

Abstract— The m-learning field has been defined new

educational services that deliver knowledge and content on mobile

devices, highlighting a dreamed educational concept, anywhere,

anytime. Education processes have evolved in the last decades by

integrating new technology. Many m-learning services use SMS to

deliver simple text content because it has a low cost, it is available on

all mobile devices and has wide coverage and availability. As more

and more sensitive data is processed by m-learning services, we

propose a solution that will secure the SMS content and that will

have minimal impact on the device performance. The solution

implements a symmetric encryption scheme based on AES and is

used by a distributed m-learning architecture. The paper presents two

examples developed for Java ME and .NET CF platforms.

Keywords—Cryptography, Mobile Applications, Security, SMS.

I. INTRODUCTION

NE of the most used facilities offered by the mobile

devices to communicate, with over 6.1 trillion messages

in 2010 [1], is short written messages. For that, phone

companies provide communication through Short Message

Service (SMS). These forms of communication are widely

used in adverse conditions such as those in which there is a lot

of noise or verbal communication is not allowed.

Communication via messages is preferred for privacy reasons.

Conversation voice could be heard by others and for practical

reasons and noise could hinder the conversation. Many people

choose to use text messages that are cheaper than voice call.

Since the definition of digital natives concept by Marc

Prensky, [13], [17], [21] and the analysis of the impact of

technology on the youth daily activities, [5], research has been

conducted on using this technology to increase the quality and

the output of the educational process. A distinct approach is to

use mobile devices to deliver educational content in anytime,

anywhere scenario. Today, this scenario is something that can

be achieved with small effort because:

Manuscript May 30, 2011: Revised version May 30, 2011.

This work was supported by CNCSIS –UEFISCSU, project number PNII –

IDEI 2637/2008, project title: Project management methodologies for the

development of mobile applications in the educational system.

C. Boja is with the Academy of Economic Studies, Economic Informatics

Department, Bucharest, Romania (e-mail: catalin.boja@ie.ase.ro)

P. Pocatilu is with the Academy of Economic Studies, Economic

Informatics Department, Bucharest, Romania (e-mail: ppaul@ase.ro).

A. Zamfiroiu is with the Academy of Economic Studies, Economic

Informatics Department, Bucharest, Romania (e-mail: zamfiroiu@ici.ro)

• the degree of mobile devices penetration, mostly

smartphones, describes a world in which each person

uses at least one mobile device; the number of mobile

phone subscriptions worldwide has reached 5.3 billion

in 2010 and the mobile cellular penetration rates

exceeds 100% in Europe and North America, [1]

• the majority of students use in daily activities mobile

devices to socialize, search data on Internet, play,

download multimedia content;

• the costs needed to acquire mobile technology decreased

and also the lowest device specifications include data

connections capabilities through Wi-Fi, Bluetooth and

IR; it is estimated, [1] that until 2015 the Internet will

be accessed by more mobile devices than desktop

computers.

Fig. 1. The architecture of communicating through short

encrypted messages

M-learning services are provided through standalone Java or

Windows Mobile applications or in distributed environments,

using different communication technologies like, Bluetooth in

PicoNets, data connections for accessing Web applications or

SMS [9] and [10]. Despite a large pool of communications

technologies that provides mobile connections, m-learning

solutions are restricted by the cost of using such technologies.

The cost can be represented by the fees of using data

connections, SMS services, Wi-Fi private networks, or by the

availability of the service in a location, like a Wi-Fi or

Bluetooth access point. Based on these pros and cons, the

technology that is the cheapest and assures an anywhere

coverage, hence assuring mobility, is the SMS service. These

are the reasons for which, many mobile learning, social,

banking and health services are based on SMS. Furthermore

Data Security in M-Learning Messaging

Services

Cătălin Boja, Paul Pocatilu, Alin Zamfiroiu

O

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 5, 2011

198

the service cost supported by the user can be more reduced by

collaborations between the mobile carrier and the mobile

services authority.

II. SECURE M-LEARNING SERVICES BASED ON SHORT

MESSAGE SERVICE

M-Learning services based on SMS communication deliver

in real time different announcements, information, alerts, tasks.

Other use of SMS is to define a mobile assessment architecture

based on short quiz tests. Students receive questions and send

the answer also in a SMS. SMS services can be used to

provide a content delivery architecture that responds to

requests send by text messages.

Security of sending SMS is becoming increasingly important

when there is a risk of the interception of information or the

data is sensitive like in a mobile banking service. The

proposed SMSEncrypt solution solves the problem of message

security through advanced and standardized symmetric

encryption algorithms [22]. It uses symmetric encryption based

on a secret key known by both parties. The disadvantage of

this approach is in transmission of passwords between the two

communication parties. The channel used to transmit the

encryption/decryption key must be a secure one [20]. The

Advanced Encryption Standard (AES) is also known under the

name Rijndael. This is a standard algorithm for symmetric

encryption, adopted as a standard, by the US National Institute

of Standards and Technology (NIST) which defines data

security procedures in governmental institutions, [22]. The

algorithm, if it used correctly, has not been broken. It uses

different size keys 128, 192, or 256 bits and the latter is still

very difficult to break even with today technology. The AES

(Advanced Encryption Standard) or Rijndael algorithm has

these important characteristics:

• finalist and winner of the AES (Advanced Encryption

Standard) contest launched by NIST in 1997

• created by two Belgians mathematicians: Joan Daemen

and Vincent Rijman (Rijndael comes from their name)

• became cryptographic standard in 2000

• uses keys with 128, 192 or 256 bits

• is a symmetric cryptographic algorithm (the same key is

used both for encryption and decryption)

• processes blocks of 128, 192 or 256 bits;

• effective both on Intel platforms and other software or

hardware platforms

• it can be implemented on 32 bit processors and smart

cards (8-bitprocessors);

• faster than DES;

• it is more secure than 3DES;

The proposed solution, SMSEncrypt, described in Fig. 2, is

composed of two parts:

• the sender has a user key – UK used to encrypt the

plaintext text message – M; in order to provide

message integrity, the encrypted message contains the

message hash;

• the receiver, which is another user or a service in the

distributed m-learning architecture, uses the same key,

UK, to decrypt the SMS; once the content is obtained,

the receiver checks the message hash and responds if it

is a service; because a symmetric key encryption

solution is vulnerable in distributing the key to multiple

users, the proposed m-learning architecture manages

users and their associated keys;

Fig. 2. The architecture of communicating through short encrypted messages

Encryption key and decryption key must be the same and

should be known only by his message sender and receiver.

To send a message sender goes through the following steps:

• writes the message;

• specify the message encryption key; the key is uniquely

associated with this user;

• specifies the recipient;

• the application generated a hash value based on the

message text; the has is used to allow integrity check;

the hash is added to the initial message and the content

is encrypted;

• the encrypted message is sent over the network;

To receive a message and read it, the receiver goes through

the following steps:

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 5, 2011

199

• the application or the M-Learning service intercepts the

message;

• the sender is identified;

• the sender key is retrieved from a repository and is used

to decrypt the cipher text;

• the integrity of the message is verified and the plaintext

message is delivered.

These steps are shown in Fig. 3.

Fig. 3. Stages of communication through encrypted

messages

The quality of the m-learning service is directly influenced

by the content quality and structure, and by the application

quality. Regarding application quality there are defined

multiple sets of quality characteristics [18]. The impact of a

SMS based service on the mobile device performance and its

power consumption is minimal, as described in figure 4 based

on previous results, [23]. Also, the encryption stage has been

analyzed and the results have shown that:

Fig. 4. Comparative results on encryption algorithms tested

on mobile platforms, [23]

• generating a MD5 hash value is faster than a SHA-1;

• using a symmetric algorithm requires a less overhead than

a asymmetric one, like RSA, that requires a public key –

private key pair;

III. TECHNICAL SOLUTION

In order to receive the encrypted message in a manner that

allows the user to decrypt the message, the solution is based on

message interception techniques:

• for .NET CF platform, the solution is implemented using

the Microsoft.Practices.Mobile.PasswordAuthentication

and System.Security.Cryptography classes.

• for Java ME platform, the same solution is using the

Security and Trust Services API (SATSA) [8].

A. Java ME Implementation

In order to support cryptographic services, Java ME

platform includes a package, the Security and Trust Services

API (SATSA), [8], that is flexible enough to run with many

types of cryptographic algorithms and protocols. The SATSA

framework has been de-signed to run on any Java ME-based

virtual machine, including the CDC and CLDC virtual

machines. This Java standard specification has been defined by

the Java Community Process (JCP) in JSR 177 [11].

The API provides interfaces that allow developers to

implement secure solutions based on a smart card, the mobile

device or a combination of the two. This survey concentrates

only on the second solution, using only the mobile device

processing unit, because there are other restrictions, legal and

technical, that will not allow a smart card solution intended for

a wide range of devices.

From all the SATSA packages, the one that does not require

a smart card is the SATSA-CRYPTO package. It provides

classes for implementing data security architectures based on

message digests, digital signatures and symmetric and

asymmetric encryption / decryption algorithms.

Classes fromSATSA packages like javax.crypto and

javax.crypto.spec.SecretKeySpec provides the tools for

symmetric encryption.

The Bouncy Castle Crypto API for Java provides a

lightweight cryptographic API that works with everything from

the J2ME to the JDK 1.6 platform.

The API is different for J2ME platform than the one for

JDK platform. For example, the lightweight API has different

implementations for the two platforms:

• lcrypto-jdk16-145 for JDK platform;

• lcrypto-j2me-145 for J2ME platform;

and also, at functions level, the situation in also different:

• for the JDK platform the main class for cryptographic

algorithms is Cipher;

• for the Java ME platform there are classes for each

cryptographic algorithm; e.g. for AES there are three:

AESEngine, AESFastEngine and AESLightEngine.

For AES, the Bouncy Castle Crypto API for Java ME

platform provides three implementations (their description is

taken from the Bouncy Castle API documentation):

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 5, 2011

200

• AESEngine – “The middle performance version uses

only one 256 word table for each, for a total of

2Kbytes, adding 12 rotate operations per round to

compute the values contained in the other tables

from the contents of the first” [19]

• AESFastEngine – “The fastest uses 8Kbytes of static

tables to precompute round calculations, 4 256

word tables for encryption and 4 for decryption”

[19]

• AESLightEngine – “The slowest version uses no static

tables at all and computes the values in each

round” [19]

In this example, we will use the first implementation –

AESEngine that will process 128 bits (16 bytes) blocks and

will use a 128 bit key.

Because, the files that are going to be encrypted may have

or NOT (most of the times) a dimension that is multiple of

block size (128 bits), we must use padding for the last block.

In this case we will use the PaddedBufferedBlockCipher

class, which is “a wrapper class that allows block ciphers to

be used to process data in a piecemeal fashion with padding”

[19].

The encryption solution (complete encryption/decryption

solution file) is defined by these steps:

1. define the PaddedBufferedBlockCipher instance used for

encryption – encryptCipher in this solution; the

PaddedBufferedBlockCipher class provides two

constructors; both require a BlockCipher instance; one use by

default PKCS7 padding (used by this solution), the other one

requires a BlockCipherPadding instance; for the

BlockCipher instance we will create a AESEngine object;

2. init the cipher for encryption with a key; the key could be

predefined or received; these 2 first steps are implemented by

the constructors:

public class AES_BC {

 PaddedBufferedBlockCipher encryptCipher;
 PaddedBufferedBlockCipher decryptCipher;

 // Buffer used to transport the bytes from
one stream to another
 byte[] buf = new byte[16];
//input buffer
 byte[] obuf = new byte[512];
//output buffer

 byte[] key = null;

 public AES_BC(){
 //predefined key value
 key =
"SECRET_1SECRET_2SECRET_3".getBytes();
 InitCiphers();
 }
 public AES_BC(byte[] keyBytes){
 key = new byte[keyBytes.length];

 System.arraycopy(keyBytes, 0 , key, 0,
keyBytes.length);
 InitCiphers();
 }

 private void InitCiphers(){
 encryptCipher = new
PaddedBufferedBlockCipher(new AESEngine());
 encryptCipher.init(true, new
KeyParameter(key));
 decryptCipher = new
PaddedBufferedBlockCipher(new AESEngine());
 decryptCipher.init(false, new
KeyParameter(key));
}

3. read bytes from the file; in the solution, we read 16 bytes

blocks from the file; each block is processed by the int

processBytes(byte[] in,int inOff, int len, byte[] out, int

outOff) function; the output of the processed block is put in

the out buffer which is written in the encrypted file.

4. VERY IMPORTANT STEP call the doFinal function

which will process the last block in the buffer; the internal

mechanism of the algorithm implementation, based in its

encryption mode (ECB, CBC, or other) keeps an internal

buffer which must be also discarded into the output file (this is

NOT the last block of the input file); the doFinal it is a MUST

DO step.

The last two steps are implemented by the encrypt function:

public void encrypt(InputStream in,
OutputStream out)
 throws ShortBufferException,
IllegalBlockSizeException,
 BadPaddingException,DataLengthException,
 IllegalStateException,
InvalidCipherTextException
{
 try {
 // Bytes written to out will be encrypted
 // Read in the cleartext bytes from in
InputStream and
 // write them encrypted to out
OutputStream

 int noBytesRead = 0; //number of
bytes read from input
 int noBytesProcessed = 0; //number of
bytes processed

 while ((noBytesRead = in.read(buf)) >= 0)
{

//System.out.println(noBytesRead +" bytes

read");

 noBytesProcessed =
encryptCipher.processBytes(buf, 0,
noBytesRead, obuf, 0);

//System.out.println(noBytesProcessed +" bytes

processed");

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 5, 2011

201

out.write(obuf, 0, noBytesProcessed);
}

//System.out.println(noBytesRead +" bytes

read");
 noBytesProcessed =
encryptCipher.doFinal(obuf, 0);

//System.out.println(noBytesProcessed +" bytes

processed");
 out.write(obuf, 0, noBytesProcessed);

 out.flush();
}
catch (java.io.IOException e) {

System.out.println(e.getMessage());
 }
}

The decryption solution is similar to the encryption one and

is implemented by the decrypt function.

The complete solution is implemented by the AES_BC

class in this complete encryption/decryption solution file.

In order to use these tow functions you must open the clear

text file and the encrypted one. This is a sample for use of

encryption from a running MIDlet:

void encryptFile(String fileName)
{
 try {
 FileConnection fci =

(FileConnection)Connector.open("file://localho
st/" + currDirName + fileName);
 if (!fci.exists()) {
 throw new IOException("File does not
exists");
 }
 //createFile("encrypt.txt", false);
 FileConnection fco =

(FileConnection)Connector.open("file://localho
st/" + currDirName + "encrypt.txt");

 if (!fco.exists())
 fco.create();

 if (!fco.exists()) {
 throw new IOException("Cannot create
encrypted file");
 }

 InputStream fis = fci.openInputStream();
 OutputStream fos = fco.openOutputStream();

 AES_BC encrypter = new AES_BC();

 // Encrypt
 encrypter.encrypt(fis, fci.fileSize(),
fos);

 fis.close();
 fos.close();

 Alert alert =
 new Alert("Confirmation","File
encryption terminated", null, AlertType.INFO);
 alert.setTimeout(Alert.FOREVER);

Display.getDisplay(this).setCurrent(alert);
 }
 catch (Exception e) {
 Alert alert =
 new Alert("Encryption error!",
Cannot access file " + fileName + " in
directory " + currDirName +
 "Exception: " + e.getMessage(), null,
AlertType.ERROR);
 alert.setTimeout(Alert.FOREVER);

Display.getDisplay(this).setCurrent(alert);
 }
}

B. .NET CF Implementation

.NET CF includes the System.Security.Cryptography

namespace. .NET CF supports SHA1, TripleDES, DSA, RSA

and other algorithms. Also, platform invocation of native

CryptoAPI functions and third party libraries can be used.

For example, the class MD5CryptoServiceProvider is used

for MD5 hash and the class and the class

RSACryptoServiceProvider for RSA encryption.

.NET CF provides a namespace that include the

MessageInterceptor class, used to intercept SMS messages

based on user condition: phone number, sender name, text

content etc. The message interception is managed through

Outlook Mobile API. The OutlookSession class is associated

to the OutlookMobile application.

For example, the following code is used to intercept a SMS

message and to define the function that will receive the

message.

using Microsoft.WindowsMobile.PocketOutlook;
using

Microsoft.WindowsMobile.PocketOutlook.MessageI
nterception;

OutlookSession outlookSession =
new OutlookSession();
MessageInterceptor mi =
new MessageInterceptor();
mi.InterceptionAction =
 InterceptionAction.Notify;
mi.MessageCondition =
new MessageCondition(
MessageProperty.Sender,
"+0711123456");

mi.MessageReceived+=new

MessageInterceptorEventHandler(mi_MessageRecei
ved);

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 5, 2011

202

The function mi_MessageReceived will receive the message

bases on criteria and the implementation is used to decrypt

message:

void mi_MessageReceived(object sender,

MessageInterceptorEventArgs e)
{

 SmsMessage message =
 (SmsMessage)e.Message;

 //decryption of message goes here
}

 The same pattern is used for .NET CF applications,

similar to Java ME applications.

Fig. 4. Example of application interfaces in .NET CF

Application user interface is very simple and facilitate ease

of use. The windows (Fig. 4) are built like applications to send

messages to mobile phone.

 After writing the message, press the "Send" menu and did

not specify a phone number will appear select list of contacts

for a phone number (Fig. 4A). This can be achieved and by

pressing the "Contact". After is selected a contact which will

be sent the message and the send button is pressed, it will

prompt for the user (transmitter) key that will be used to

encrypt the message (Fig. 4B).

 At message reception it will prompt the user (receiver) key

that will be used to decrypt the message. At the top appears the

message sender's phone number so that the receiver knows the

password will have to introduce. After entering the password

to decrypt the message it will be decrypted and shown on the

screen (Fig. 4C).

IV. DISCUSSIONS

For the analysis of mobile computing applications, these

aspects are taken into account, to help determining the correct

level of quality of the application source code:

• the number of lines of written code

• the number of commented lines

• the number of blank lines of code

• the number of private methods of a class

• the number of public methods of a class

• the number of IF instructions

• the number of ELSE instructions

• the number of Try-Catch instructions

If these parameters are named k1, k2, ..., kn, each one has a

measured level for the tested application. These parameters

will be used to achieve the indicators measuring the quality of

source code through the following metrics:

GD (Level of documentation of source code) - represents

the degree of the source code which contains enough

commented lines to understand the code. In this way, a person

having a first contact with the application in order to modify

its code can easily understand it.

The calculation formula for this indicator is:

GD = (NLC / (NTLC-NLG)) * 100 (1)

where

NLC = number of commented lines

NTLC = total number of lines

NLG = number of blank lines

GL (degree of readability) - legibility influences the

quality of the program source code, since the code can be

changed in a later version of the software application. When

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 5, 2011

203

someone who needs to change the source code does not

understand it due to lack of readability, they are forced to

rewrite it and thus losing valuable time. To enhance the

readability of programs is recommended to:

• avoid writing more instruction on the same line

• add white space

The calculation formula for GL indicator is:

GL = NLG / NTLC * 100 (2)

GTC (Level of management of cases) - this indicator has a

major importance in the quality of the application as it

indicates the degree of handling the exception cases. If the

application programmer lefts untreated cases, the final user

will encounter several errors, which will lead to a decrease in

the quality of the application.

The formula for calculating this indicator is:

GTC = (NREL / NRIF) * 100 (3)

where

 NREL = number of ELSE instructions

NRIF = number of IF instructions

GTE (degree of exception handling) – this indicator is

similar to the one presented above; it is important in the

determination of the cases in which the developer hasn’t

considered all the possible exceptions that can occur while

running the application.

The formula is:

GTE = (NRTRY / (NRMPr + NRMPu)) * 100 (4)

where

NRTRY = number of try-catch instructions

NRMPr = number of private methods

NRMPu = number of public methods

The calculation is based on the following indicators of the

efficiency metric, measured for each class of the application.

The formula is:

QCi = (GDi + GLi + GTEi +GTCi) / 4 for i =1,2….n (4)

where

N = number of classes in the application

QCi = level of quality measured for i class

GDi = level of GD indicator measured for i class

GLi = level of GL indicator measured for i class

GTCi = level of GTC indicator measured for i class

GTEi = level of GTE indicator measured for i class

The formula for calculating the aggregate quality of the

application is:

n

QC

QA

n

i

i∑
=

=
1

 (5)

This indicator determines a quality level for the entire

source code of the intended application.

The measurements for SMSEncrypt application are

presented in Table 1.

Table 1. Measurements made for SMSEncrypt

Parameter Value for

„ClassCriptare

” class

Value for

„CryptoTasks

” class

Value

for

„Form1”

class

NTLC 46 135 140

NLC 0 20 3

NLG 16 48 57

NRELSE 0 0 2

NRIF 0 0 2

NRTRY 0 0 3

NRMPr 0 0 6

NRMPu 2 9 2

The quality indicators of the application are calculated

based on these measurements, Table 2.

Table 2 Quality Indicators for SMSEncrypt

Indicator Value for

„ClassCriptare”

class

Value for

„CryptoTasks”

class

Value for

„Form1”

class

GD 0 22 3

GL 34 35 40

GTC 100 0 66

GTE 100 100 62,5

Total 48 33 35,7

The quality level of SMSEncrypt application in terms of

source code is QA = 38.9.

V. CONCLUSION

Text encryption for sensitive data (e.g. personal

information, passwords, and marks) is very important for

distributed m-learning applications. Data optimization and

processing speed are crucial factors to distributed m-learning

applications success and these have to be taken into account.

Both Java ME and .NET CF provides mechanisms for data

encryption and message interception.

Nevertheless the limitations of mobile devices are not taking

away any of the benefits of m-learning. Mobile devices

industry is progressing at very fast pace, current limitations

will be overcome and m-learning applications will be

enhanced even further.

The next step is to test several implementations and to

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 5, 2011

204

extend the solution to other platforms like Android, iPhone

and Windows Phone.

REFERENCES

[1] ITU, The world in 2010, ICT Facts and Figures, United Nations

International Telecommunications Unit, http://www.itu.int/ITU-

D/ict/index.html

[2] A. Wigley, D. Moth and P. Foot, Microsoft Mobile Development

Handbook, Microsoft Press, 2007.

[3] J. Craig, AES Encryption in C#, Last accessed on March 2011,

http://www.gutgames.com/post/AES-Encryption-in-C.aspx

[4] Code Project, 2006, Cryptor - Encrypt Files With Rijndael 256, last

accessed on March 2011, Available at:

http://www.codeproject.com/KB/security/Cryptor.aspx

[5] F. Obisat, E. Hattab, A Proposed Model for Individualized Learning

through Mobile Technologies, International Journal of Computers and

Communications, Issue 1, Volume 3, 2009, ISSN: 1998-4308, pp. 125-

132

[6] P. Pocatilu and C. Boja, Quality characteristics and metrics related to

m-learning process, Amfiteatru Economic, pp. 346-354, Vol. 11, no. 26,

2009

[7] C. E. Ortiz, The Security and Trust Services API for J2ME, Sun

Developer Network (SDN), 2005, Available:

developers.sun.com/mobility/apis/ articles/satsa1/

[8] Sun, SATSA Developer's Guide, SATSA Reference Implementation 1.0,

December 2004, Available: http://java.sun.com/j2me/docs/satsa-dg/

[9] A. Muntean and N. Tomai, A Simple Web Platform Solution for M-

Learning, Informatica Economica, vol. 14, no 1, 2010, pp. 172 – 181,

ISSN 1453-1305

[10] P. Pocatilu, M. Doinea and C. Ciurea, Development of Distributed

Mobile Learning Systems, Proc. of the 9th WSEAS International

Conference on Circuits, Systems, Electronics, Control & Signal

Processing (CSECS '10), Vouliagmeni, Athens, Greece, December 29-

31, 2010

[11] Java Community Process, JSR-177, Security and Trust Services API for

J2ME, Available at: http://jcp.org/en/jsr/detail?id=177

[12] A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, Handbook of

Applied Cryptography, CRC Press, 1997,

http://www.cacr.math.uwaterloo.ca/hac/

[13] A. Bâra, A. Velicanu, I. Lungu and I. Botha, Using Geographic

Information System for Wind Parks’ Software Solutions, International

Journal of Computers, Issue 2, Volume 5, 2011, pp. 149-156

[14] J. P Albuja. and E. V. Carrera, Trusted SMS Communication on

Mobile Devices, In Proceedings of the 11th Brazilian Workshop on

Real-Time and Embedded Systems, Recife - Brazil, pp. 165-170, May

2009.

[15] M. De Jode M. et al, Programming Java 2 Micro Edition on Symbian

OS, A developer’s guide to MIDP 2.0, John Wiley & Sons Ltd, 2004

[16] How Do I: Send and Receive SMS Messages? Available at:

http://msdn.microsoft.com/ro-ro/netframework/bb905518

[17] M. Prensky, “Digital Natives, Digital Immigrants”, in On the Horizon,

MCB University Press, Vol. 9 No. 5, October 2001

[18] P. Pocatilu. and Boja C., “Quality Characteristics and Metrics related to

M-Learning Process”, Amfiteatru Economic, Nr.26, 2009, pp. 346-354

[19] The Bouncy Castle Crypto Package, Available:

http://www.bouncycastle.org/documentation.html

[20] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source

code in C, 2nd Edition, Wiley, 1996

[21] B. Ghilic-Micu, M. Stoica and M. Mircea, A framework for measuring

the impact of BI solution, Proc. of. rhe 9th WSEAS Int. Conf. on

Mathematics and Computers in Business and Economics (MCBE'08),

Published by WSEAS Press, Bucharest, Romania, pp. 68-73, 2008

[22] I. Ivan and C. Toma, Informatics Security Handbook, 2nd Edition, ASE

Printing House, Bucharest, 2009, ISBN 978-606-505-246-8.

[23] J. P. Albuja and E. V. Carrera, Trusted SMS Communication on Mobile

Devices, Proceedings of the 11th Brazilian Workshop on Real-Time and

Embedded Systems, Recife - Brazil, pp. 165-170, May 2009

C. Boja is Assistant Professor at the Economic Informatics Department at the

Academy of Economic Studies in Bucharest, Romania. In June 2004 he has

graduated the Faculty of Cybernetics, Statistics and Economic Informatics at

the Academy of Economic Studies in Bucharest. In March 2006 he has

graduated the Informatics Project Management Master program organized by

the Academy of Economic Studies of Bucharest.

He is a team member in various undergoing university research projects

where he applied most of his project management knowledge. Also he has

received a type D IPMA certification in project management from Romanian

Project Management Association which is partner of the IPMA organization.

He is the author and coauthor of more than 40 journal articles and scientific

presentations at conferences. His work focuses on the analysis of data

structures, assembler and high level programming languages. He is currently

holding a PhD degree on software optimization and on improvement of

software applications performance.

P. Pocatilu graduated the Faculty of Cybernetics, Statistics and Economic

Informatics in 1998. He achieved the PhD in Economics in 2003 with thesis

on Software Testing Cost Assessment Models.

 He has published as author and co-author over 45 articles in journals and

over 40 articles on national and international conferences. He is author and

co-author of 10 books, (Software Testing Costs, and Object Oriented

Software Testing are two of them). He is associate professor in the

Department of Economic Informatics of the Academy of Economic Studies,

Bucharest. He teaches courses, seminars and laboratories on Mobile Devices

Programming, Economic Informatics, Computer Programming and Project

Management to graduate and postgraduate students. His current research

areas are software testing, software quality, project management, and mobile

application development.

Dr. Paul Pocatilu is member of ACM and IEEE, USA, from 2009 and of

INFOREC Association, Romania from 1999.

A. Zamfiroiu has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 2009. Currently he is in final year at Economic

Informatics Master.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 5, 2011

205

