
 

 

  

Abstract— Ad hoc networks are a relatively new and promising 

communication technology. Its key aspect is represented by the 

specific routing protocols that assure the ad hoc manner of inter node 

message exchange. But like any other communication technology, ad 

hoc networks raise specific security problems, especially related to 

the routing protocols. Although researchers had been very kind with 

this field and lots of papers were written regarding this aspect, we see 

no use of these networks in real life applications. A possible 

explanation would be the lack of user confidence in the security of 

these special wireless networks. As a countermeasure we propose the 

use of formal validation methods, model checking in particular, to 

formally prove the security properties of these protocols. The idea is 

not necessary new. What represent the novelty are the used tools: 

HLPSL and AVISPA. Until now researchers used in this matter only 

mathematical methods or tools like SPIN, that cannot be automated 

or the possible automation degree is very low. On the contrary, 

AVISPA offers the possibility to highly automate the modeling the 

model checking of these protocols. 

 

Keywords—formal verification, model checking, HLPSL, 

AVSIPA, implicit on-demand secure ad hoc routing protocol, ad hoc 

networks, ARAN. 

I. INTRODUCTION 

he existence and the functioning of ad hoc networks are 

based on specific routing protocols. Unlike in the wired 

networks, were special nodes exist that perform routing, in the 

ad hoc networks every node must act as a router for the 

messages of the others. Because no infrastructure exists, the 

nodes that want to communicate but are not in one another’s 

communication area must rely on the intermediate nodes (with 

whom both share direct link) to forward their messages. This 

means that when a node wants to send some data to another 

one, it first has to determine the path in the network that the 

data must follow in order to reach the destination. This is 
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called the route discovery phase. After that follows the data 

forwarding phase, in which the actual message is sent to the 

destination using the path previously determined. 

These actions are performed by the routing protocols and 

are transparent for the user. By the way in which the routing 

protocols accomplish their task, they are divided into three 

categories: pro-active, re-active and hybrid. Pro-active routing 

protocols are characterized by the fact that they initiate and 

complete the route discovery phase for every node in the 

network, after the network initialization. Re-active routing 

protocols are also called on-demand and they execute the route 

discovery phase only when a node demands for a path (when 

the node needs so send data to another node). Hybrid protocols 

use both previous techniques, but for different partitions of the 

network. We will focus in our paper only on on-demand ad 

hoc routing protocols. 

 The information about the forwarding path is called routing 

information. It consists from the next node to which the current 

node must send the data in order to get to the destination. 

Taken into consideration the response of the route discovery 

phase, on-demand ad hoc routing protocols can be classified in 

implicit and explicit. The route discovery phase of an explicit 

on-demand routing protocol, returns to the source node the 

whole path from it to the destination. In the case of implicit 

on-demand routing protocols, the route discovery phase 

returns to the source node only the next node to whom it 

should send a packet in order to reach the destination. In fact, 

this kind of protocols modifies the ARP tables of all the nodes 

in the corresponding path with this next node information. 

The routing protocols which are concerned with security of 

routing information are called secure routing protocols. For an 

in-depth analysis of the vulnerabilities and possible attacks on 

routing protocols please see [14, 15]. Before using such a 

protocol in a real application, it should be verified if it 

accomplishes the intended security properties. In [3] are 

presented the current evaluation techniques for secure routing 

protocols. The author goes from visual inspection, through 

simulation and analytical proof systems to formal verification 

through model checking, presenting the advantages that the 

former technique has. This is also the field of our work: using 

model checking tools to verify the security properties of 

implicit on-demand secure routing protocols.  

The rest of the paper is organized as fallows. In section 2 we 
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present the formal framework of formal analysis that has been 

already used to verify secure routing protocols. In the third 

section we present AVISPA model checker and the models 

that it uses for the components necessary for the verification of 

secure routing protocols, in relation to the models used in 

formal analysis and we prove the correspondence between 

them. In section 4 we present ARAN, an implicit on-demand 

secure routing protocol and the way we had modeled it for 

AVISPA’s model checker. Section 5 presents the results of 

formal verification and the last section contains some 

conclusions. 

II. RELATED WORK 

When developing a secure routing protocol is important to 

be able to prove that it has the desired security properties. One 

of the most used techniques is formal analysis. Formal analysis 

is based on a mathematical modeling of the analyzed system. 

To model the system means to model its components. For 

secure routing protocols the system is represented by the 

network, the adversary and by the routing protocol itself. So 

the analysis starts by specifying the models used for the 

network, for the adversary and for the secure routing protocol. 

Having established this formal framework, one can specify 

what are the security properties required for the secure routing 

protocol. After establishing the objectives, the model allows 

the proving or the disproving of the validity of the properties 

for the secure routing protocol. Examples of this approach can 

be found in [1], with the case study of TinyOS which is proved 

to be insecure, in [2], with the analysis of SRP, DV-SRP and 

SLSP, and in [4], with the analysis of SRP and Ariadne. 

 In the formal framework enumerated above, the network is 

considered to be the collection of all the honest nodes and the 

adversary. The nodes are considered static ([1]), and they are 

considered to have a single antenna and a unique name in the 

network. If the adversary has more than one antenna, it is 

modeled as more than one node. Given the fact that the ad hoc 

networks are wireless networks, when a node sends a message, 

all the nodes in its communication range receive that message 

too. By analyzing the contents of the message, every node will 

then establish if it should drop or process the message ([3]). 

Generally, it is assumed that the wireless links between the 

nodes are symmetric, which means that if a node A can receive 

a transmission form a node B, node B can also receive a 

transmission form node A ([4]).  

The adversary is a node of the network that deviates and 

actively disrupts the network operation ([2]). From the point of 

view of its resources, the adversary is considered as the most 

powerful node in the network: it uses a device with a powerful 

antenna and an unconstrained energy supply ([1]). If more than 

one adversary exists in the network, it is assumed that they can 

communicate in out-of-the-band channels (using different 

frequencies or a wired connection). Regarding the secure 

routing protocol, it is assumed that the adversary nodes can 

generate any messages and can replay or modify any received 

messages ([2], [3]). Also, in [1] it is proved that an adversary 

can also delete original messages and inject its own fabricated 

messages instead. Based on these two operations, the 

adversary can also re-order message sequences. The only 

restriction imposed for the adversary is that it has a finite 

processing power and so it cannot mount cryptanalytic attacks 

in order to compromise a symmetric or an asymmetric key, nor 

can it inverse one-way and hash functions ([2]). The actions 

that the adversary will perform are of course dependent on the 

secure routing protocol targeted, but, generally speaking, it 

will try to shorten the network life time, degrade the packet 

delivery ratio, increase its control over traffic and increase 

network delay ([1]).  

The routing protocol is modeled as a distributed algorithm 

that operates on the collection of the nodes and their direct 

communication links ([4]). The input of the protocol is a pair 

of identities: the identity of the source node, and the identity of 

the destination node. After a finite time interval, the routing 

algorithm outputs the route between the two nodes, to the 

source node. When the output is obtained by the source node, 

it is said that the protocol had discovered the route ([2]).  

III. AVISPA FORMAL ANALYSIS FRAMEWORK 

Our purpose was to automate the formal analysis of secure 

routing protocols. It was not hard to find the start point in this 

research. To conclude the previous section about formal 

analysis frameworks, we highlight the fact that formal analysis 

is in fact a formal verification process. The system that needs 

to be analyzed (verified) is first formalized (modeled) 

according to some previous established assumptions. Then, the 

intended properties for the system are also formalized. The 

actual analysis step follows, in which, based on the made 

assumptions and on the models of the system and of the 

properties, the validity of the properties is established. It is 

important to note that the results depend on the considered 

model.  

For the automated formal verification we used AVISPA 

tool. AVISPA project was developed based on EU founds in 

FET Open program, IST priority. Its purpose was to build an 

industrial scale formal verification technology for Internet 

protocols and applications, with a special emphasis on 

security. The importance of AVISPA is given by the fact that it 

has a high capacity of developing new network protocols and 

of securing already proposed protocols, making them easier to 

accept by the users. The key element of the project is the 

formal specification and deduction technology that automate 

the analysis of the security protocols. According to [12] there 

is no other formal verification tool that has the same 

applicability and robustness, by offering in the same time high 

scalability and performance. A special characteristic of 

AVISPA is that a same specification can be validated by four 

tools: OFMC, CL-AtSe, SATMC and TA4SP. For more 

information regarding the characteristics of these tools, please 

consult AVISPA user manual [6], and [16]. 

In order to highlight the parallelism with formal analysis, we 

will next present the models that AVISPA uses for the 
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network, for the intruder and the way in which it permits the 

modeling of a secure routing protocol. In AVISPA the network 

is represented as a collection of processes that communicate. 

Each of these processes represent a node in the network, and 

the special process named i represents the intruder. Each of 

these processes can communicate with the others using 

variables of type channel ([6]): one for sending messages and 

one for receiving messages. The model of the network is 

directly linked to the model of the intruder. And we will next 

show how. The model of the intruder in AVISPA is 

determined by the model of the channels used by the nodes for 

communications. Currently, the only supported channel model 

is Dolev-Yao. Under this model, the intruder is assumed to 

have full control over the network. In consequence, all the 

messages sent by the nodes go through the intruder. So it can 

intercept, analyze, and / or modify any message (as far it 

knows the required keys), and it can send any message that it 

has composed to any node that it wants, posing as any other 

node [5]. This type of model for the intruder (and for the 

channel) means that it is not really important the channels that 

a node uses for communications: the network is the intruder, 

and the intruder is the network. An intended connection 

between certain channel variables (e.g. a node A send 

messages on a channel SndA for the node B who receives them 

on the channel RcvA) is irrelevant. 

Being given this network-channel-intruder dependence, any 

message sent by a node in the network will be in fact 

broadcasted to all the other nodes. Of course, the message can 

be received only by the nodes for which such a message was 

specified as a possible received message. We state that this 

model is a perfect model for the verification of secure routing 

protocols for ad hoc networks. And we will next prove why. 

First of all, in the ad hoc network a message emitted by a node 

will be received by all the other nodes that are in the 

communication area of the source node. This request is 

accomplished in AVISPA network model and even more: we 

cannot specify the exact topology of the network (in the sense 

that which nodes are in which nodes communication area) but 

the fact that all the nodes can receive a sent message is even 

better, because this way, when generating the states for the 

system, the model checker will generate all the possible 

combinations of source node-destination node pairs. This 

means that the verification will be made over all the possible 

topologies that can be built with the specified number of 

nodes. 

Comparing the modes used by AVISPA for the network and 

for the intruder, with the ones described in the previous section 

one can observe the concordance between them. This means 

that the results obtained based on AVISPA models will have 

the same generality as the results obtain by formal analysis.  

IV. MODELING ARAN IN HLPSL 

To show how AVSIPA can be used to verify the security 

properties of implicit on-demand secure routing protocols, 

based on the previous presented models used by this formal 

verification tool, we have chosen ARAN (Authenticated 

Routing for Ad hoc Networks) secure routing protocol, 

introduced in [7], and proved to be insecure in [11] and [17].  

In order to verify ARAN using AVISPA, it has to be 

modeled using a special input language called HLPSL (High 

Level Protocol Specification Language). All the nodes in the 

network that perform the same actions regarding the modeled 

protocol have to be grouped together in what HLPSL calls 

basic roles. A basic role is a module in which can be specified 

what information a class of nodes can initially use (as 

parameters of the role), their initial state, and the ways in 

which this state can change. Taken into consideration the 

authenticated route discovery part of ARAN, the nodes of a 

wireless ad hoc network (by the actions that they perform) can 

be grouped in three roles: source, destination and intermediate. 

The source node initiates the authenticated route discovery 

process by broadcasting a route discovery packet (RDP) which 

contains the route discovery packet identifier (RDP), the IP 

address of the destination to which the route is needed, the 

certificate of the source node, a nonce and the current time. All 

this information is signed with the private key of the source 

node.  

A -> broadcast: [RDP, IPX, certA, NA, t]privA 

Depending on the topology of the network, this packet will 

reach directly the destination, or will reach an intermediate 

node. When a node receives a RDP packet directly from the 

source node, it will validate the certificate of the source node 

(A in our example); it will then extract the public key and will 

check the signature of the source node over the message. If the 

signature is valid, the intermediate node will check to see if it 

has not already processed this RDP by looking at the tuple 

(IPA, NA). If it has already processed the RDP, the package is 

discarded. Otherwise the intermediate node will sign the 

received packet, will append its own certificate and then will 

broadcast the new composed packet. 

When a node receives a RDP packet from another 

intermediate node, it will only validate the certificate and the 

signature of the previous intermediate node. Then it will 

perform the same check as previous described. Before 

broadcasting the packet, this new intermediate node will 

remove the signature and the certificate of the previous 

intermediary and will add its own signature and certificate. 

Eventually the packet will arrive at the destination node. 

This node will validate the certificate of the source node and 

its signature and / or the certificate of the last intermediate 

node and its signature, depending if the RDP has reached 

directly the destination or it has traveled through one or more 

intermediate nodes. Then, the destination will verify if it had 

not already responded to this RDP, by looking also at the tuple 

(IPA, NA). If the message was already processed, it is 

discarded. Otherwise the destination composes a replay packet 

(REP) that contains the identifier of the packet type (REP), the 

IP address of the source from which the corresponding RDP 

had came, the certificate of the destination node, the nonce and 

the time from the RDP package. All the information is signed 
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with the private key of the destination node. 

The destination node sends the packet not by broadcast, but 

by unicast to the node from which it has received the associate 

RDP packet. Dependent on the topology, the packet will arrive 

directly to the destination, or it fill first travel through one or 

several intermediate nodes. Again, these intermediate nodes 

will not broadcast the REP, but it will send it only to the node 

from which they received the corresponding RDP. The first 

intermediate node will validate the certificate and the signature 

of the destination, it will sign the REP, add its own certificate 

and then unicast it. The other intermediate nodes will do the 

same, but they will validate only the certificate and the 

signature of the previous intermediate node. As in the case of 

RDP, the intermediates will remove the signature and the 

certificate of the previous intermediate, it will then add their 

own signature and certificate and only then they will unicast 

the packet. When the source receives the REP it will have to 

validate the certificate and the signature of the destination 

node and / or of the previous intermediary.  

In order to verify the security properties of the route 

discovery phase of ARAN, we had to model three roles: the 

role of the source node, the role of the intermediate nodes, and 

the role of the destination node. As described above, the 

source node performs two actions: it sends the RDP for a given 

destination node and it receives the REP for the associate 

RDP. Regarding the receiving of the REP, it can be received 

directly from the destination, or from an intermediate node. In 

the two cases, the REPs will have different formats. The 

HLPSL code for the source node is: 

 

role source(S, D          : agent, 

                   Ks, Kd     : public_key, 

                KeyRing   : (agent.public_key) set, 

                   Snd, Rcv  : channel(dy)) 

 

played_by S def= 

 

local State       : nat, 

         H               : agent, 

         Na           : text, 

         Kh              : public_key, 

         RDP, REP  : text 

 

init State := 0 

 

transition 

 

rreq. State = 0 /\ Rcv(start) 

  =|> State' := 2 /\ Na' := new() /\ RDP' := new() /\ 

Snd({RDP'.D.S.Ks.Na'}_inv(Ks)) 

 

confirmi.  State = 2 /\ 

Rcv({{REP'.S.D.Kd.Na}_inv(Kd)}_inv(Kh').H'.Kh') /\ 

in(H'.Kh',KeyRing) 

            =|> State' := 3 /\ request(D,S,shd,Na) 

confirmd.  State = 2 /\ Rcv({REP'.S.D.Kd.Na}_inv(Kd)) 

          =|> State' := 3 /\ request(D,S,shd,Na) 

 

end role 

 

The parameters of the role represent the initial knowledge of 

a source node: its identity S in the network, the identity of the 

destination node to which it will have to send messages, the 

public key of the destination node, and two variables of type 

channel for sending and receiving messages. The variable 

KeyRing is in fact an array that contains the certificates of all 

the nodes in the network (we modeled the certificates as pairs 

of identities and public keys, but without being signed by the 

certification authority). We have chosen to give to each role 

the knowledge of all the agents and their public keys in order 

to eliminate the need to model the central authority and the 

request / receive of certificates for a given identity, and thus 

reducing the state space. Of course, this will eliminate the 

possibility to model key revocation, but it will not have any 

effect on the security properties of the actual secure routing 

protocol.  

As can be seen from the HLPSL code, the source node is 

requested to initiate the route discovery by sending it the start 

message when it is in the initial state. After sending the RDP, 

the source node changes the state to a one in which it just waits 

for the REP. The validation of the certificate is made by 

searching it in the KeyRing array. The validation of the 

signature is implicit: it could have been made only by the 

inverse key of the public key. So if the corresponding key is 

found in KeyRing, the signature is also validated. 

Another interesting modeling aspect is related to the 

timestamps. As one can observe from the HLPSL code of the 

source node, the RDP and REP packets do not contain the 

timestamp information, as specified by ARAN’s authors. The 

fact is that HLPSL (and in particular AVISPA’s back-ends) do 

not support time. But what timestamps should achieve is to 

limit the time window in which a message is accepted by a 

recipient and thus limiting the replay of messages. So AVISPA 

project team propose and suggest the use of weak 

authentication security goal instead of the standard 

authentication, in which such attacks are ignored ([13]). 

The intermediate nodes perform also two actions: the 

forwarding of a RDP and the forwarding of a REP. In both 

cases, the packets can have two formats, depending if they 

were received directly from the source/destination or from 

another intermediate node. The HLPSL code for an 

intermediate node is: 

 

role node(N          : agent, 

             Kn        : public_key, 

                Memory  : (text.text.agent) set, 

                KeyRing : (agent.public_key) set, 

                Snd, Rcv  : channel(dy)) 

 

played_by N def= 
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local State        : nat, 

      Ks, Kd, Kh  : public_key, 

      Na                 : text, 

      S, D, H          : agent, 

      RDP, REP    : text 

 

init State := 1 

 

transition 

 

forward10. State = 1 /\ Rcv({RDP'.D'.S'.Ks'.Na'}_inv(Ks')) 

/\ not(in(RDP'.Na'.D', Memory)) 

           =|> State' := 1 /\ Memory' := 

cons(RDP'.Na'.D',Memory) /\ 

Snd({{RDP'.D'.S'.Ks'.Na'}_inv(Ks')}_inv(Kn).N.Kn) 

 

forward11. State = 1 /\ 

Rcv({{RDP'.D'.S'.Ks'.Na'}_inv(Ks')}_inv(Kh').H'.Kh') /\ 

not(in(RDP'.Na'.D', Memory)) 

           =|> State' := 1 /\ Memory' := 

cons(RDP'.Na'.D',Memory) /\ 

Snd({{RDP'.D'.S'.Ks'.Na'}_inv(Ks')}_inv(Kn).N.Kn) 

 

end role 

 

An intermediate node can only be in one state: the one in 

which it receives and forwards RDP and REP packets. 

Because the format of the two packets is the same and because 

the actions involved by forwarding are the same, we only 

modeled the code for the RDP, but it is actually used for REP 

also. When receiving a packet, the node will first search the 

tuple (Na,D) in the array Memory. If the tuple is found there, it 

means that the request was already processed, and the message 

is discarded. If the tuple is not in Memory, it means that the 

node has not already seen the same message and will process 

it. After that it will save the tuple in the array for the next 

verifications. Regarding the validation of the signatures and of 

the certificates in the messages, the observations made for the 

source node apply here too. 

The destination node has to perform a single action: to 

respond to a received RDP. The RDP can have two formats, 

depending if it was received directly from the source, or if it 

has traveled through one ore mode intermediates. The HLPSL 

code for the destination node is given next. 

 

role destination(D         : agent, 

                       Kd          : public_key, 

                    Memory  : (text.text.agent) set, 

                   KeyRing  : (agent.public_key) set, 

                         Snd, Rcv  : channel(dy)) 

 

played_by D def= 

 

local State    : nat, 

         S, H    : agent, 

         Na         : text, 

         Ks, Kh   : public_key, 

         RDP, REP : text 

 

init State := 4 

 

transition 

 

respondd.  State = 4 /\ Rcv({RDP'.D.S'.Ks'.Na'}_inv(Ks')) 

/\ in(S'.Ks',KeyRing) /\ not(in(RDP'.Na'.S',Memory)) 

           =|> State' := 6 /\ Memory' := 

cons(RDP'.Na'.S',Memory) /\ REP' := new() /\ 

Snd({REP'.S'.D.Kd.Na'}_inv(Kd)) /\ witness(S',D,shd,Na') 

 

respondi.  State = 4 /\ 

Rcv({{RDP'.D.S'.Ks'.Na'}_inv(Ks')}_inv(Kh').H'.Kh') /\ 

in(H'.Kh',KeyRing) /\ not(in(RDP'.Na'.S',Memory)) 

           =|> State' := 6 /\ Memory' := 

cons(RDP'.Na'.S',Memory) /\ REP' := new() /\ 

Snd({REP'.S'.D.Kd.Na'}_inv(Kd)) /\ witness(S',D,shd,Na') 

 

end role 

 

The destination node waits for RDP packets and responds to 

them according to the protocol. Like an intermediate node, it 

will first determine if it has already responded to the request 

using the same mechanism: the tuple (Na,D) for an answered 

packet is saved for future verifications. The validation of 

certificates and signatures is done in the same way as 

described for the source node. 

Based on these three roles, the scenario (in fact the network) 

in which the protocol will be verified, can be modeled. The 

model of the network is made in a composed role. We give 

below an example of such a role. One can observe that the 

network is modeled by instantiating one process of type source 

role, none, one or several processes of type intermediate role, 

and a single process of type destination role. To reduce the 

state space, we modeled the source node and the destination 

node for a single route discovery. That is why the network 

should contain only one source node and one destination node. 

Besides the instantiations of the processes that represent the 

nodes of the network, the composed role that we named 

session contains the declarations and the initializations of 

some of the parameters for the roles: the channels, the arrays 

used for transmitting the certificates, and the arrays used for 

storing the identifiers for the processed packets.  

 

role session(T, U, V, W  : agent, 

                    Kt, Ku, Kv, Kw : public_key) def= 

 

  local S1, R1, 

           S2, R2, 

           S3, R3,   

        S4, R4   : channel(dy), 
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           Mem1, Mem2, Mem3 : (text.text.agent) set, 

        KS1, KS2, KS3, KS4 : (agent.public_key) set 

 

  init Mem1 := {} /\ Mem2 := {} /\ Mem3 := {} /\ KS1 := 

{T.Kt,U.Ku,V.Kv,W.Kw} /\ KS2 := 

{T.Kt,U.Ku,V.Kv,W.Kw} /\ KS3 := 

{T.Kt,U.Ku,V.Kv,W.Kw} /\ KS4 := 

{T.Kt,U.Ku,V.Kv,W.Kw} 

 

  composition 

 

    source(T,W,Kt,Kw,KS1,S1,R1) 

  /\node(U,Ku,Mem1,KS2,S2,R2) 

  /\node(V,Kv,Mem2,KS3,S3,R3) 

  /\destination(W,Kw,Mem3,KS4,S4,R4) 

 

end role 

 

The security properties of ARAN, as is stated in its 

presentation in [7], are based on the fact that all the packets are 

exchange in an authenticated manner. That is why the security 

property that we formal verified was the authentication of the 

destination by the source node when it receives the REP for 

the RDP that it has sent. In order to verify this property, it had 

to be formally specified. An authentication security goal 

consists out of two goal facts (witness and request) and a goal 

(authentication). The goal facts are used to augment the 

transitions of the basic roles, and the authentication goal is 

used to assign a meaning to them. Witness and request are 

used to check if an instance of a role is right in believing that 

its peer is present in the current session, has reached a certain 

state, and agrees on a certain value, which typical is fresh 

([5]). They always appear in pair and have the same third 

parameter. This third parameter is the identifier of the 

authentication goal and it is used in the goals section of the 

HLPSL code. In our protocol, the destination node D has to 

authenticate to the source node S and they both should agree 

on the value of Na, and vice versa. That is why the goal facts 

were used to augment the transition in which the destination 

node receives, process and responds to the RDP (witness), and 

the transition in which the source nodes receives the REP 

answer (request). 

V. FORMAL VERIFICATION RESULTS 

For the verification we used a personal computer running 

openSuse 11.0, with 2 GB of RAM and an Intel DualCore 2 

GHz processor. After completing the specification as 

described above, we divided the verification process into two 

steps. The first step was to validate the specification using 

OFMC back-end tool of AVISPA, and the second step was to 

use ATSE back-end. For both steps we prepared the same 

input files. These input files were in number of four. The first 

input file represented an ad hoc network formed by only two 

nodes: the source node and the destination node (from HLPSL 

point of view, this meant the composition of a source role with 

a destination role). The second file added an intermediate node 

in order to represent a three node ad hoc network (a source 

role was composed with a node role and a destination role). 

Each of the two remaining files added another node role to the 

specifications, representing this way a four, and respectively, a 

five node ad hoc network.  

OFMC is the back-end tool of AVISPA that has the highest 

speed in detecting attacks. This is the reason for which we 

started the verification with it. The first specification was 

successfully validated and OFMC report that it is safe. For the 

other three specifications, OFMC did not complete the 

validation, not even after 72 hours. So we decided to perform a 

validation with a depth bound for the search. This means that 

when expanding the state space of the model, OFMC does a 

depth-first search (for which it only goes to a depth level that 

is less of equal to the bound), while the standard search 

strategy is a combination of iterative deepening search with 

breadth-deep search. This bounding resulted in a smaller 

validation time. We considered the bounds varying from two 

to twelve. The time needed for the validation in each case is 

given in the table below. The cells that contain a dash 

represent an incomplete validation, which was interrupted after 

one hour. It is worth mentioning that for every bounded 

validation, OFMC reported the protocol to be safe, according 

to the specified goals. According to AVISPA user manual, this 

bounded search does not affect the validity of the results, 

because the messages an intruder can generate are not 

bounded. In fact, this is the only way in which OFMC can be 

used not to find attacks, but to validate a protocol. 

 

Tabel 1 Validation time for OFMC 

Boun

d 

OFMC validation time (s) 

for 

3 

nodes 

4 

nodes 

5 

nodes 

2 0.03 0.03 0.04 

3 0.04 0.1 0.32 

4 0.14 0.75 2.9 

5 0.57 4.93 26.34 

6 2.48 34.59 
195.9

2 

7 10.56 
190.0

8 

1660.

05 

8 44.20 
1211.

83 
- 

9 
176.0

9 
- - 

10 
228.5

9 
- - 

11 
1256.

4 
- - 

12 
4185.

8 
- - 

 

AVISPA’s ATSE back-end tool provides a translation for 
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the protocol specification into a set of constrains. In particular, 

each step of the protocol is modeled by using constraints on 

the adversary’s knowledge. Then, these constraints are used to 

find attacks against the specified security objectives. The 

algorithm that this tool is using is designed for a bounded 

number of protocol steps. But, according to the manual, if the 

protocol is loop free, all the specification will be verified. 

When feeding the input files to ATSE, it completed the 

verification process and reported that the protocol is safe, only 

for the first three network topologies. For the five node ad hoc 

network the validation was uncompleted even after three 

hours, and it was interrupted. The time consumed for the 

verification of each of the four specifications is given in the 

table below. 

 

Tabel 2 Validation time for ATSE 

ATSE validation time (s) for 

2 

nodes 

3 

nodes 

4 

nodes 

5 

nodes 

0.01 0.25 14.26 - 

 

One can observe that ATSE back-end is faster than OFMC. 

Nevertheless, both of the two tools should be used together, 

because they apply different algorithms. So if both report that 

the protocol is safe, the probability that the actual system 

accomplishes the security objectives is higher. 

We restricted the verification to an ad hoc network of 

maximum 5 nodes. If it is necessary to perform the verification 

for a higher number of nodes, the tables can help us in 

approximating the amount of time needed for such an attempt. 

For OFMC, it can be approximated that in an hour it can 

validate the protocol for a network of maximum 8 nodes with a 

session number bound of 2. We appreciate that for any other 

network larger than 8 nodes, the verification process will last 

too much to worth expecting its end. 

VI. CONCLUSION 

In our paper we presented how AVISPA formal verification 

tool can be used to validate the security properties of implicit 

on-demand ad hoc secure routing protocols. In order to prove 

the technique, we demonstrated it in a case study: formal 

verification of ARAN.  

From our knowledge and as stated in [3] there were very 

little attempts to apply model checking techniques for secure 

routing protocols in general, and for implicit on-demand 

secure routing protocols in particular. We only know the 

attempts of using SPIN model checker (for DSR, SRP, 

Ariadne and endairA [3] and [10]), HOL theorem proofer 

([8]), CPAL-ES (for SRP [9]), and Uppaal (for ARAN [11]). 

But we did not find any reports of using AVISPA in this 

purpose. So we consider that our work is an important step 

forward in using formal verification for secure routing 

protocols too. 

 The major advantage of our approach is the use of AVISPA 

toolkit and its specification language. The reason is related to 

the models that this tool uses for the network and the intruder, 

as shown in section 3. The way these models are implemented, 

assure that a verification process is performed for all the 

possible topologies that can exist, being given the number and 

the type of the roles specified. We consider this a major 

improvement of the formal verification of ad hoc routing 

protocols, because it is specific for them to have an evolving 

topology. For example, in the solution proposed and used by 

Andel in [3] (SPIN and Promela to formally verify DSR and 

SRP), one has to explicitly specify each of the network 

topologies for which the validation has to be made. 

Our work was focused only on how to specify in HLPSL 

implicit on-demand ad hoc routing protocols. We have 

highlighted in section 5 the special problems raised by this 

language in order to model the entire specification of ARAN. 

Based on this example, any other implicit on-demand routing 

protocol based on PKI security, can be easily model and 

verified.  In our future work we intend to complete the formal 

verification of ad hoc routing protocols by taken into 

consideration explicit on-demand ad hoc routing protocols. 

Also, we intend to see how this technique can be applied for 

the latest propositions for secure routing protocols that are 

based on identity-based cryptography ([18]). 
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