

Abstract— Cryptography currently plays a crucial role in the era

where millions of people are connected to the internet and
exchanging valuable and sensitive information. It is important for
companies, banks, government departments and any other institution
not only to create a secure connection over the ever-expanding
networks but also not to slow down their system throughput by the
implementation of these security solutions. Confidentiality, data
integrity, authentication and non-repudiation are implemented using
cryptographic algorithms. Applications for these algorithms are
considered compute-intensive applications. Therefore, cryptographic
algorithms are implemented in custom hardware seeking higher
performance than the software implementation running on general-
purpose processors. In this paper we present a new hardware data
structure, namely the ShuffleBox. This hardware data structure is
composed of simple registers and XOR gates. However, these
components are connected in a certain way to allow fast
implementation of important cryptographic procedures like
permutation, affine transformation and rotation across a number of
registers. The ShuffleBox is a rectangular array of bits that can store,
XOR and rotate all bits in all directions. The hardware
implementation that employs this hardware data structure achieves a
speedup between 6x and 18x over conventional implementations.

Keywords— Cryptographic Architecture, Hardware Data

Structure, Permutation, Rotation, Security Processor.

I. INTRODUCTION
RYPTOGRAPHIC techniques provide a very strong

data security infrastructure. However, they are composed
of very special operations that are rarely found in any other
application. These operations transform the input into a
scrambled output, which can be recovered only using the
appropriate key. These transforms are inherently complex and
very compute intensive. They can consume a great deal of
system resources if computed in software, i.e. on a general-
purpose processor. Moreover, general-purpose processors’
instruction sets are not optimized for these transforms. For
these reasons, the current trend is towards customized
hardware implementations of these security algorithms.
However, hardware implementations have a broad spectrum.
The hardware implementation can be as specific as a special
circuit performing only one algorithm and can be as general as
an instruction set architecture employing optimized
instructions for cryptographic algorithms. Special circuits
exploit all inherent parallelism in the algorithm being
implemented. However, they lack flexibility and offer no

control over their internal parameters. For example, if some
vulnerability in the implemented algorithm is discovered, the
system is risked to be useless unless a new circuit with the
improved algorithm is installed. The custom hardware that
implements only one algorithm is replaced by more flexible
architectures. These architectures provide the computational
data-path with more flexibility. The first step from custom
hardware is reconfigurable devices, for example Field
Programmable Gate Arrays (FPGA). FPGAs have abundant
logic and routing resources, which can be configured or
programmed to compute a large set of functions. These
resources can be reconfigured or programmed post-
fabrication. This feature compensate for the programmability
of general-purpose processors. In reconfigurable devices,
application parallelism is matched with as many function units
as needed and with as many wires or buses as needed. FPGAs
are considered fine-grained reconfigurable devices. They
carry some drawbacks for being fine-grained [1]. Firstly, they
need a large amount of configuration data which affects the
configuration time. This is important in applications where the
reconfigurable area is reconfigured during implementation and
therefore the performance of the cryptographic application is
affected by the configuration time. The other drawback is that
they are general purpose. Any application can be implemented
on an FPGA. Abundant routing resources are needed to
maintain this abstractness. These resources increase chip area
and consume power. Coarse-grained reconfigurable fabrics
are developed to overcome the drawbacks of the fine-grained
reconfigurable devices. The functional units in the coarse-
grained reconfigurable devices are customized for the
cryptographic applications [1,2]. These functional units
implement the most common operations in any cipher. These
common operations are as follows:

• Galois field addition and subtraction
• Galois field multiplication
• Logic operations like AND, OR and XOR.
• Shifting and rotation
• Table lookups

There are many research papers on the efficient
implementation of these operations [3,4,5]. However, there is
not enough concern with new hardware data structure that
enhances performance. In this paper we present the
ShuffleBox as a new hardware data structure that can enhance
cryptographic systems’ performance.

An efficient hardware data structure for
cryptographic applications

Hala A. Farouk

C

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

61 Manuscript Received April 19, 2007; Revised October 21, 2007

II. THE SHUFFLEBOX
The ShuffleBox comprises a group of flip-flops connected

in a grid as shown in Figure 1. Each square, except for the
vertical and horizontal command registers, symbolizes a flip-
flop. There are 16 command registers; eight for the horizontal
rotation and are located at the left and another eight for the
vertical rotation and are shown at the top. The vertical
(horizontal) command register is composed of eight registers
and each has three bits. The 24 bits are loaded into the vertical
(horizontal) command registers in one cycle. The figure shows
an 8x8 ShuffleBox just for the sake of explanation.

Figure 1 Abstract view of an 8x8 ShuffleBox

However, the size of the ShuffleBox should start from

64x64 for the implementation of the permutations in the DES
algorithm and blowfish algorithms, for example.

In the following sections, examples are given for the
implementation of some of the AES algorithm’s
transformations and also for an implementation of
permutations employing the ShuffleBox.

A. Applications of the ShuffleBox in the AES Algorithm
There are two transformations in the AES algorithm that

benefit the new data structure, the ShuffleBox. The two
transformations are the ByteSub and the ShiftRow [6]. The
ByteSub transformation is composed of two functions. First,
taking the multiplicative inverse in GF(28) of every byte and

then applying an affine transformation defined by:

































+

































•

































=

































0
1
1
0
0
0
1
1

11111000
01111100
00111110
00011111
10001111
11000111
11100011
11110001

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

x
x
x
x
x
x
x
x

y
y
y
y
y
y
y
y

This affine transformation can be implemented by using

vector x five times in different rotations and then bitwise
EXORing the five results. Finally, the result is EXORed with
the hexadecimal value 63. This procedure requires the
implementation of five shifters and five 8-bit EXOR units or
the execution of the shift and the EXOR instruction five times
on vector x. This routine is performed on every byte in the
data-block and the key-block and in every round of the
algorithm.

Figure 2 ShuffleBox implementing the affine transformation

LSB

MSB

MSB LSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

Vertical Command Registers

Horizontal Command Registers
Filter Out

8

Reg0 Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7

MSB: Most Significant BIts
LSB: Least Significant Bits
Reg n: Register at location n

000

000

000

000

000

000

000

000

000 001 010 011 100 000 000 000

1

0

1

1

0

0

0

1

1

1

0

1

1

0

0

0

0

1

1

0

1

1

0

0

0

0

1

1

0

1

1

0

0

0

0

1

1

0

1

1

1

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Vertical Command Registers

Horizontal Command Registers
01110111

8

Reg0 Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7

MSB: Most Significant BIts
LSB: Least Significant Bits
Reg n: Register at location n

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

62

The ShuffleBox simplifies the implementation of the above
described routine. First, the multiplicative inverse of the input
byte is loaded into five consecutive registers inside the
ShuffleBox. Then, the vertical command registers is loaded
with the value 053800h in hexadecimal format. The value 63h
is also loaded into the sixth register, namely Reg5. The output
bus (FilterOut) carries the output of the affine transformation
after the rotation is enabled. An example is shown in Figure 2.
The input data byte is 02h. The multiplicative inverse of 02h,
which is 8Dh, is loaded into the first five registers. The vertical
command register is loaded with the value 053800h. The
figure shows the register values and the output after the
rotation, which is 77h. The rotation in all register is done in
one cycle. The rotation is a down rotation according to the
value written in the vertical command registers and a right
rotation according to the value written in the horizontal
command register.

The algorithm implementation using the ShuffleBox speeds
up the execution six times over architectures with registers,
ALU and Shifter. The ShuffleBox takes however five times
the area of a register file of the same size, one EXOR unit and
one shifter. Higher speedups are noticeable in algorithms that
need bit replacements in more than one register or a rotation
between bits in a certain position in more than one register as
required by the ShiftRow operation in the AES algorithm.

Figure 3 The ShiftRow transformation in the AES algorithm

In the AES algorithm bytes are organized over four rows as

shown in Figure 3. The execution of such a shifting across the
bytes is actually swapping bytes between the words.
Therefore, this transformation requires 12 cycles on a machine
with no special hardware and without taking the loading into
registers into account. However, the execution of this
transformation using an 8x8 ShuffleBox requires three cycles
and using 32x8 ShuffleBox would require only one cycle
without taking the register loading into account. As we have
mentioned above, the flip-flops inside the ShuffleBox are
connected vertically as well as horizontally. Therefore, the
rotation in either direction takes only one cycle.

B. Permutations using the ShuffleBox
Keyed permutation can be easily implemented using the

ShuffleBox in two cycles without the cycles of loading the
registers. Assume that the value M=6E in hexadecimal needs
to be permutated as follows:

M5 M2 M7 M1 M3 M0 M4 M6
This permutation will transform the 6E input value into D9

hexadecimal value.

Figure 4 ShuffleBox state before any rotation for the permutation
operation

The horizontal command register is loaded with successive

values from 0 to 7 and the first register is loaded with the
value 6Eh as shown in Figure 4.

Figure 5 The ShuffleBox after the horizontal rotation

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

No Shift

One Rotation

Two Rotations

Three Rotations

000

001

010

011

100

101

110

111

000 000 000 000 000 000 000 000

0

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Vertical Command Registers

Horizontal Command Registers
01101110

8

Reg0 Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7

000

001

010

011

100

101

110

111

000 000 000 000 000 000 000 000

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

Vertical Command Registers

Horizontal Command Registers
01101110

8

Reg0 Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

63

Each row of the eight rows is rotated according to the value

on its left in the horizontal command register. This rotation
will spread the bits over ShuffleBox so that each column holds
only one bit of the input data as shown in Figure 5.

The vertical command register can be loaded during the
rotate operation in the second cycle. The signal of vertical
rotation is then asserted and each column is rotated down n
positions according to the value in the vertical command
register.

Figure 6 The ShuffleBox after the vertical rotation

The values in the vertical command register correspond to

the number of times each bit is displaced in the permutation
formula. In our example, the permutation follows this pattern
M5 M2 M7 M1 M3 M0 M4 M6. The data bit that was in the zero
location before the permutation moves after the permutation
two places to the left. Therefore, the most significant register
in the vertical command registers is loaded with the value 010
in binary format as shown in Figure 6. The same is performed
on each bit to achieve the final permutation. The output on the
FilterOut bus shows the value D9h as explained before.

III. SHUFFLEBOX IMPLEMENTATION
Table 1 shows the number of slices consumed for the

implementation of the 8x8 ShuffleBox and the 64x64
ShuffleBox. The table shows also the number of slices needed
for a plain register file of the same size. The implementation is
performed on the VirtexII pro40.

TABLE 1 COMPARISON OF THE CIRCUIT AREAS FOR THE DIFFERENT SIZES OF

SHUFFLEBOXES AND REGISTER FILES
 Area in Slices
ShuffleBox 8x8 329
ShuffleBox 64x64 16403
Register file 8x8 48
Register file 64x64 3177

TABLE 2 COMPARISON OF PERFORMANCE MEASURES
 Performance in

Cycles
AES Key Schedule

on Pentium Pro
305

AES Key Schedule
on security processor
with ShuffleBox

59

Table 2 shows the number of cycles needed for the

execution of the key schedule routine of the AES [7] on an
instruction set architecture with and without the ShuffleBox.

IV. CONCLUSION
Cryptographic architectures are crucial nowadays in

offloading the main system processor from the encryption,
authentication and other security related functions. There are
protocols to implement security in all network layers.
Therefore, offloading the main processor of these functions
enhances the overall performance [8]. The security processor
that takes over the cryptographic functions must be optimized
for such a task. Special hardware for Galois field algebra is
being designed as dataflow components. These components
are then either multiplied and assembled together to perform
the desired algorithm or they constitute the instruction set of
an application-specific instruction set architecture. Including a
specialized hardware data structure into any kind of
cryptographic engine can enhance its performance. In this
paper we provided a new hardware data structure, namely the
ShuffleBox. We also gave examples for its operation and how
it speeds up basic and important cryptographic functions.

REFERENCES
[1] R. R. Taylor, S.C. Goldstein, “A high-performance flexible architecture

for cryptography,” Proceedings of the 1st Workshop on Cryptographic
Hardware and Embedded Systems, Worcester, MA, USA, August 12–
13, 1999. pp. 231–245.

[2] Kang Sun, Xuezeng Pan, Jiebing Wang, Jimin Wang, “Design of a novel
asynchronous reconfigurable architecture for cryptographic
applications,” IMSCCS (2), 2006, pp. 751–757.

[3] M. Fayed, M. W. El-Kharashi, F. Gebali, “A low-area, high-speed,
processor array architecture for field ALU over GF (2m),” ITI 5th
International Conference on Information and Communications
Technology, Cairo, Egypt, December 16–18, 2007.

[4] A. . Elbirt and C. Paar, “An FPGA implementation and performance
evaluation of the serpent block cipher,” Eighth ACM International
Symposium on Field Programmable Gate Arrays, Montrey, California,
February 10–11, 2000.

000

001

010

011

100

101

110

111

010 011 100 000 101 010 010 110

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Vertical Command Registers

Horizontal Command Registers
11011001

8

Reg0 Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

64

[5] A. J. Elbirt, W. Yip, B. Chetwynd, C. Paar, “An FPGA implementation
and performance evaluation of the AES block cipher candidate algorithm
finalists,” Proc. 3rd Advanced Encryption Standard (AES) Candidate
Conference, New York, April 13–14, 2000.

[6] J. Daemen and V. Rijmen, "AES proposal: Rijndael," 1st Advanced
Encryption Standard (AES) Conference, California, USA, 1998.

[7] K. Gaj and P. Chodowiec, “Comparison of the hardware performance of
the AES candidates using reconfigurable hardware,” Proc. 3rd Advanced
Encryption Standard (AES) Candidate Conference, New York, April
13–14, 2000.

[8] A. Dandalis, V. K. Parsanna, “An Adaptive Cryptographic Engine for
Internet Protocol Security Architectures,” ACM Transactions on Design
Automation of Electronic Systems, Vol.9, No.3, July 2004. pp. 333–353.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

65

