
 

 

  
Abstract— Cryptography currently plays a crucial role in the era 

where millions of people are connected to the internet and 
exchanging valuable and sensitive information. It is important for 
companies, banks, government departments and any other institution 
not only to create a secure connection over the ever-expanding 
networks but also not to slow down their system throughput by the 
implementation of these security solutions. Confidentiality, data 
integrity, authentication and non-repudiation are implemented using 
cryptographic algorithms. Applications for these algorithms are 
considered compute-intensive applications. Therefore, cryptographic 
algorithms are implemented in custom hardware seeking higher 
performance than the software implementation running on general-
purpose processors. In this paper we present a new hardware data 
structure, namely the ShuffleBox. This hardware data structure is 
composed of simple registers and XOR gates. However, these 
components are connected in a certain way to allow fast 
implementation of important cryptographic procedures like 
permutation, affine transformation and rotation across a number of 
registers. The ShuffleBox is a rectangular array of bits that can store, 
XOR and rotate all bits in all directions. The hardware 
implementation that employs this hardware data structure achieves a 
speedup between 6x and 18x over conventional implementations. 
 
Keywords— Cryptographic Architecture, Hardware Data 

Structure, Permutation, Rotation, Security Processor. 

I. INTRODUCTION 
RYPTOGRAPHIC techniques provide a very strong 

data security infrastructure. However, they are composed 
of very special operations that are rarely found in any other 
application. These operations transform the input into a 
scrambled output, which can be recovered only using the 
appropriate key. These transforms are inherently complex and 
very compute intensive. They can consume a great deal of 
system resources if computed in software, i.e. on a general-
purpose processor. Moreover, general-purpose processors’ 
instruction sets are not optimized for these transforms. For 
these reasons, the current trend is towards customized 
hardware implementations of these security algorithms. 
However, hardware implementations have a broad spectrum. 
The hardware implementation can be as specific as a special 
circuit performing only one algorithm and can be as general as 
an instruction set architecture employing optimized 
instructions for cryptographic algorithms. Special circuits 
exploit all inherent parallelism in the algorithm being 
implemented. However, they lack flexibility and offer no 
 
 

control over their internal parameters. For example, if some 
vulnerability in the implemented algorithm is discovered, the 
system is risked to be useless unless a new circuit with the 
improved algorithm is installed. The custom hardware that 
implements only one algorithm is replaced by more flexible 
architectures. These architectures provide the computational 
data-path with more flexibility. The first step from custom 
hardware is reconfigurable devices, for example Field 
Programmable Gate Arrays (FPGA). FPGAs have abundant 
logic and routing resources, which can be configured or 
programmed to compute a large set of functions. These 
resources can be reconfigured or programmed post-
fabrication. This feature compensate for the programmability 
of general-purpose processors. In reconfigurable devices, 
application parallelism is matched with as many function units 
as needed and with as many wires or buses as needed. FPGAs 
are considered fine-grained reconfigurable devices. They 
carry some drawbacks for being fine-grained [1]. Firstly, they 
need a large amount of configuration data which affects the 
configuration time. This is important in applications where the 
reconfigurable area is reconfigured during implementation and 
therefore the performance of the cryptographic application is 
affected by the configuration time. The other drawback is that 
they are general purpose. Any application can be implemented 
on an FPGA. Abundant routing resources are needed to 
maintain this abstractness. These resources increase chip area 
and consume power. Coarse-grained reconfigurable fabrics 
are developed to overcome the drawbacks of the fine-grained 
reconfigurable devices. The functional units in the coarse-
grained reconfigurable devices are customized for the 
cryptographic applications [1,2]. These functional units 
implement the most common operations in any cipher. These 
common operations are as follows: 

 
• Galois field addition and subtraction 
• Galois field multiplication 
• Logic operations like AND, OR and XOR. 
• Shifting and rotation 
• Table lookups 
 

There are many research papers on the efficient 
implementation of these operations [3,4,5]. However, there is 
not enough concern with new hardware data structure that 
enhances performance. In this paper we present the 
ShuffleBox as a new hardware data structure that can enhance 
cryptographic systems’ performance.  
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II. THE SHUFFLEBOX 
The ShuffleBox comprises a group of flip-flops connected 

in a grid as shown in Figure 1. Each square, except for the 
vertical and horizontal command registers, symbolizes a flip-
flop. There are 16 command registers; eight for the horizontal 
rotation and are located at the left and another eight for the 
vertical rotation and are shown at the top. The vertical 
(horizontal) command register is composed of eight registers 
and each has three bits. The 24 bits are loaded into the vertical 
(horizontal) command registers in one cycle. The figure shows 
an 8x8 ShuffleBox just for the sake of explanation.  

 
Figure 1 Abstract view of an 8x8 ShuffleBox 

 
However, the size of the ShuffleBox should start from 

64x64 for the implementation of the permutations in the DES 
algorithm and blowfish algorithms, for example.  

In the following sections, examples are given for the 
implementation of some of the AES algorithm’s 
transformations and also for an implementation of 
permutations employing the ShuffleBox. 

 

A. Applications of the ShuffleBox in the AES Algorithm 
There are two transformations in the AES algorithm that 

benefit the new data structure, the ShuffleBox. The two 
transformations are the ByteSub and the ShiftRow [6]. The 
ByteSub transformation is composed of two functions. First, 
taking the multiplicative inverse in GF(28) of every byte and 

then applying an affine transformation defined by: 
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This affine transformation can be implemented by using 

vector x five times in different rotations and then bitwise 
EXORing the five results. Finally, the result is EXORed with 
the hexadecimal value 63. This procedure requires the 
implementation of five shifters and five 8-bit EXOR units or 
the execution of the shift and the EXOR instruction five times 
on vector x. This routine is performed on every byte in the 
data-block and the key-block and in every round of the 
algorithm. 

 
Figure 2 ShuffleBox implementing the affine transformation 
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The ShuffleBox simplifies the implementation of the above 
described routine. First, the multiplicative inverse of the input 
byte is loaded into five consecutive registers inside the 
ShuffleBox. Then, the vertical command registers is loaded 
with the value 053800h in hexadecimal format. The value 63h 
is also loaded into the sixth register, namely Reg5. The output 
bus (FilterOut) carries the output of the affine transformation 
after the rotation is enabled. An example is shown in Figure 2. 
The input data byte is 02h. The multiplicative inverse of 02h, 
which is 8Dh, is loaded into the first five registers. The vertical 
command register is loaded with the value 053800h. The 
figure shows the register values and the output after the 
rotation, which is 77h. The rotation in all register is done in 
one cycle. The rotation is a down rotation according to the 
value written in the vertical command registers and a right 
rotation according to the value written in the horizontal 
command register. 

The algorithm implementation using the ShuffleBox speeds 
up the execution six times over architectures with registers, 
ALU and Shifter. The ShuffleBox takes however five times 
the area of a register file of the same size, one EXOR unit and 
one shifter. Higher speedups are noticeable in algorithms that 
need bit replacements in more than one register or a rotation 
between bits in a certain position in more than one register as 
required by the ShiftRow operation in the AES algorithm.  

 
Figure 3 The ShiftRow transformation in the AES algorithm 

 
In the AES algorithm bytes are organized over four rows as 

shown in Figure 3. The execution of such a shifting across the 
bytes is actually swapping bytes between the words. 
Therefore, this transformation requires 12 cycles on a machine 
with no special hardware and without taking the loading into 
registers into account. However, the execution of this 
transformation using an 8x8 ShuffleBox requires three cycles 
and using 32x8 ShuffleBox would require only one cycle 
without taking the register loading into account. As we have 
mentioned above, the flip-flops inside the ShuffleBox are 
connected vertically as well as horizontally. Therefore, the 
rotation in either direction takes only one cycle.   

B. Permutations using the ShuffleBox 
Keyed permutation can be easily implemented using the 

ShuffleBox in two cycles without the cycles of loading the 
registers. Assume that the value M=6E in hexadecimal needs 
to be permutated as follows:  

M5 M2 M7 M1 M3 M0 M4 M6 
This permutation will transform the 6E input value into D9 

hexadecimal value. 
   

 
Figure 4 ShuffleBox state before any rotation for the permutation 
operation 

 
The horizontal command register is loaded with successive 

values from 0 to 7 and the first register is loaded with the 
value 6Eh as shown in Figure 4.  

Figure 5 The ShuffleBox after the horizontal rotation 
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Each row of the eight rows is rotated according to the value 

on its left in the horizontal command register. This rotation 
will spread the bits over ShuffleBox so that each column holds 
only one bit of the input data as shown in Figure 5. 

The vertical command register can be loaded during the 
rotate operation in the second cycle. The signal of vertical 
rotation is then asserted and each column is rotated down n 
positions according to the value in the vertical command 
register.  

 
Figure 6 The ShuffleBox after the vertical rotation 

 
The values in the vertical command register correspond to 

the number of times each bit is displaced in the permutation 
formula. In our example, the permutation follows this pattern 
M5 M2 M7 M1 M3 M0 M4 M6. The data bit that was in the zero 
location before the permutation moves after the permutation 
two places to the left. Therefore, the most significant register 
in the vertical command registers is loaded with the value 010 
in binary format as shown in Figure 6. The same is performed 
on each bit to achieve the final permutation. The output on the 
FilterOut bus shows the value D9h as explained before. 

 

III. SHUFFLEBOX IMPLEMENTATION 
Table 1 shows the number of slices consumed for the 

implementation of the 8x8 ShuffleBox and the 64x64 
ShuffleBox. The table shows also the number of slices needed 
for a plain register file of the same size. The implementation is 
performed on the VirtexII pro40.  

 
TABLE 1 COMPARISON OF THE CIRCUIT AREAS FOR THE DIFFERENT SIZES OF 

SHUFFLEBOXES AND REGISTER FILES 
 Area in Slices 
ShuffleBox 8x8 329 
ShuffleBox 64x64 16403 
Register file 8x8 48 
Register file 64x64 3177 

 
TABLE 2 COMPARISON OF PERFORMANCE MEASURES 
 Performance in 

Cycles 
AES Key Schedule 

on Pentium Pro 
305 

AES Key Schedule 
on security processor 
with ShuffleBox  

59 

 
Table 2 shows the number of cycles needed for the 

execution of the key schedule routine of the AES [7] on an 
instruction set architecture with and without the ShuffleBox.  

IV. CONCLUSION 
Cryptographic architectures are crucial nowadays in 

offloading the main system processor from the encryption, 
authentication and other security related functions. There are 
protocols to implement security in all network layers. 
Therefore, offloading the main processor of these functions 
enhances the overall performance [8]. The security processor 
that takes over the cryptographic functions must be optimized 
for such a task. Special hardware for Galois field algebra is 
being designed as dataflow components. These components 
are then either multiplied and assembled together to perform 
the desired algorithm or they constitute the instruction set of 
an application-specific instruction set architecture. Including a 
specialized hardware data structure into any kind of 
cryptographic engine can enhance its performance. In this 
paper we provided a new hardware data structure, namely the 
ShuffleBox. We also gave examples for its operation and how 
it speeds up basic and important cryptographic functions. 
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