

Abstract— Petri nets and graph modelling are popular topics in

computing and other fields. Different structures and complexities can
be represented using graphs. In information graphics graph
topologies find suggested use for representing formal and informal
natural occurring structures and relationships. Basically graph types
can be divided into two simple types i) directed and ii) non-directed.
Other characteristics and properties can be included. Certain types of
simple graphs can easily be represented using matrix structures.

The incidence matrix, and the adjacency matrix for a graph can be
used as input or outputs in the MVTN (matrix vector transition net).
The MVTN was presented in previous work. The reasons for
combining graph structures with the MVTN are discussed in section
II) and III). The MVTN is based on Petri net principles. Some
advanced uses of the MVTN and using graph structures as inputs are
given in sections IV) and V). Some simple examples are also given
and discussed in section VI). These models can be executed and
preserve Petri net like properties. They can be further enhanced.
Some results and findings are presented in section VII).

Keywords— Graphs, Matrices, Matrix Vector Transition Net,
Modelling, Networks, Petri Nets.

I. INTRODUCTION

ODERN systems have many different types of
relationships and dependencies which can be internal or

external. Some types of relationships are easily representable
and describable using graphs and similar structures [1]-[7].
This is visible in software modelling methods like the UML. In
the simplest form a network graph is a set of nodes joined by a
set of lines or arrowed directed lines known as edges.

Some typical examples of network graphs are: collaboration
networks, friendship graphs, association graphs, relationship
graphs, transportation networks, computer communication
systems, internet structures and intranetworking. Some
network graphs have a short life and whilst others are more
long lasting. For transport systems [1], logistics, process
workflows, computer and network architectures, etc., entity
relationships can be explained using graphs. Even certain types
of communication problems and network structures used in
computing can be represented using graphs [2]-[3]. These can
provide alternative viewpoints.

Graph representation can simplify the problem of system
representation by breaking down the structure into smaller

Anthony (Tony) Spiteri Staines, is with the Department of Information
Systems, Faculty of ICT, University of Malta, (corresponding phone: 00356-
21373402,e-mail: toni_staines@yahoo.com)

counterparts that are easier to represent and understand.
Natural Graphs can range from simple ones that occur

naturally in diverse structures to more complex ones. One
basic example of natural graph structures are those that occur
in social networking. Some of these structures range from
simple to complex linking and can have a high density.
Usually there is some form of natural or unnatural
correspondence between graph structures and real world
entities [14]-[17].

Different forms of representational matrices can be used for
representing graphs. Typically these can be classified into two
main types which are i) incidence matrices and ii) adjacency
matrices. These two can be further classified into other forms
like weighted, non-weighted, etc.

Modern systems are composed of different elements and are
time variant or dependent configurations. One simple way used
for describing the relationships between these systems is to use
graphs. Graphs can visually depict the system structure or the
existing interrelationships in these system configurations.

Graph structures in computing and other similar fields can
be considered to be abstract data types based on sound
mathematical principles useful for representing a variety of
structures and events. Sometimes there exists a quasi-intuitive
representation of certain structures in a graph format. These
structures and the MVTN (matrix vector transition net) [2]-[4]
are visual modelling notations that can be seen and
understood. In the fields of computing, graph like structures
are widely used across different notations and methods. E.g.
UML activity diagrams are a form of digraphs. Class diagrams
are graphs that have special node and edge types. Sequence
diagrams can be reduced to digraphs. Petri nets are bipartite
digraphs.

II. MOTIVATION

This paper is restricted to basic graph structures mainly
using directed or undirected graphs. This can be considered to
be an oversimplification of what happens in real life. However
many complex structures in the real world can be reduced to
some simpler form making them more understandable and
readable thus omitting parts that might not be interesting [8].
In simple form graphs consist of an ordered set of nodes and
edges also known as arcs and vertices. Certain graphs may
assign values to these or use some form of symbolic labelling.
Three basic structures can be used to represent the graphs [9].
These are i) adjacency lists, ii) adjacency matrices and iii)

Modelling Simple Network Graphs Using the
Matrix Vector Transition Net

A. Spiteri Staines

M

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 11

incidence matrices. In the i) adjacency list, vertices are stored
as records or objects. Every vertex stores a list of adjacent
values. This type of structure can be enhanced to store more
detail. The ii) adjacency matrix is a simple 2-d structure where
the rows represent vertices and the columns represent
destination vertices. The iii) incidence matrix is a 2-d matrix
where rows represent vertices and columns represent edges.
The entries indicate how the vertices relate to the edges and
vice-versa [9].

III. RELATED WORK AND BACKGROUND

This work shows how the adjacency and incidence matrices
for simple graphs can be used as inputs and outputs for the
matrix vector transition net. This MVTN has been defined and
elaborated in previous works [2]-[4]. In essence this modelling
structure is a modified Petri net where instead of ordinary
places, matrices or vectors are used. More modelling power
and greater detail is obtained [3].

 One key feature of simple graph structures is that these can
be represented using matrices. Hence this work explores the
possibility of using actual graph representation matrices as
inputs or outputs from the MVTN for modelling purposes [3].
The graph representational matrices can be combined as inputs
and outputs from the MVTN [4]. This signifies that the MVTN
can be used to test the graph structures via their respective
matrices. This means that the MVTN can be used to detect if a
particular structure is present.

 There is the possibility of using the MVTN for modifying
the graph structures. Edges and nodes can be added or
removed as required. This would be relevant for modern
systems where their network elements can be reconfigured
dynamically in real time.

Graphs have been used to model computer networks and
various types of configurations. Simple graphs can be
represented using adjacency and incidence matrices. These are
visual representations of structures and complexity [9]-[12],
[18].

This approach shows how it is possible to model complex
communication between different processing elements using
Petri net like behavior. Different cases like those of an abstract
switch, producer – consumer problem, network message
routing etc. have been shown in [2]-[4]. The MVTN structures
are fully executable and the operations can be represented
using simple matrix algebra operations [4].

Place transition nets have been used to model different
systems and scenarios [5]-[8], [13]. In [4] the workings of the
abstract switch are clearly explained. This is a fully executable
example. A reachability graph can be generated for each
successive transition firing. The key difference is that the
MVTN uses matrices or vectors for inputs and outputs instead
of normal Petri net places [2]-[4].

IV. PROBLEM STATEMENT

Dynamic systems exhibit changes during their useful life.
Changes are brought about via transitions. Modern system

configurations are dynamic in nature. Normally a system also
has static and dynamic parts. The system structure or
configuration can be effected. At any given moment in time a
system has a perceived global state composed of sub states
[12]. Once an event takes place the global state of the system
and also its structure might change. Changes in a system take
place at certain time intervals until the system ceases to exist.
Changes can be brought about by internal or external
activities. Complex dynamic systems are decomposable into
discrete components. Any transition taking place in a system
can be ‘memoryless’ or have ‘memory’. Memory transition are
more complex [12]. The MVTN and graph representational
matrices can be used for creating some form of ‘collective
memory’ effect [3].

The graph representation where changes are time variant
can be used to keep a trace of a system. Any ‘event’ that takes
place can change the configuration in real-time. This type of
behavior is typical in self adapting networks and the idea of
self-healing systems. Ordinary and more advanced classes of
Petri nets can be used to model the memoryless systems
[12],[13]. I.e. the transitions can be considered to have a
memoryless effect. This is not entirely true for complex
systems.

In simple terms the problem definition is to represent a
system structure using a simple graph and use this graphs as an
input or output for the MVTN and add details. A system graph
structure can be used to start or stop a transition or it can be
the output or input of a transition for special types of
processing and experimentation. The idea of this work is to
find new realistic uses for the MVTN. These should be
practical uses and relate to real world issues and problems. It
should be possible to compact a system and find simpler ways
of representing behavioral structures. These structures should
represent and identify transitions that change the system
configuration. Different components of the system should be
clearly identifiable. These components are considered to be
integral parts of the system composition.

Normally in Petri net theory the inputs to the system can
also be called actors [12]. Here the actors are actual system
structures or configurations. A syntactical definition of a
system from the viewpoint of the MVTN can be given as a
composite system of the form composite system::=graph
structure* <controlled events>.

Model based verification and analysis are useful prior to
actual design so that the functionality of the models are tested
and checked before actually going ahead. This type of analysis
can be applied even to existing systems. This can help to
obtain a good comprehension of what is actually occurring.

V. PROPOSED SOLUTION

The actual problem solution is very simple. Simple graph
structures can be represented using either an incidence matrix
or an adjacency matrix. These matrices can be combined with
the MVTN. The proposed solution to combine the MVTN
with other constructs is represented in fig. 1. The general idea

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 12

is that an input graph is transformed into a matrix
representational structure which is processed or checked using
the MVTN. An output matrix or some other output is obtained
from the system. If an output matrix is produced this can be
converted or transformed into a graph. The graph
representational matrices can be used as inputs/outputs from
the MVTN. The MVTN can also be combined or linked to
other Petri nets or Petri net constructs as shown in previous

work [3]. So, these structures can be used for complex
workings. E.g. it is possible to check for a particular graph
structure and if the graph structure is correct then fire a
particular transition or enable a certain execution pathway.
Fig. 2 shows the general idea of the proposed solution

indicating how different notations and elements can be
combined with the matrices for the graphs being used.

There are some constraints and restrictions that must be
explained for this solution: i) graphs used as input must have a
limited or finite structure. ii) The MVTN input matrix for the

graph has to be allowed to have negative values. iii) The
graphs must have proper labelling for the nodes and edges. iv)
matrices require proper labelling.

Obviously if there is no ending or incidence matrix for the
graph structures this cannot be done. One observation and
modification to the MVTN is that the matrix can contain
negative values. This was not allowed in previous work. Thus
the matrices need proper labelling and have to be given an
indication of what they can contain.

VI. CASE STUDY: SIMPLIFIED EXAMPLES

The elementary and basic examples presented in this
section are used for indicating practical use of this approach
and testing its validity.

A. Basic Graph Example

Fig. 3 shows a basic digraph with its i) incidence and ii)
adjacency matrices. These matrices are used as inputs for the
MVTN. The graph can be transformed into the matrices and

vice versa. It is important to label the graph edges and nodes
for the process of transformation. In the graph incidence
matrix the rows represent the nodes and the columns represent
the edges. The negative values show an input edge i.e. the
direction of the edge and a positive value shows it is an output
edge.

B. Adding an Extra Edge, Adjacency matrix and MVTN

This example in fig.4 shows how an extra edge is added to a
simplified non directed graph using the MVTN and the output
matrix. Here a simple edge is added between D2 and D3. This
is simply done by incrementing the corresponding entry

INPUT

GRAPH

INCIDENCE/

ADJACENCY

MATRIX

TRANSFORM

INTO

MVTN

LOAD

TO

OUTPUT

MATRIX or

OTHER

PROCESS

OUTPUT

GRAPH

CONVERT

TO

Fig. 1 using graph representation matrices with the MVTN

Fig. 2 graph representation matrices and other elements

















−
−

−

110

011

101

















010

101

010

c

b

a

Fig. 3 simple digraph with its i) incidence and ii) adjacency matrix

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 13



















−
−

−
−

1000

0110

0011

1101



















44434241

34333231

24232221

14131211

aaaa

aaaa

aaaa

aaaa



















4

3

2

1

b

b

b

b 

















4

3

2

1

44434241

34333231

24232221

14131211

b

b

b

b

aaaa

aaaa

aaaa

aaaa

Fig. 5 adding an extra edge to a digraph via incidence matrix

D1 D2

D3

D1 D2

D3

















010

100

110

3

2

1

D

D

D

T1

A

A

















000

000

000

3

2

1

D

D

D

T1

A

















010

100

110

A

















000

100

000

BEFORE FIRING AFTER FIRING

Fig. 4 adding an extra edge via adjacency matrix

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 14

in the input matrix by 1. The contents of the output matrix on
the output of the MVTN are added to the input matrix. This
action can even be completed or carried out in other ways. The
adjacency matrix is more suited for undirected graphs.

C. Adding an Extra Edge, Incidence Matrix and MVTN

Another approach to adding an extra edge is presented using
a digraph. For this purpose, the incidence matrix of the graph
is used. The incidence matrix seems to be better suited to
model digraphs in this work. The graph is shown on the top

l.h.s. of fig. 5. The corresponding incidence matrix is shown
on the top r.h.s. of fig. 5. Fig. 6 shows the MVTN with more
added detail and Fig. 7 shows the final result with the final
output matrix and the corresponding modified graph. The
example presented in fig. 5,6 is more detailed for the sake of
clarity.

D. Combining two Simple Graphs and MVTN

This example in fig. 8 briefly outlines how two separate
graphs can be combined into a single graph. In fig. 8 two
distinctly labelled graphs are shown. The output of the
example is just a simple combination of two graphs. The
graphs are not linked to each other and remain disjoint even in
the combined matrix. The graphs can be joined with some
modifications.

E. Checking for a Particular Graph
This example shows how a graph representation matrix can

be used for checking and firing transitions in the MVTN. In
Fig. 9 the matrix A is checked to see if it contains the correct
values for the incidence matrix for a particular graph. If this is
the case then A-B yields a null value and transition T1 can fire.
Two tokens are removed from P1 and two tokens are placed in
P2 and one token in P1 respectively. More comprehensive
examples of how two separate graphs can be checked can be
created. These can be used to trigger associated transitions in
the MVTN.



















−
−

−
−

1000

0110

0011

1101

















 −

1

0

0

1


















4

3

2

1

44434241

34333231

24232221

14131211

b

b

b

b

aaaa

aaaa

aaaa

aaaa



















44434241

34333231

24232221

14131211

aaaa

aaaa

aaaa

aaaa



















4

3

2

1

b

b

b

b



















00000

00000

00000

00000

Fig. 6 MVTN with proper inputs and outputs to add extra edge



















−
−

−
−−

11000

00110

00011

11101

Fig. 7 final result after firing T1

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 15

VII. RESULTS AND FINDINGS

The simplified case study examples clearly show that it is
possible to use the MVTN to model and check very simple
directed and undirected graphs. For particular graph types the
adjacency matrix is more suitable than the incidence matrix.
However the incidence matrix can provide detail about the
edge direction for digraphs. Similar results could be obtained
from different configurations or setups of the MVTN. It is up
to the user to select what is most appropriate for a particular
scenario. The MVTN can be used to remove and add edges to

a graph via its representational matrix. It can be used to
combine two separate graph matrices into a singular matrix.
One of the most tedious parts is the conversion of a graph into
its representation matrix and the reconversion back into a
graph.

It is possible to test the graph representation matrix for the
presence of a particular graph. The examples given are
executable models that are based on Petri net like theory. Even
though just a handful of examples have been given in this
paper, these can serve as the building blocks to create even
more complex structures and models. More advanced

















−
−

1

1

0

0

1

1










− 1

1

















32

22

12

31

21

11

a

a

a

a

a

a










2

1

v

v























2

1

3231

2221

1211

00

00

0

0

0

v

v

aa

aa

aa

Fig. 8 combining two graphs via the MVTN

















−
−

−

110

011

101

Fig. 9 checking a graph representation matrix

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 16

modelling approaches can be defined from the ideas presented.
Dynamic network structures can be created using this

approach. The structures can be used for system diagnosis and
decision purposes. The following structures can be represented
using these models: i) Dynamic system structures, ii)
representational structures, iii) validation, verification and test
structures and iv) structures for performance criteria.

More practical uses of this work would be to apply these
models for the following areas: i) route testing, ii) route
reconfiguration, iii) optimization based on structural topology
modification and iv) testing.

The models presented in the previous section show mainly
the following processes: i) edge adding, testing, and ii)
combining two structures. The opposite processes could be
defined e.g. edge removal and splitting a graph into separate
entities etc.

VIII. CONCLUSION

Various new ideas can be explored in future studies.

However there are always some limitations. The focus here
was more on a theoretical approach to modelling graphs via
their matrices. The ideas presented can serve to study
particular network problems. These are useful for visual
representation and modelling. They can be used in the area of
information graphics. Matrices are particularly interesting
because they can contain useful information in a condensed
and concise format.

The limitations of this work are related mainly to
complexity issues and the amount of processing involved.
Graph structures can become overly complex if the number of
edges and nodes are increased substantially [18]. Complex
graphs have not been considered.

Other problems exist when dealing with graphs of a more
complex nature i.e. possibly having a mixture of node types
and interrelationships. This is obvious if the massive
classification of graph types available in literature is examined.
In this case reduction and simplification methods could be
used.

Sometimes for simple problems the graph representational
matrices can be used on their own hence the MVTN would not
really be necessary.

REFERENCES

[1] A. Spiteri Staines, A Colored Petri Net for the France-Paris Metro,
NAUN, International Journal of Computers, Issue 2,Vol. 6., 2012,pp.
111-118.

[2] T. Spiteri Staines, F. Neri, A Matrix Transition Oriented Net for
Modelling Distributed Complex Computer and Communication
Systems, WSEAS Transactions on Systems, Vol 13, 2014, pp. 12-22.

[3] A. Spiteri Staines, Extending the Matrix Vector Transition Net
Approach for Modelling Interaction, New Developments in Circuits,
Systems, Signal Processing, Communications and Computers (CSSCC),
INASE, WEIN, Austria, 2015, pp. 126-132.

[4] T. Spiteri Staines, Implementing a Matrix Vector Transition Net, British
Journal of Mathematics & Computer Science, ISSN: 2231-0851,Vol.: 4,
Issue.: 14, 2014, pp. 1921-1940.

[5] T. Spiteri Staines, Representing Petri Nets as Directed Graphs,
Proceedings of the 10th WSEAS international conference on Software
engineering, parallel and distributed systems SEPADS'11, WSEAS,
Cambridge UK, 2011, pp. 30-35.

[6] A. Spiteri Staines, From Task Graphs to Petri Nets, International Journal
of Emerging Technology and Advanced Engineering, Vol 3, Issue 5,
May 2013,pp. 36-42.

[7] A. Spiteri Staines, Some Fundamental Properties of Petri Nets,
International Journal of Electronics Communication and Computer
Engineering, IJECCE, vol.4, Issue 3,pp. 1103-1109.

[8] M.B. Dwyer, L.A. Clarke, A Compact Petri Net Representation and its
Implications for Analysis, IEEE Transactions on Software Engineering,
vol. 22, issue 11, 1996,pp. 794 – 811.

[9] K.H. Rossen, Handbook of Discrete and Combinatorial Mathematics
(Discrete Mathematics and Its Applications), CRC PRESS, 1999.

[10] K.M. Abadir, J.R. Magnus, Matrix Algebra, Cambridge University
Press, 2005.

[11] F. Ayres (jr), Theory and Problems of Matrices, Schaum’s Outline
Series, Schaum, 1974.

[12] K. van Hee, Information Systems: A Formal Approach, Cambridge
Univ. Press, 2009.

[13] CPNTools, CPN Group, Department of Computer Science, University of
Aarhus, Denmark http://cs.au.dk/CPnets/

[14] B. Scholz-Reiter, C. Zabel, Integration of Load Carriers in a
Decentralized Routing Concept for Transport Logistics Networks,
WSEAS Proceedings of the 2nd International Conference on Theoretical
and Applied Mechanics (TAM '11) Corfu, Greece, 2011,pp. 259-264.

[15] C. Knieke, B. Schindler, U. Goltz, and A. Rausch, Defining Domain
Specific Operational Semantics for Activity Diagrams. Technical Report
IfI-12-04, TU Clausthal, Clausthal, Germany, 2012.

[16] J. Osis, and E. Asnina, Topological Modelling for Model-Driven
Domain Analysis and Software Development: Functions and
Architectures, Model-Driven Domain Analysis and Software
Development: Architectures and Functions, 2010, pp. 15-39.

[17] Tracking Design Changes with Formal Machine-Checked Proof, Higher
Order Logic Theorem Proving and Its Applications, Vol: 859, LNCS,
Springer-Verlag,1994, pp. 177-192

[18] J.L. Gross, J. Yellen, Handbook of Graph Theory: Discrete Mathematics
and its Applications, CRC PRESS, 2003.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 17

