
 

 

 
Abstract—A structured implementation of Differential Evolution 

(DE), which can be executed in parallel by using various networks 
topologies, is presented in this paper.  Even though Evolutionary 
Algorithms (EAs) including DE have a parallel and distributed nature 
intrinsically, Sequential DE (SqDE) is especially suited for the 
structured implementation of DE.  Therefore, the proposed Structured 
DE (StDE) is based on SqDE.  Through the numerical experiment 
conducted on a variety of benchmark problems, the performances of 
StDE realized on some different network topologies are compared 
with the conventional SqDE that uses no networks.  As a result, it is 
shown that the number of generations spent by StDE to find optimal 
solutions is smaller than the number of them spent by the above SqDE 
in many benchmark problems.  Therefore, the optimal solutions of 
almost of the benchmark problems are found more efficiently by using 
the proposed StDE realized on the network topologies rather than 
SqDE. 
 

Keywords—Evolutionary Algorithm, Differential Evolution,  
Structured Differential Evolution, Parallel Algorithm 

I. INTRODUCTION 
VOLUTIONARY algorithms (EAs) have been  the subject of 
significant research in field of numerical optimization.    

Differential evolution (DE) is a new minimization method [1], 
capable of handling non-differentiable, non-linear and 
multimodel objective functions. DE has been designed as a 
stochastic parallel direct search method, that utilizes many 
practical concepts borrowed from the broad class of EAs, for 
solving real-parameter optimization problems. Comparing with 
typical EAs such as Genetic Algorithm (GA), Evolutionary 
Strategy (ES), and Particle Swarm Optimization (PSO), it has 
been reported that DE exhibits an overall excellent 
performance for a wide range of benchmark problems [2],[3]. 
Furthermore, because of its simple but powerful searching 
capability, DE has been applied to numerous real-world 
applications successfully [4]-[7]. 

The procedure of EAs for updating the individuals included 
in the population is called a “generation model” or a 
“generation alternation model”. EAs usually employ either of 
two types of generation models [5], [8]. The first one is called a 
“generational model” or a “discrete generation model”, while 
the second one is called a “steady-state model” or a “continuous 
generation model” [9]. The classic DE proposed originally by R. 
Storn and K. Price has been based on the discrete generation 
model [1]. According to the discrete generation model, the 
classic DE holds two populations, namely the old one and the 
new one. Then, by using a particular strategy, the individuals of 
the new population are generated from those of the old one. 

After that, the old population is replaced by the new one at a 
time. 

Inspired by the great success of the classic DE, a variety of 
revised DEs have been developed for solving different types of 
optimization problems such as noisy [10], constrained [4], and 
multi-objective optimization problems [11],[12]. Furthermore, 
self-adaptive DEs that have various learning mechanisms to 
choose appropriate strategies and control parameters 
[13],[14],[27],[28]. However, many of the conventional DEs 
have been also based on the discrete generation model as well 
as the classic DE. 

Recently, a new DE based on the continuous generation 
model is proposed [9],[15],[16]. The new DE is sometimes 
called “Sequential DE (SqDE)” [16]. According to the 
continuous generation model, SqDE holds only one population. 
Therefore, SqDE renews the individuals of the population one 
by one. SqDE generates a new individual called the “trial 
vector” from an existing individual called the “target vector” in 
the same way with the classic DE. After that, if the target vector 
included in the population is not better than the trial vector, the 
target vector is replaced by the trial vector immediately. Since 
the excellent newborn individual, namely the trial vector, can 
be used soon to generate offspring, it can be expected that 
SqDE finds good solutions faster than the classic DE [9]. 

Evolutionary Algorithms (EAs) including DE have a parallel 
and distributed nature intrinsically [19].  Therefore, various 
parallelization techniques of EAs have been proposed [19],[29].  
Incidentally, parallel DE is also implemented by using Parallel 
Virtual Machine (PVM) [21].  However, throughout this paper, 
the structured EA is distinguished from the parallel EA.  The 
structured EA consists of multiple structured populations 
connecting each other in accordance with a particular network 
topology.  On the other hand, the parallel EA means every 
program of EA executed in parallel on multiple processors.  
Therefore, the structured EA can be realized by not only a 
single processor but also multiple processors connected by 
network. 

In this paper, the structured DE (StDE) is proposed and 
evaluated in its performance.  The StDE is one of a parallel 
implementation of SqDE, and uses multiple populations 
connected by some network topologies, namely the ring, the 
torus, the hypercube and so on.  Through the numerical 
experiment, it is shown that the average of generations spent by 
StDE to find the optimal solutions using network topologies are 
smaller the average of them spent by SqDE not using any 
network topologies.  Consequently, almost of optimal solutions 
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are found more efficiently using network topologies. 

II. SEQUENTIAL DE (SQDE) 

A. Representation 
The optimal solution of the real-parameter optimization 

problem is represented by a D-dimensional real parameter 
vector ),,( 10 −= Dxx Lx  that minimizes the value of the 
objective function f(x). Besides, the value of each decision 
variable ℜ∈jx  is usually limited to the range between the 

lower jx and the upper jx boundaries. Therefore, the 

real-parameter optimization problem can be formulated as 
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Sequential Differential Evolution (SqDE) [16]is used to 
solve the optimization problem shown in (1). As well as 
conventional real-coded GAs [23] and DE [1], each tentative 
solution is represented by a real-parameter vector and called an 
“individual”. Furthermore, DE holds NP individuals within the 
population. Therefore, an individual )1,,0( −= Pi Ni Lx  is 
represented as 
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Let rand[l,h] denote the random number generator which 
returns a uniformly distributed random number from within the 
range between l and h ),( ℜ∈hl . The members of an initial 
population Pi ∈x  are generated randomly by using the 
random number generator as 

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
++<=

++<=

}
}  

];,rand[:      
{);;0:(for   

{);;0:(for

jjj,i

P

xxx
jDjj

iNii

 

B. Strategy of DE 
Differential mutation is a unique genetic operator of DE.  

Furthermore, a set of three genetic operators, namely, 
reproduction selection, differential mutation and crossover, is 
called the strategy of DE [1].  SqDE is also uses the strategy of 
DE [9], [15], [16]. Even though various strategies have been 
contrived for DE [3], four basic strategy named 
“DE/rand/1/bin”, “DE/rand/1/exp”, “DE/best/1/bin” and 
“DE/best/1/exp” are described and used in this paper. That is 
because those basic strategies are powerful enough for solving 
real-world application [3]. 

For each of the individuals )1,,0( −= Pi Ni Lx  within the 
population, which is also called the target vector, three different 
individuals, say 1base , rxx and )21base(2 rrir ≠≠≠x , are 
selected from the current population.  The individual xbase is 
called the base vector.  In case of “DE/rand/1/bin” and 

“DE/rand/1/exp”,  the base vector and the other two individuals 
are selected randomly, on the other hand, in case of 
“DE/best/1/bin” and “DE/best/1/exp”,  the base vector is 
selected from the best vector among the population and the 
other two individuals are selected randomly.  

Then a new individual ),,( ,1,0 iDii uu −= Lu  which is called 
the trial vector, is generated from the above four individuals 
through an assigned strategy. In case of “DE/rand/1/bin” and 
“DE/best/1/bin”, the procedure of strategy is given by (2). On 
the other hand, in case of “DE/rand/1/exp” and 
“DE/best/1/exp”, the procedure of the strategy is given by (3). 
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where ),...,,...,( ,1,,0 iDijii uuu −=u .  

If an element of the trial vector ui comes out of the 
range[ jj xx , ] by using the strategies shown in (2) and (3), it is 

returned to the range as: 
],rand[:, jjij xxu = . 

In the strategies of DE shown in (2) and (3), the subscript 
]1,0[ −∈ Djr  is selected randomly.  Therefore, the trial vector 

ui will be different from the target vector xi at least one element.  
Besides the population size NP, the scale factor ]1,0( +∈FS  
and the crossover rate ]1,0[∈RC  are the control parameters of 
DE specified by the user in advance. 

C. Procedure of SqDE 
The procedure of the SqDE [16] can be described by using 

the following pseudo-code. Since SqDE is based on the 
continuous generation model, only one population Px ∈i  is 
used. If a newborn trial vector ui is excellent, it is added to the 
population immediately.  Therefore, in case of SqDE, the 
excellent trial vector ui can be used soon to generate succeeding 
trial vectors. 
 

[Pesudocode for SqDE] 
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Fig. 1 Ring network           Fig. 2 Torus network 
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Fig. 3 Hypercube network 
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III. STRUCTURED DE (STDE) 

A. Network Topology 
For designing parallel or structured EAs, some network 

topologies are used.  In network topologies, multiple 
population are connected mutually with some network 
topologies, namely, the ring, the mesh, the binary tree, the 
hypercube and so on.  Besides, each processor can send 
messages to adjacent processors.  In this paper, we use three 
network topologies, the ring, the torus and the hypercube. 

Let Pr denote the  number of processors.  In case of the ring 
network, each processor Pp )0( Prp <≤ is connected to 
processor P(p-1) mod Pr and P(p+1) mod Pr.  Fig. 1 shows the ring 
network with 16 processors. 

Let Pp,q ).0( Prqp <≤  denote processor qPrpP + .  In 

case of the torus network, each processor Pp,q is connected to 
processors qPrpP ,mod)1( − , qPrpP ,mod)1( + , PrqpP mod)1(, −  

and PrqpP mod)1(, +  as shown in Fig. 2. 

Let ⊕ denote binary operator that calculate exclusive OR for 

each bit.  In case of the hypercube network, each processor Pp is 
connected to processors kpP 2⊕  )log0( Prk <≤ .  For example, 

processor P5 (P0101) is connected to processors P4 (P0100), P7 
(P0111), P1 (P0001) and P13 (P1101) in case of Pr = 16 as shown in 
Fig. 3. 

B. Procedure of StDE 
The procedure of the Structured DE (StDE) can described by 

using the following pseudo-code.  In the StDE, we use two 
generation parameters gl and gs.  gl denotes the number of local 
generations. In the local generation, each processor executes 
SqDE for gl  times in parallel without communication each 
other.  gs denotes the number of super generations.  Let x(p) 
denote the best Px ∈i  at processor Pp.  In the super generation, 
each processor executes the local generation and sends the best 
vector x(p) to one of adjacent processors for gs times. 
Incidentally, the procedure sending the best vector is called  
“migration”, and gl also denotes the migration frequency.  As 
the stopping condition for StDE, the generations gl and gs are 
limited to the maximum numbers GL and GS respectively.  

 
[Pesudocode for StDE] 
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The end of each super generation,  each processor Pp sends 

x(p) to one of adjacent processors. The adjacent processor 
depends on the type of network topologies, namely the ring, the 
torus, the hypercube and  the hierarchical network. 

In case of the ring network,  processor Pp )0( Prp <≤  
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sends x(p) to the adjacent processor P(p+1) mod Pr and receives x(p-1) 

mod Pr from processor P(p-1) mod Pr at each super generation. 
In case of the torus network,  processor Pp,q ).0( Prqp <≤  

sends )( qPrp +x to adjacent processors PrqpP mod)1(, +  if gs 

mod 2 = 0, and processor Pp,q sends it to adjacent processor 

qPrpP ,mod)1( +  if gs mod 2 = 1 at gsth super generation. 

In case of the hypercube network,  processor Pp sends x(p) to 
the adjacent processor Prsgp

P  log mod 2⊕
 at gsth super generation.  

For example,  processor P0 sends x(0) to processors P1, P2, P4 
and P8 at 1st, 2nd, 3rd and 4th super generation, respectively. 

In case of the hierarchical network, which is also called the 
weighted hypercube network, processors are connected as 
hypercube, and Pp sends x(p) to the adjacent processor 

Prkp
P  log mod  2⊕

 where 02 mod =k
sg  and 02 mod 1 ≠+k

sg .  

For example processor P0 sends x(0) to processors P1, P2, P1, P4, 
P1, P2, P1, P8 at 1st, ..., 8th super generations, respectively. 

For comparative study, we also use the no networks. In case 
of the no networks, at the end of each super generation, each 
processor doesn't send x(p).  Namely, each processor executes 
the local generation for SL GG ×  times without 
communication. 

IV. NUMERICAL EXPERIMENT 

A. Benchmark Problems  
In order to evaluate the performance of StDE, the following 

nine benchmark problems are employed.  f1, f2 and f3 are 
unimodal functions, and f4 ,... , f9 are multimodal functions.  f1 
and f3 have D=16 dimensional real-parameters, and the other 
functions have D=8 dimensional real-parameters.  Besides, the 
objective function values of their optimal solutions x* are 
known as follows: fm (x*)=0 (m=1, ..., 9). 

• Sphere function (De Jong’s 1st function) 
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• Step function (De Jong’s 3rd function)  
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• Quartic function (De Jong’s 4th function) 
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where Gauss(0,1) denotes the Gaussian white noise. The 

Gaussian white noise makes sure that the algorithm doesn’t 
get the same value on the same point. 
• Shekel’s function (De Jong’s 5th function) 
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the parameters for this function are: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

==
=

−−
==

=
−−

=

++

+

odd) is  (if
}4,3,2,1{, and    

}20,15,10,5,0{     where
}40,20,0,20,40{

even) is  (if
}4,3,2,1{, and    

}4,3,2,1,0{     where
},40,0,20,40{

,1,2

,5,
,

d
kaa

i

d
kaa

i

a

idkid

idkid
id  

• Rastrigin’s function 
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• Bohachevsky's function 
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• Ackley’s function 
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• Schaffer’s function 
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B. Experimental Results about Strategies 
StDE is coded by Java language,  which is a very popular 

language supporting multiple threads,  and executed on a 
personal computer equipped with a multi-core processor (CPU: 
Intel(R) CoreTM i7 @3.33[GHz]; OS: Microsoft Windows XP). 

In order to evaluate the probability of finding the best 
solution, StDE are applied 256 times to the nine optimization 
problems f1, ..., f9 with five network topologies, namely the ring, 
the torus, the hypercube, the hierarchical network and the no 
networks simulated with 16 processors and with four strategies, 
namely “DE/rand/1/bin”,  “DE/rand/1/exp”, “DE/best/1/bin” 
and “DE/ best/1/exp” respectively.  

During the experiments, the following control parameters of 
every StDE are fixed: the population size NP=32, the scale 
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factor SF=0.9 and the crossover rate CR=0.5.  As the stopping 
condition, the maximum generation is specified as GL=8 and GS 
=1024. As a result, the total number of generations becomes 

8192=× sL GG . 
Table I shows the average of generations to find the optimal 

solutions with the ring, the torus, the hypercube, the 
hierarchical network, and the no networks for f1, ..., f9 
respectively.  The standard deviations of generations are also 
shown in the parentheses in Table I.  From Table I, it is shown 
that the type of network topology doesn't much influence the 

Table I Average of generations to find the optimal solutions for benchmark problems 
 networks DE/rand/1/bin DE/rand/1/exp DE/best/1/bin DE/best/1/exp 

ring 554.1 (12.7) 290.0 (6.2) 329.5 (7.9) 245.6 (5.4) 
torus 562.9 (13.6) 289.3 (6.8) 333.2 (8.4) 245.9 (5.5) 

hypercube 567.0 (12.8) 289.0 (7.1) 335.2 (7.9) 246.1 (5.2) 
hierarchical 561.6 (11.9) 290.0 (8.2) 333.7 (6.2) 245.0 (5.4) 

f1 

no networks 706.0 (16.8) 324.4 (6.8) 373.5 (10.4) 269.4 (6.3) 
ring 1639.8 (62.1) 1208.9 (204.0) 962.1 (35.8) 852.6 (89.9) 
torus 1665.8 (53.8) 1195.3 (177.1) 995.3 (33.0) 833.1 (101.1) 

hypercube 1668.1 (59.1) 1200.5 (187.2) 998.0 (35.5) 836.6 (93.9) 
hierarchical 1637.0 (44.6) 1177.3 (190.6) 990.8 (34.2) 842.8 (96.4) 

f2 

no networks 2350.7 (64.8) 2470.8 (213.8) 1238.8 (62.6) 1480.1 (165.7) 
ring 842.0 (40.6) 231.8 (10.7) 471.2 (28.1) 194.4 (8.0) 
torus 966.6 (48.3) 228.9 (11.7) 537.3 (31.3) 195.4 (7.8) 

hypercube 1039.3 (50.0) 230.6 (10.9) 558.8 (31.9) 195.3 (7.2) 
hierarchical 988.2 (47.6) 231.8 (11.5) 527.6 (33.6) 194.7 (8.2) 

f3 

no networks 1308.0 (61.2) 276.9 (11.0) 562.7 (36.8) 222.7 (9.2) 
ring 466.5 (121.3) 449.8 (129.8) 357.3 (103.2) 414.5 (135.9) 
torus 467.2 (134.5) 470.2 (167.7) 356.1 (118.1) 414.0 (167.4) 

hypercube 470.7 (143.6) 437.6 (162.6) 354.4 (124.5) 413.0 (176.9) 
hierarchical 467.0 (128.0) 454.7 (172.6) 370.3 (104.9) 418.6 (154.0) 

f4 

no networks 1860.2 (721.9) 1571.9 (614.2) 1135.3 (447.6) 1211.0 (475.6) 
ring 643.6 (97.3) 413.3 (73.4) 426.5 (95.1) 344.7 (94.5) 
torus 794.3 (106.9) 452.4 (72.2) 487.2 (80.3) 365.8 (81.4) 

hypercube 845.2 (130.6) 449.0 (69.6) 542.4 (92.9) 371.6 (63.1) 
hierarchical 794.9 (114.0) 439.6 (87.0) 504.7 (91.9) 355.2 (79.9) 

f5 

no networks 1732.2 (206.8) 935.0 (132.2) 620.2 (195.7) 523.9 (91.0) 
ring 706.4 (50.5) 313.5 (13.0) 326.2 (21.3) 217.8 (10.6) 
torus 794.7 (62.2) 320.8 (14.3) 348.8 (21.8) 228.7 (11.6) 

hypercube 818.3 (65.9) 324.0 (12.9) 355.2 (24.0) 227.8 (12.3) 
hierarchical 782.6 (60.7) 320.2 (13.8) 343.9 (22.7) 223.9 (11.3) 

f6 

no networks 872.2 (55.7) 339.5 (15.1) 318.2 (18.7) 220.8 (10.0) 
ring 223.2 (7.1) 170.4 (5.7) 140.3 (4.7) 133.8 (4.7) 
torus 224.0 (6.6) 170.7 (5.7) 140.8 (4.7) 133.9 (4.7) 

hypercube 223.9 (7.1) 171.0 (5.3) 140.0 (5.0) 133.6 (4.2) 
hierarchical 223.5 (7.3) 170.2 (5.7) 140.1 (4.9) 133.5 (4.6) 

f7 

no networks 245.4 (7.8) 184.8 (5.9) 149.2 (5.5) 142.7 (5.2) 
ring 398.9 (7.7) 303.4 (5.8) 246.7 (5.2) 236.8 (5.0) 
torus 400.4 (7.3). 304.2 (5.8) 246.8 (5.8) 237.2 (5.0) 

hypercube 400.2 (7.4) 304.4 (6.5) 247.0 (5.8) 237.6 (4.9) 
hierarchical 400.1 (7.4) 304.2 (5.8) 246.3 (5.8) 237.2 (4.7) 

f8 

no networks 410.6 (7.8) 317.4 (6.7) 248.6 (6.4) 244.4 (5.8) 
ring 1141.3 (13.1) 775.0 (8.3) 690.5 (10.4) 592.0 (6.7) 
torus 1152.5 (12.3) 780.2 (8.0) 695.9 (9.7) 594.8 (6.9) 

hypercube 1153.2 (11.0) 779.9 (7.7) 697.5 (8.8) 595.3 (6.4) 
hierarchical 1150.3 (12.6) 778.3 (8.3) 695.7 (9.5) 594.4 (5.7) 

f9 

no networks 1204.4 (21.0) 845.3 (13.0) 701.7 (14.2) 630.5 (10.1) 
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number of generation to find the optimal solutions except in 
case of the no networks.  Using any network topologies, almost 
of optimal solutions are found more efficiently than in case of 
the no networks.  Therefore, we can conclude that the average 
of generations to find the optimal solutions is reduced using 
any processor networks.  In addition, most of optimal solutions 
are found efficiently with the strategy “DE/best/1/exp” except 
f4.  That is because the average of generation to find the optimal 
solution is almost minimum in case of “DE/best/1/exp”. 

However, ``DE/best/1/exp'' is not always efficient.  Table II 
shows the average generations to find the optimal solutions and 
probability of finding the optimal solutions at g=512, 1024 and 
2048 with the ring network for f5 (Shekel's function). 

From the average of generations to find the optimal solutions, 
the strategy “DE/best/1/exp” is most efficient.  On the other 
hand, from the probability of finding them at 1024th generation, 
the strategy “DE/rand/1/exp” is high probability to find, 
namely 245/256 = 95.7%. 

In addition, the network topologies don't  always work 
efficiently.  Table III shows the average generations to find the 
optimal solutions and probability of finding them at g=512, 
1024 and 2048 in case of “DE/rand/1/exp” for f5.  Considering 
the probability of finding the optimal solutions at 2048th 
generation,  the optimal solutions are found in all trials, namely 
256/256 = 100%, with the no networks. 

 
Table II Probability of finding the optimal solutions  

at several generations with the ring for f5 
generations strategies average 

generations g=512 g=1024 g=2048
DE/rand/1/bin 643.6 115 167 167 
DE/rand/1/exp 413.3 222 245 245 
DE/best/1/bin 426.5 93 93 93 
DE/best/1/exp 344.7 176 183 183 

(applied 256 times) 
 

Table III Probability of finding the optimal solutions 
at several generations in case of DE/rand/1/exp for f5 

generations networks average 
generations g=512 g=1024 g=2048

ring 413.3 222 245 245 
torus 452.4 196 226 226 

hypercube 449.0 202 231 231 
hierarchical 439.6 217 251 251 
no networks 935.0 0 184 256 

(applied 256 times)  
 
 

C. Experimental Results about Migration Policies 
We consider the migration frequency of StDE.  The end of 

the local generations, each processor sends the vest vector to 
another processor. Thus, in case of the number of the local 
generations gl is small, namely in case of high migration 

frequency, fine-grained communication among processors is 
required.  On the other hand, in case of gl is large, namely in 
case of low migration frequency,  StDE executes efficiently on 
the coarse grained parallel computing systems, such as BSP 
[30], CGM [31] and so on.  

Fig. 4 shows the average generations to find the optimal 
solutions with the ring network for f1 ,..., f9 at each migration 
frequency.  From these graphs in Fig.4, as the number of the 
local generations gl is reduced,  the average generations to find 
the optimal solutions are decreasing.  Therefore, there is a 
trade-off relationship between migration frequency and the 
average generations. 

Next, we notice the probability of finding the optimal 
solutions.  The probabilities of finding the optimal solutions 
with the ring network for f1, f3, f7 and f8 are 100% regardless of 
the strategies or migration frequency.  However, for the other 
five functions,  f2, f4, f5, f6 and  f9, the probabilities of finding 
them are not always 100%.  Table IV shows the probability of 
finding  the optimal solutions with the ring network at 8192nd 
generation for  f2, f4, f5, f6 and  f9, using the strategy “DE/best/ 
1/exp”.  Note that in case of low migration frequency, namely 
in case of 4≤lg ,  the average generations finding the optimal 
solutions are small, but the probabilities of finding them are not 
100% even at the 8192nd generation.  Therefore, to find the 
optimal solutions certainly, migration frequency should be 
enough high, namely, it should be 8>lg . 

 
Table IV Probability of finding the optimal solutions of 

several migration frequency with the ring at 8192nd generation. 
migration frequency strategies 

gl=1 gl=2 gl=4 gl=8 gl=16
DE/rand/1/bin 254 256 256 256 256
DE/rand/1/exp 247 251 256 256 256
DE/best/1/bin 248 252 256 256 256

f2

DE/best/1/exp 240 244 256 256 256
DE/rand/1/bin 128 184 256 256 256
DE/rand/1/exp 40 136 216 254 256
DE/best/1/bin 152 124 256 256 256

f4

DE/best/1/exp 72 160 216 253 256
DE/rand/1/bin 30 62 121 167 230
DE/rand/1/exp 23 49 131 245 256
DE/best/1/bin 29 38 50 93 133

f5

DE/best/1/exp 21 40 89 183 248
DE/rand/1/bin 184 256 256 256 256
DE/rand/1/exp 248 256 256 256 256
DE/best/1/bin 216 256 256 256 256

f6

DE/best/1/exp 245 256 256 256 256
DE/rand/1/bin 256 256 256 256 256
DE/rand/1/exp 232 256 256 256 256
DE/best/1/bin 255 256 256 256 256

f9

DE/best/1/exp 248 256 256 256 256
(applied 256 times) 
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 Fig.4 Performance of StDE for the benchmark problems
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V. CONCLUSION 
In this paper, the structured DE (StDE) is proposed and 

evaluated in its performance.  The StDE is one of a parallel 
implementation of SqDE. The multiple populations of StDE are 
connected with some network topologies, namely, the ring, the 
torus and the hypercube.  We show that the average of 
generations to find the optimal solutions using the network 
topologies, is smaller the average of them without the network 
topologies.  Therefore, almost of the optimal solutions are 
found more efficiently using the processor networks.  In 
addition, most of the optimal solutions are found efficiently 
with strategy “DE/best/1/exp”. 

We also show that there is a trade-off relationship between 
the migration frequency and the average generations finding 
the optimal solutions.  In case of high migration frequency, the 
average generations finding the optimal solutions are small, but 
the probabilities of finding them are not 100%. 

In our feature work,  we will evaluate the speedup of the 
proposed StDE on actual multi-processor system with some 
network topologies.  Furthermore, we would like to apply the 
proposed StDE to real-world applications. 
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