
 

 

  
Abstract— Petri nets and graph modelling are popular topics in 

computing and other fields. Different structures and complexities can 
be represented using graphs. In information graphics graph 
topologies find suggested use for representing formal and informal 
natural occurring structures and relationships. Basically graph types 
can be divided into two simple types i) directed and ii) non-directed. 
Other characteristics and properties can be included. Certain types of 
simple graphs can easily be represented using matrix structures.  

The incidence matrix, and the adjacency matrix for a graph can be 
used as input or outputs in the MVTN (matrix vector transition net). 
The MVTN was presented in previous work. The reasons for 
combining graph structures with the MVTN are discussed in section 
II) and III). The MVTN is based on Petri net principles. Some 
advanced uses of the MVTN and using graph structures as inputs are 
given in sections IV) and V). Some simple examples are also given 
and discussed in section VI). These models can be executed and 
preserve Petri net like properties. They can be further enhanced. 
Some results and findings are presented in section VII). 
 

Keywords— Graphs, Matrices, Matrix Vector Transition Net, 
Modelling, Networks, Petri Nets. 

I. INTRODUCTION 

ODERN systems have many different types of 
relationships and dependencies which can be internal or 

external.  Some types of relationships are easily representable 
and describable using graphs and similar structures [1]-[7]. 
This is visible in software modelling methods like the UML. In 
the simplest form a network graph is a set of nodes joined by a 
set of lines or arrowed directed lines known as edges. 

Some typical examples of network graphs are: collaboration 
networks, friendship graphs, association graphs, relationship 
graphs, transportation networks, computer communication 
systems, internet structures and intranetworking. Some 
network graphs have a short life and whilst others are more 
long lasting. For transport systems [1], logistics, process 
workflows, computer and network architectures, etc., entity 
relationships can be explained using graphs. Even certain types 
of communication problems and network structures used in 
computing can be represented using graphs [2]-[3]. These can 
provide alternative viewpoints.  

Graph representation can simplify the problem of system 
representation by breaking down the structure into smaller 
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counterparts that are easier to represent and understand.  
Natural Graphs can range from simple ones that occur 

naturally in diverse structures to more complex ones. One 
basic example of natural graph structures are those that occur 
in social networking. Some of these structures range from 
simple to complex linking and can have a high density. 
Usually there is some form of natural or unnatural 
correspondence between graph structures and real world 
entities [14]-[17].  

Different forms of representational matrices can be used for 
representing graphs. Typically these can be classified into two 
main types which are i) incidence matrices and ii) adjacency 
matrices. These two can be further classified into other forms 
like weighted, non-weighted, etc. 

Modern systems are composed of different elements and are 
time variant or dependent configurations. One simple way used 
for describing the relationships between these systems is to use 
graphs. Graphs can visually depict the system structure or the 
existing interrelationships in these system configurations. 

Graph structures in computing and other similar fields can 
be considered to be abstract data types based on sound 
mathematical principles useful for representing a variety of 
structures and events. Sometimes there exists a quasi-intuitive 
representation of certain structures in a graph format. These 
structures and the MVTN (matrix vector transition net) [2]-[4] 
are visual modelling notations that can be seen and 
understood. In the fields of computing, graph like structures 
are widely used across different notations and methods. E.g. 
UML activity diagrams are a form of digraphs. Class diagrams 
are graphs that have special node and edge types. Sequence 
diagrams can be reduced to digraphs. Petri nets are bipartite 
digraphs. 

II. MOTIVATION  

This paper is restricted to basic graph structures mainly 
using directed or undirected graphs. This can be considered to 
be an oversimplification of what happens in real life. However 
many complex structures in the real world can be reduced to 
some simpler form making them more understandable and 
readable thus omitting parts that might not be interesting [8]. 
In simple form graphs consist of an ordered set of nodes and 
edges also known as arcs and vertices. Certain graphs may 
assign values to these or use some form of symbolic labelling. 
Three basic structures can be used to represent the graphs [9]. 
These are i) adjacency lists, ii) adjacency matrices and iii) 
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incidence matrices.  In the i) adjacency list, vertices are stored 
as records or objects. Every vertex stores a list of adjacent 
values. This type of structure can be enhanced to store more 
detail. The ii) adjacency matrix is a simple 2-d structure where 
the rows represent vertices and the columns represent 
destination vertices. The iii) incidence matrix is a 2-d matrix 
where rows represent vertices and columns represent edges. 
The entries indicate how the vertices relate to the edges and 
vice-versa [9]. 

III.  RELATED WORK AND BACKGROUND 

This work shows how the adjacency and incidence matrices 
for simple graphs can be used as inputs and outputs for the 
matrix vector transition net. This MVTN has been defined and 
elaborated in previous works [2]-[4]. In essence this modelling 
structure is a modified Petri net where instead of ordinary 
places, matrices or vectors are used. More modelling power 
and greater detail is obtained [3]. 

 One key feature of simple graph structures is that these can 
be represented using matrices. Hence this work explores the 
possibility of using actual graph representation matrices as 
inputs or outputs from the MVTN for modelling purposes [3]. 
The graph representational matrices can be combined as inputs 
and outputs from the MVTN [4]. This signifies that the MVTN 
can be used to test the graph structures via their respective 
matrices. This means that the MVTN can be used to detect if a 
particular structure is present. 

 There is the possibility of using the MVTN for modifying 
the graph structures. Edges and nodes can be added or 
removed as required. This would be relevant for modern 
systems where their network elements can be reconfigured 
dynamically in real time.  

Graphs have been used to model computer networks and 
various types of configurations. Simple graphs can be 
represented using adjacency and incidence matrices. These are 
visual representations of structures and complexity [9]-[12], 
[18].  

This approach shows how it is possible to model complex 
communication between different processing elements using 
Petri net like behavior. Different cases like those of an abstract 
switch, producer – consumer problem, network message 
routing etc. have been shown in [2]-[4]. The MVTN structures 
are fully executable and the operations can be represented 
using simple matrix algebra operations [4].  

Place transition nets have been used to model different 
systems and scenarios [5]-[8], [13]. In [4] the workings of the 
abstract switch are clearly explained. This is a fully executable 
example. A reachability graph can be generated for each 
successive transition firing. The key difference is that the 
MVTN uses matrices or vectors for inputs and outputs instead 
of normal Petri net places [2]-[4].   

IV.  PROBLEM STATEMENT 

Dynamic systems exhibit changes during their useful life. 
Changes are brought about via transitions. Modern system 

configurations are dynamic in nature. Normally a system also 
has static and dynamic parts. The system structure or 
configuration can be effected. At any given moment in time a 
system has a perceived global state composed of sub states 
[12]. Once an event takes place the global state of the system 
and also its structure might change. Changes in a system take 
place at certain time intervals until the system ceases to exist. 
Changes can be brought about by internal or external 
activities. Complex dynamic systems are decomposable into 
discrete components. Any transition taking place in a system 
can be ‘memoryless’ or have ‘memory’. Memory transition are 
more complex [12]. The MVTN and graph representational 
matrices can be used for creating some form of ‘collective 
memory’ effect [3].  

The graph representation where changes are time variant 
can be used to keep a trace of a system. Any ‘event’ that takes 
place can change the configuration in real-time. This type of 
behavior is typical in self adapting networks and the idea of 
self-healing systems. Ordinary and more advanced classes of 
Petri nets can be used to model the memoryless systems 
[12],[13]. I.e. the transitions can be considered to have a 
memoryless effect. This is not entirely true for complex 
systems.  

In simple terms the problem definition is to represent a 
system structure using a simple graph and use this graphs as an 
input or output for the MVTN and add details. A system graph 
structure can be used to start or stop a transition or it can be 
the output or input of a transition for special types of 
processing and experimentation. The idea of this work is to 
find new realistic uses for the MVTN. These should be 
practical uses and relate to real world issues and problems. It 
should be possible to compact a system and find simpler ways 
of representing behavioral structures. These structures should 
represent and identify transitions that change the system 
configuration. Different components of the system should be 
clearly identifiable. These components are considered to be 
integral parts of the system composition. 

Normally in Petri net theory the inputs to the system can 
also be called actors [12]. Here the actors are actual system 
structures or configurations. A syntactical definition of a 
system from the viewpoint of the MVTN can be given as a 
composite system of the form composite system::=graph 
structure* <controlled events>.  

Model based verification and analysis are useful prior to 
actual design so that the functionality of the models are tested 
and checked before actually going ahead. This type of analysis 
can be applied even to existing systems. This can help to 
obtain a good comprehension of what is actually occurring. 

V. PROPOSED SOLUTION 

The actual problem solution is very simple. Simple graph 
structures can be represented using either an incidence matrix 
or an adjacency matrix. These matrices can be combined with 
the MVTN. The proposed solution to combine the MVTN 
with other constructs is represented in fig. 1.  The general idea 
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is that an input graph is transformed into a matrix 
representational structure which is processed or checked using 
the MVTN. An output matrix or some other output is obtained 
from the system. If an output matrix is produced this can be 
converted or transformed into a graph. The graph 
representational matrices can be used as inputs/outputs from 
the MVTN. The MVTN can also be combined or linked to 
other Petri nets or Petri net constructs as shown in previous 

work [3]. So, these structures can be used for complex 
workings. E.g. it is possible to check for a particular graph 
structure and if the graph structure is correct then fire a 
particular transition or enable a certain execution pathway. 
Fig. 2 shows the general idea of the proposed solution 

indicating how different notations and elements can be 
combined with the matrices for the graphs being used. 

There are some constraints and restrictions that must be 
explained for this solution: i) graphs used as input must have a 
limited or finite structure. ii) The MVTN input matrix for the 

graph has to be allowed to have negative values. iii) The 
graphs must have proper labelling for the nodes and edges. iv) 
matrices require proper labelling. 

Obviously if there is no ending or incidence matrix for the 
graph structures this cannot be done. One observation and 
modification to the MVTN is that the matrix can contain 
negative values. This was not allowed in previous work. Thus 
the matrices need proper labelling and have to be given an 
indication of what they can contain. 

VI.  CASE STUDY: SIMPLIFIED EXAMPLES 

The elementary and basic examples presented in this 
section are used for indicating practical use of this approach 
and testing its validity. 

A. Basic Graph Example 

Fig. 3 shows a basic digraph with its i) incidence and ii) 
adjacency matrices. These matrices are used as inputs for the 
MVTN. The graph can be transformed into the matrices and 

vice versa. It is important to label the graph edges and nodes 
for the process of transformation. In the graph incidence 
matrix the rows represent the nodes and the columns represent 
the edges.  The negative values show an input edge i.e. the 
direction of the edge and a positive value shows it is an output 
edge. 

B. Adding an Extra Edge, Adjacency matrix and MVTN 

This example in fig.4 shows how an extra edge is added to a 
simplified non directed graph using the MVTN and the output 
matrix. Here a simple edge is added between D2 and D3. This 
is simply done by incrementing the corresponding entry  
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Fig. 1 using graph representation matrices with the MVTN 

 

 
 

Fig. 2 graph representation matrices and other elements 
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Fig. 3 simple digraph with its i) incidence and ii) adjacency matrix 
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Fig. 5 adding an extra edge to a digraph via incidence matrix 
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Fig. 4 adding an extra edge via adjacency matrix 
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in the input matrix by 1. The contents of the output matrix on 
the output of the MVTN are added to the input matrix. This 
action can even be completed or carried out in other ways. The 
adjacency matrix is more suited for undirected graphs.  

C. Adding an Extra Edge, Incidence Matrix and MVTN 

Another approach to adding an extra edge is presented using 
a digraph. For this purpose, the incidence matrix of the graph 
is used. The incidence matrix seems to be better suited to 
model digraphs in this work. The graph is shown on the top 

l.h.s. of fig. 5. The corresponding incidence matrix is shown 
on the top r.h.s. of fig. 5. Fig. 6 shows the MVTN with more 
added detail and Fig. 7 shows the final result with the final 
output matrix and the corresponding modified graph. The 
example presented in fig. 5,6 is more detailed for the sake of 
clarity. 

D. Combining two Simple Graphs and MVTN 

This example in fig. 8 briefly outlines how two separate 
graphs can be combined into a single graph. In fig. 8 two 
distinctly labelled graphs are shown.  The output of the 
example is just a simple combination of two graphs. The 
graphs are not linked to each other and remain disjoint even in 
the combined matrix.  The graphs can be joined with some 
modifications. 

 
E.  Checking for a Particular Graph 
This example shows how a graph representation matrix can 

be used for checking and firing transitions in the MVTN. In 
Fig. 9 the matrix A is checked to see if it contains the correct 
values for the incidence matrix for a particular graph. If this is 
the case then A-B yields a null value and transition T1 can fire. 
Two tokens are removed from P1 and two tokens are placed in 
P2 and one token in P1 respectively. More comprehensive 
examples of how two separate graphs can be checked can be 
created. These can be used to trigger associated transitions in 
the MVTN. 
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Fig. 6 MVTN with proper inputs and outputs to add extra edge 
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Fig. 7 final result after firing T1 
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VII.  RESULTS AND FINDINGS 

The simplified case study examples clearly show that it is 
possible to use the MVTN to model and check very simple 
directed and undirected graphs. For particular graph types the 
adjacency matrix is more suitable than the incidence matrix. 
However the incidence matrix can provide detail about the 
edge direction for digraphs. Similar results could be obtained 
from different configurations or setups of the MVTN. It is up 
to the user to select what is most appropriate for a particular 
scenario.  The MVTN can be used to remove and add edges to 

a graph via its representational matrix. It can be used to 
combine two separate graph matrices into a singular matrix. 
One of the most tedious parts is the conversion of a graph into 
its representation matrix and the reconversion back into a 
graph. 

It is possible to test the graph representation matrix for the 
presence of a particular graph. The examples given are 
executable models that are based on Petri net like theory. Even 
though just a handful of examples have been given in this 
paper, these can serve as the building blocks to create even 
more complex structures and models. More advanced 
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Fig. 8 combining two graphs via the MVTN 
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Fig. 9 checking a graph representation matrix 
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modelling approaches can be defined from the ideas presented.  
Dynamic network structures can be created using this 

approach.  The structures can be used for system diagnosis and 
decision purposes. The following structures can be represented 
using these models: i) Dynamic system structures, ii) 
representational structures, iii) validation, verification and test 
structures and iv) structures for performance criteria. 

More practical uses of this work would be to apply these 
models for the following areas: i) route testing, ii) route 
reconfiguration, iii) optimization based on structural topology 
modification and iv) testing.   

The models presented in the previous section show mainly 
the following processes: i) edge adding, testing, and ii) 
combining two structures. The opposite processes could be 
defined e.g. edge removal and splitting a graph into separate 
entities etc. 

VIII.  CONCLUSION 

 
Various new ideas can be explored in future studies. 

However there are always some limitations. The focus here 
was more on a theoretical approach to modelling graphs via 
their matrices. The ideas presented can serve to study 
particular network problems. These are useful for visual 
representation and modelling. They can be used in the area of 
information graphics. Matrices are particularly interesting 
because they can contain useful information in a condensed 
and concise format. 

The limitations of this work are related mainly to 
complexity issues and the amount of processing involved. 
Graph structures can become overly complex if the number of 
edges and nodes are increased substantially [18]. Complex 
graphs have not been considered.  

Other problems exist when dealing with graphs of a more 
complex nature i.e. possibly having a mixture of node types 
and interrelationships. This is obvious if the massive 
classification of graph types available in literature is examined. 
In this case reduction and simplification methods could be 
used.  

Sometimes for simple problems the graph representational 
matrices can be used on their own hence the MVTN would not 
really be necessary. 
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