intended properties for the system are also formalized. The

actual analysis step follows, in which, based on the made

assumptions and on the models of the system and of the

properties, the validity of the properties is established. It is

important to note that the results depend on the considered

model.

For the automated formal verification we used AVISPA

tool. AVISPA project was developed based on EU founds in

FET Open program, IST priority. Its purpose was to build an

industrial scale formal verification technology for Internet

protocols and applications, with a special emphasis on

security. The importance of AVISPA is given by the fact that it

has a high capacity of developing new network protocols and

of securing already proposed protocols, making them easier to

accept by the users. The key element of the project is the

formal specification and deduction technology that automate

the analysis of the security protocols. According to [12] there

is no other formal verification tool that has the same

applicability and robustness, by offering in the same time high

scalability and performance. A special characteristic of

AVISPA is that a same specification can be validated by four

tools: OFMC, CL-AtSe, SATMC and TA4SP. For more

information regarding the characteristics of these tools, please

consult AVISPA user manual [6], and [16].

In order to highlight the parallelism with formal analysis, we

will next present the models that AVISPA uses for the

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 3, 2009

26

network, for the intruder and the way in which it permits the

modeling of a secure routing protocol. In AVISPA the network

is represented as a collection of processes that communicate.

Each of these processes represent a node in the network, and

the special process named i represents the intruder. Each of

these processes can communicate with the others using

variables of type channel ([6]): one for sending messages and

one for receiving messages. The model of the network is

directly linked to the model of the intruder. And we will next

show how. The model of the intruder in AVISPA is

determined by the model of the channels used by the nodes for

communications. Currently, the only supported channel model

is Dolev-Yao. Under this model, the intruder is assumed to

have full control over the network. In consequence, all the

messages sent by the nodes go through the intruder. So it can

intercept, analyze, and / or modify any message (as far it

knows the required keys), and it can send any message that it

has composed to any node that it wants, posing as any other

node [5]. This type of model for the intruder (and for the

channel) means that it is not really important the channels that

a node uses for communications: the network is the intruder,

and the intruder is the network. An intended connection

between certain channel variables (e.g. a node A send

messages on a channel SndA for the node B who receives them

on the channel RcvA) is irrelevant.

Being given this network-channel-intruder dependence, any

message sent by a node in the network will be in fact

broadcasted to all the other nodes. Of course, the message can

be received only by the nodes for which such a message was

specified as a possible received message. We state that this

model is a perfect model for the verification of secure routing

protocols for ad hoc networks. And we will next prove why.

First of all, in the ad hoc network a message emitted by a node

will be received by all the other nodes that are in the

communication area of the source node. This request is

accomplished in AVISPA network model and even more: we

cannot specify the exact topology of the network (in the sense

that which nodes are in which nodes communication area) but

the fact that all the nodes can receive a sent message is even

better, because this way, when generating the states for the

system, the model checker will generate all the possible

combinations of source node-destination node pairs. This

means that the verification will be made over all the possible

topologies that can be built with the specified number of

nodes.

Comparing the modes used by AVISPA for the network and

for the intruder, with the ones described in the previous section

one can observe the concordance between them. This means

that the results obtained based on AVISPA models will have

the same generality as the results obtain by formal analysis.

IV. MODELING ARAN IN HLPSL

To show how AVSIPA can be used to verify the security

properties of implicit on-demand secure routing protocols,

based on the previous presented models used by this formal

verification tool, we have chosen ARAN (Authenticated

Routing for Ad hoc Networks) secure routing protocol,

introduced in [7], and proved to be insecure in [11] and [17].

In order to verify ARAN using AVISPA, it has to be

modeled using a special input language called HLPSL (High

Level Protocol Specification Language). All the nodes in the

network that perform the same actions regarding the modeled

protocol have to be grouped together in what HLPSL calls

basic roles. A basic role is a module in which can be specified

what information a class of nodes can initially use (as

parameters of the role), their initial state, and the ways in

which this state can change. Taken into consideration the

authenticated route discovery part of ARAN, the nodes of a

wireless ad hoc network (by the actions that they perform) can

be grouped in three roles: source, destination and intermediate.

The source node initiates the authenticated route discovery

process by broadcasting a route discovery packet (RDP) which

contains the route discovery packet identifier (RDP), the IP

address of the destination to which the route is needed, the

certificate of the source node, a nonce and the current time. All

this information is signed with the private key of the source

node.

A -> broadcast: [RDP, IPX, certA, NA, t]privA

Depending on the topology of the network, this packet will

reach directly the destination, or will reach an intermediate

node. When a node receives a RDP packet directly from the

source node, it will validate the certificate of the source node

(A in our example); it will then extract the public key and will

check the signature of the source node over the message. If the

signature is valid, the intermediate node will check to see if it

has not already processed this RDP by looking at the tuple

(IPA, NA). If it has already processed the RDP, the package is

discarded. Otherwise the intermediate node will sign the

received packet, will append its own certificate and then will

broadcast the new composed packet.

When a node receives a RDP packet from another

intermediate node, it will only validate the certificate and the

signature of the previous intermediate node. Then it will

perform the same check as previous described. Before

broadcasting the packet, this new intermediate node will

remove the signature and the certificate of the previous

intermediary and will add its own signature and certificate.

Eventually the packet will arrive at the destination node.

This node will validate the certificate of the source node and

its signature and / or the certificate of the last intermediate

node and its signature, depending if the RDP has reached

directly the destination or it has traveled through one or more

intermediate nodes. Then, the destination will verify if it had

not already responded to this RDP, by looking also at the tuple

(IPA, NA). If the message was already processed, it is

discarded. Otherwise the destination composes a replay packet

(REP) that contains the identifier of the packet type (REP), the

IP address of the source from which the corresponding RDP

had came, the certificate of the destination node, the nonce and

the time from the RDP package. All the information is signed

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 3, 2009

27

with the private key of the destination node.

The destination node sends the packet not by broadcast, but

by unicast to the node from which it has received the associate

RDP packet. Dependent on the topology, the packet will arrive

directly to the destination, or it fill first travel through one or

several intermediate nodes. Again, these intermediate nodes

will not broadcast the REP, but it will send it only to the node

from which they received the corresponding RDP. The first

intermediate node will validate the certificate and the signature

of the destination, it will sign the REP, add its own certificate

and then unicast it. The other intermediate nodes will do the

same, but they will validate only the certificate and the

signature of the previous intermediate node. As in the case of

RDP, the intermediates will remove the signature and the

certificate of the previous intermediate, it will then add their

own signature and certificate and only then they will unicast

the packet. When the source receives the REP it will have to

validate the certificate and the signature of the destination

node and / or of the previous intermediary.

In order to verify the security properties of the route

discovery phase of ARAN, we had to model three roles: the

role of the source node, the role of the intermediate nodes, and

the role of the destination node. As described above, the

source node performs two actions: it sends the RDP for a given

destination node and it receives the REP for the associate

RDP. Regarding the receiving of the REP, it can be received

directly from the destination, or from an intermediate node. In

the two cases, the REPs will have different formats. The

HLPSL code for the source node is:

role source(S, D : agent,

 Ks, Kd : public_key,

 KeyRing : (agent.public_key) set,

 Snd, Rcv : channel(dy))

played_by S def=

local State : nat,

 H : agent,

 Na : text,

 Kh : public_key,

 RDP, REP : text

init State := 0

transition

rreq. State = 0 /\ Rcv(start)

 =|> State' := 2 /\ Na' := new() /\ RDP' := new() /\

Snd({RDP'.D.S.Ks.Na'}_inv(Ks))

confirmi. State = 2 /\

Rcv({{REP'.S.D.Kd.Na}_inv(Kd)}_inv(Kh').H'.Kh') /\

in(H'.Kh',KeyRing)

 =|> State' := 3 /\ request(D,S,shd,Na)

confirmd. State = 2 /\ Rcv({REP'.S.D.Kd.Na}_inv(Kd))

 =|> State' := 3 /\ request(D,S,shd,Na)

end role

The parameters of the role represent the initial knowledge of

a source node: its identity S in the network, the identity of the

destination node to which it will have to send messages, the

public key of the destination node, and two variables of type

channel for sending and receiving messages. The variable

KeyRing is in fact an array that contains the certificates of all

the nodes in the network (we modeled the certificates as pairs

of identities and public keys, but without being signed by the

certification authority). We have chosen to give to each role

the knowledge of all the agents and their public keys in order

to eliminate the need to model the central authority and the

request / receive of certificates for a given identity, and thus

reducing the state space. Of course, this will eliminate the

possibility to model key revocation, but it will not have any

effect on the security properties of the actual secure routing

protocol.

As can be seen from the HLPSL code, the source node is

requested to initiate the route discovery by sending it the start

message when it is in the initial state. After sending the RDP,

the source node changes the state to a one in which it just waits

for the REP. The validation of the certificate is made by

searching it in the KeyRing array. The validation of the

signature is implicit: it could have been made only by the

inverse key of the public key. So if the corresponding key is

found in KeyRing, the signature is also validated.

Another interesting modeling aspect is related to the

timestamps. As one can observe from the HLPSL code of the

source node, the RDP and REP packets do not contain the

timestamp information, as specified by ARAN’s authors. The

fact is that HLPSL (and in particular AVISPA’s back-ends) do

not support time. But what timestamps should achieve is to

limit the time window in which a message is accepted by a

recipient and thus limiting the replay of messages. So AVISPA

project team propose and suggest the use of weak

authentication security goal instead of the standard

authentication, in which such attacks are ignored ([13]).

The intermediate nodes perform also two actions: the

forwarding of a RDP and the forwarding of a REP. In both

cases, the packets can have two formats, depending if they

were received directly from the source/destination or from

another intermediate node. The HLPSL code for an

intermediate node is:

role node(N : agent,

 Kn : public_key,

 Memory : (text.text.agent) set,

 KeyRing : (agent.public_key) set,

 Snd, Rcv : channel(dy))

played_by N def=

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 3, 2009

28

local State : nat,

 Ks, Kd, Kh : public_key,

 Na : text,

 S, D, H : agent,

 RDP, REP : text

init State := 1

transition

forward10. State = 1 /\ Rcv({RDP'.D'.S'.Ks'.Na'}_inv(Ks'))

/\ not(in(RDP'.Na'.D', Memory))

 =|> State' := 1 /\ Memory' :=

cons(RDP'.Na'.D',Memory) /\

Snd({{RDP'.D'.S'.Ks'.Na'}_inv(Ks')}_inv(Kn).N.Kn)

forward11. State = 1 /\

Rcv({{RDP'.D'.S'.Ks'.Na'}_inv(Ks')}_inv(Kh').H'.Kh') /\

not(in(RDP'.Na'.D', Memory))

 =|> State' := 1 /\ Memory' :=

cons(RDP'.Na'.D',Memory) /\

Snd({{RDP'.D'.S'.Ks'.Na'}_inv(Ks')}_inv(Kn).N.Kn)

end role

An intermediate node can only be in one state: the one in

which it receives and forwards RDP and REP packets.

Because the format of the two packets is the same and because

the actions involved by forwarding are the same, we only

modeled the code for the RDP, but it is actually used for REP

also. When receiving a packet, the node will first search the

tuple (Na,D) in the array Memory. If the tuple is found there, it

means that the request was already processed, and the message

is discarded. If the tuple is not in Memory, it means that the

node has not already seen the same message and will process

it. After that it will save the tuple in the array for the next

verifications. Regarding the validation of the signatures and of

the certificates in the messages, the observations made for the

source node apply here too.

The destination node has to perform a single action: to

respond to a received RDP. The RDP can have two formats,

depending if it was received directly from the source, or if it

has traveled through one ore mode intermediates. The HLPSL

code for the destination node is given next.

role destination(D : agent,

 Kd : public_key,

 Memory : (text.text.agent) set,

 KeyRing : (agent.public_key) set,

 Snd, Rcv : channel(dy))

played_by D def=

local State : nat,

 S, H : agent,

 Na : text,

 Ks, Kh : public_key,

 RDP, REP : text

init State := 4

transition

respondd. State = 4 /\ Rcv({RDP'.D.S'.Ks'.Na'}_inv(Ks'))

/\ in(S'.Ks',KeyRing) /\ not(in(RDP'.Na'.S',Memory))

 =|> State' := 6 /\ Memory' :=

cons(RDP'.Na'.S',Memory) /\ REP' := new() /\

Snd({REP'.S'.D.Kd.Na'}_inv(Kd)) /\ witness(S',D,shd,Na')

respondi. State = 4 /\

Rcv({{RDP'.D.S'.Ks'.Na'}_inv(Ks')}_inv(Kh').H'.Kh') /\

in(H'.Kh',KeyRing) /\ not(in(RDP'.Na'.S',Memory))

 =|> State' := 6 /\ Memory' :=

cons(RDP'.Na'.S',Memory) /\ REP' := new() /\

Snd({REP'.S'.D.Kd.Na'}_inv(Kd)) /\ witness(S',D,shd,Na')

end role

The destination node waits for RDP packets and responds to

them according to the protocol. Like an intermediate node, it

will first determine if it has already responded to the request

using the same mechanism: the tuple (Na,D) for an answered

packet is saved for future verifications. The validation of

certificates and signatures is done in the same way as

described for the source node.

Based on these three roles, the scenario (in fact the network)

in which the protocol will be verified, can be modeled. The

model of the network is made in a composed role. We give

below an example of such a role. One can observe that the

network is modeled by instantiating one process of type source

role, none, one or several processes of type intermediate role,

and a single process of type destination role. To reduce the

state space, we modeled the source node and the destination

node for a single route discovery. That is why the network

should contain only one source node and one destination node.

Besides the instantiations of the processes that represent the

nodes of the network, the composed role that we named

session contains the declarations and the initializations of

some of the parameters for the roles: the channels, the arrays

used for transmitting the certificates, and the arrays used for

storing the identifiers for the processed packets.

role session(T, U, V, W : agent,

 Kt, Ku, Kv, Kw : public_key) def=

 local S1, R1,

 S2, R2,

 S3, R3,

 S4, R4 : channel(dy),

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 3, 2009

29

 Mem1, Mem2, Mem3 : (text.text.agent) set,

 KS1, KS2, KS3, KS4 : (agent.public_key) set

 init Mem1 := {} /\ Mem2 := {} /\ Mem3 := {} /\ KS1 :=

{T.Kt,U.Ku,V.Kv,W.Kw} /\ KS2 :=

{T.Kt,U.Ku,V.Kv,W.Kw} /\ KS3 :=

{T.Kt,U.Ku,V.Kv,W.Kw} /\ KS4 :=

{T.Kt,U.Ku,V.Kv,W.Kw}

 composition

 source(T,W,Kt,Kw,KS1,S1,R1)

 /\node(U,Ku,Mem1,KS2,S2,R2)

 /\node(V,Kv,Mem2,KS3,S3,R3)

 /\destination(W,Kw,Mem3,KS4,S4,R4)

end role

The security properties of ARAN, as is stated in its

presentation in [7], are based on the fact that all the packets are

exchange in an authenticated manner. That is why the security

property that we formal verified was the authentication of the

destination by the source node when it receives the REP for

the RDP that it has sent. In order to verify this property, it had

to be formally specified. An authentication security goal

consists out of two goal facts (witness and request) and a goal

(authentication). The goal facts are used to augment the

transitions of the basic roles, and the authentication goal is

used to assign a meaning to them. Witness and request are

used to check if an instance of a role is right in believing that

its peer is present in the current session, has reached a certain

state, and agrees on a certain value, which typical is fresh

([5]). They always appear in pair and have the same third

parameter. This third parameter is the identifier of the

authentication goal and it is used in the goals section of the

HLPSL code. In our protocol, the destination node D has to

authenticate to the source node S and they both should agree

on the value of Na, and vice versa. That is why the goal facts

were used to augment the transition in which the destination

node receives, process and responds to the RDP (witness), and

the transition in which the source nodes receives the REP

answer (request).

V. FORMAL VERIFICATION RESULTS

For the verification we used a personal computer running

openSuse 11.0, with 2 GB of RAM and an Intel DualCore 2

GHz processor. After completing the specification as

described above, we divided the verification process into two

steps. The first step was to validate the specification using

OFMC back-end tool of AVISPA, and the second step was to

use ATSE back-end. For both steps we prepared the same

input files. These input files were in number of four. The first

input file represented an ad hoc network formed by only two

nodes: the source node and the destination node (from HLPSL

point of view, this meant the composition of a source role with

a destination role). The second file added an intermediate node

in order to represent a three node ad hoc network (a source

role was composed with a node role and a destination role).

Each of the two remaining files added another node role to the

specifications, representing this way a four, and respectively, a

five node ad hoc network.

OFMC is the back-end tool of AVISPA that has the highest

speed in detecting attacks. This is the reason for which we

started the verification with it. The first specification was

successfully validated and OFMC report that it is safe. For the

other three specifications, OFMC did not complete the

validation, not even after 72 hours. So we decided to perform a

validation with a depth bound for the search. This means that

when expanding the state space of the model, OFMC does a

depth-first search (for which it only goes to a depth level that

is less of equal to the bound), while the standard search

strategy is a combination of iterative deepening search with

breadth-deep search. This bounding resulted in a smaller

validation time. We considered the bounds varying from two

to twelve. The time needed for the validation in each case is

given in the table below. The cells that contain a dash

represent an incomplete validation, which was interrupted after

one hour. It is worth mentioning that for every bounded

validation, OFMC reported the protocol to be safe, according

to the specified goals. According to AVISPA user manual, this

bounded search does not affect the validity of the results,

because the messages an intruder can generate are not

bounded. In fact, this is the only way in which OFMC can be

used not to find attacks, but to validate a protocol.

Tabel 1 Validation time for OFMC

Boun

d

OFMC validation time (s)

for

3

nodes

4

nodes

5

nodes

2 0.03 0.03 0.04

3 0.04 0.1 0.32

4 0.14 0.75 2.9

5 0.57 4.93 26.34

6 2.48 34.59
195.9

2

7 10.56
190.0

8

1660.

05

8 44.20
1211.

83
-

9
176.0

9
- -

10
228.5

9
- -

11
1256.

4
- -

12
4185.

8
- -

AVISPA’s ATSE back-end tool provides a translation for

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 3, 2009

30

the protocol specification into a set of constrains. In particular,

each step of the protocol is modeled by using constraints on

the adversary’s knowledge. Then, these constraints are used to

find attacks against the specified security objectives. The

algorithm that this tool is using is designed for a bounded

number of protocol steps. But, according to the manual, if the

protocol is loop free, all the specification will be verified.

When feeding the input files to ATSE, it completed the

verification process and reported that the protocol is safe, only

for the first three network topologies. For the five node ad hoc

network the validation was uncompleted even after three

hours, and it was interrupted. The time consumed for the

verification of each of the four specifications is given in the

table below.

Tabel 2 Validation time for ATSE

ATSE validation time (s) for

2

nodes

3

nodes

4

nodes

5

nodes

0.01 0.25 14.26 -

One can observe that ATSE back-end is faster than OFMC.

Nevertheless, both of the two tools should be used together,

because they apply different algorithms. So if both report that

the protocol is safe, the probability that the actual system

accomplishes the security objectives is higher.

We restricted the verification to an ad hoc network of

maximum 5 nodes. If it is necessary to perform the verification

for a higher number of nodes, the tables can help us in

approximating the amount of time needed for such an attempt.

For OFMC, it can be approximated that in an hour it can

validate the protocol for a network of maximum 8 nodes with a

session number bound of 2. We appreciate that for any other

network larger than 8 nodes, the verification process will last

too much to worth expecting its end.

VI. CONCLUSION

In our paper we presented how AVISPA formal verification

tool can be used to validate the security properties of implicit

on-demand ad hoc secure routing protocols. In order to prove

the technique, we demonstrated it in a case study: formal

verification of ARAN.

From our knowledge and as stated in [3] there were very

little attempts to apply model checking techniques for secure

routing protocols in general, and for implicit on-demand

secure routing protocols in particular. We only know the

attempts of using SPIN model checker (for DSR, SRP,

Ariadne and endairA [3] and [10]), HOL theorem proofer

([8]), CPAL-ES (for SRP [9]), and Uppaal (for ARAN [11]).

But we did not find any reports of using AVISPA in this

purpose. So we consider that our work is an important step

forward in using formal verification for secure routing

protocols too.

 The major advantage of our approach is the use of AVISPA

toolkit and its specification language. The reason is related to

the models that this tool uses for the network and the intruder,

as shown in section 3. The way these models are implemented,

assure that a verification process is performed for all the

possible topologies that can exist, being given the number and

the type of the roles specified. We consider this a major

improvement of the formal verification of ad hoc routing

protocols, because it is specific for them to have an evolving

topology. For example, in the solution proposed and used by

Andel in [3] (SPIN and Promela to formally verify DSR and

SRP), one has to explicitly specify each of the network

topologies for which the validation has to be made.

Our work was focused only on how to specify in HLPSL

implicit on-demand ad hoc routing protocols. We have

highlighted in section 5 the special problems raised by this

language in order to model the entire specification of ARAN.

Based on this example, any other implicit on-demand routing

protocol based on PKI security, can be easily model and

verified. In our future work we intend to complete the formal

verification of ad hoc routing protocols by taken into

consideration explicit on-demand ad hoc routing protocols.

Also, we intend to see how this technique can be applied for

the latest propositions for secure routing protocols that are

based on identity-based cryptography ([18]).

REFERENCES

[1] Gergely Acs, Levente Buttyan, Istvan Vajda, “Modelling Adversaries

and Security Objectives for Routing Protocols in Wireless Ad hoc

Networks”, in Proceedings of the Fourth ACM Workshop on Security of

ad hoc and sensor networks, 2006

[2] Panagiotis Papadimitratos, Zygmunt J. Haas, Jean-Pierre Hubaux, “How

to Specify and how to Prove Correctness of Secure Routing Protocols

for MANET”, in IEEE-CS Third International Conference on

Broadband Communications, Networks and Systems, 2006

[3] Todd R. Andel, Alec Yasinsac, “Automated Security Analysis of Ad

Hoc Routing Protocols”, in Proceedings of the Joint Workshop on

Foundations of Computer Security and Automated Reasoning for

Security Protocol Analysis, 2007

[4] Levente Buttyan, Istvan Vajda, “Towards Provable Security for Ad Hoc

Routing Protocols”, in Proceedings of the Second ACM Workshop on

Security of ad hoc and sensor networks, 2002

[5] The AVISPA team, “HLPSL Tutorial”, 2006

[6] The AVISPA team, “AVISPA v1.1 User Manual”, 2006

[7] Kimaya Sanzgiri, Bridget Dahill, “A Secure Routing Protocol for Ad

Hoc Networks”, in Proceedings of the 10th IEEE International

Conference on Network Protocols, 2002

[8] Karthikeyan Bhargavan, Davor Obradovic, Carl A. Gunter, “Formal

verification of standards for Distance Vector Routing Protocols”, in

Journal of the ACM (JACM), 2002

[9] John D. Marshall, II, “An Analysis of the Secure Routing Protocol for

Mobile Ad Hoc Route Discovery: Using Intuitive Reasoning and Formal

Verification to Identify Flaws”, MD Thesis, the Florida State University,

2002

[10] Todd R. Andel, “Formal Security Evaluation of Ad Hoc Routing

Protocols”, PhD Thesis, the Florida State Univeristy, 2007

[11] Jens Chr. Godskesen, Olena Gryn, “Modeling and Verification of

Security Protocols for Ad Hoc Networks using Uppaal”, in Proceedings

18thNordic Workshop on Programming Theory, 2006

[12] A. Armando, D. Basin, J. Cuellar, M. Rusinowitch, L. Vigano,

“AVISPA: Automated Validation of Internet Security Protocols and

Applications”, ERCIM News – Online Edition, no. 64, January 2006

[13] AVISPA mailing list, http://avispa-project.org/avispa-users-old/2006-

May/000219.html

[14] Ali Ghaffari, “Vulnerability and Security of Mobile Ad Hoc Networks”,

in Proceedings of the 6th WSEAS International Conference on

Simulation, Modelling and Optimization, 2006

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 3, 2009

31

[15] B. Malarkodi, B. Venkataramani, X.T. Pradep, “Modified AODV

Protocol for Prevention of Denial of Service Attacks in Wireless Ad Hoc

Networks”, in Proceedings of the 5th WSEAS Int. Conf. on Applied

Informatics and Communications, 2005

[16] Abdelilah Tabet, Seonghan Shin, Kazukuni Kobara, Hideki Imai, “On

Formal Verification Methods for Passwords Based Protocols: CSP/FDR

and AVISPA”, in Proceedings of the 4th WSEAS International

Conference on Information Security, Communications and Computers,

2005

[17] Abdalla Mahmoud, Ahmed Sameh, Sherif El Kassas, “Authenticated

Routing for Ad Hoc Networks Protocol and Misbehaving Nodes”, in

Proceedings of the 4th WSEAS International Conference on

Telecommunications and Informatics, 2005

[18] Jue-Sam Chou, Chu-Hsing Lin, Chia-Hung Chiu, “An Identity-Based

Scheme for Ad Hoc Network Secure Routing Protocol from Pairing”, in

Proceedings of the 5th WSEAS International Conference on Applied

Computer Science, 2006

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 3, 2009

32

	19-292
	19-311

