

Abstract— The worst-case execution time assumption for

scheduling of real-time systems often lead to a waste of resources. In
hard real-time systems these types of estimates are essential to
guarantee temporal requirements are met. However in soft real-time
systems using other measurements, such as average-case timing, to
complement the worst-case estimates can lead to better utilisation of
resources while ensuring most, if not all, deadlines are met.

In this paper we propose a methodology to optimize resource
budgeting by integrating ACET information as a base for scheduling
of soft real-time systems. We demonstrate the usability of the
approach and illustrate it via a typical Real-Time Java programs.

Keywords—ACET, OCET, Scheduling, Soft Real-Time Systems,
Timing Analysis, WCET.

I. INTRODUCTION

urrently in real-time systems, in general cost estimations
are based exclusively on worst-case execution time

(WCET) [1]. This of course is essential in hard real-time
systems where missing a deadline can have catastrophic
consequences. However there exist real-time systems where an
occasional missed deadline is acceptable.

For certain tasks in a real-time system the WCET may
overshoot the actual time of a large proportion of the
executions of the task. This occurs when one execution
requires an abnormally large amount of time relative to the
other cases. Consequently budgeting on the WCET leads to a
large waste of resources on most executions of the task. In such
cases additional information to complement the WCET to
calculate more flexible cost estimates would be advantageous,
e.g. [2]. Indeed, an accurate measurement of a tasks
average-case execution time (ACET) can assist in the

Manuscript received August 29, 2007. This work was supported in part by
the Science Foundation Ireland and Irish Research Council for Science,
Engineering and Technology under the Embark Initiative reference number
RS/2005/118.

X. Guo was with the Centre for Efficiency-Oriented Languages, Computer
Science Department, University College Cork, Ireland. She is now with the
Cork Constraint Computation Centre, Computer Science Department,
University College Cork, Ireland (e-mail: gx1@cs.ucc.ie).

M. Boubekeur was with the Centre for Efficiency-Oriented Languages,
Computer Science Department, University College Cork, Ireland. He is now
with the Cork Complex Systems Lab, Computer Science Department,
University College Cork, Ireland (e-mail: m.boubekeur@cs.ucc.ie).

J. McEnery is with the Centre for Efficiency-Oriented Languages, Computer
Science Department, University College Cork, Ireland (email:
j.mcenery@cs.ucc.ie).

D. Hickey is with the Centre for Efficiency-Oriented Languages, Computer
Science Department, University College Cork, Ireland (email:
d.hickey@cs.ucc.ie).

calculation of more appropriate deadlines.

Table 1: Task execution times

For example, let us consider three tasks in a real-time system:
task 1, task 2 and task 3. The best, average and worst case
execution time estimations for each of them are displayed in
Table 1. The gap between ACET and WCET based cost
estimates is illustrated in Fig. 1.

Fig. 1: WCET and ACET cost estimates

The goal of our research work is to improve scheduling by
incorporating ACET information. In this paper we describe a
methodology for ACET based scheduling of real-time systems.

In order to achieve this we calculate a parameter called OCET
(Optimal Case Execution Time). This parameter is
automatically obtained using a function which takes as
parameters: a user defined acceptable missed deadline percent,
WCET and ACET. To determine timing performances (WCET
and ACET) we consider two classes of methods: static timing
analysis methods and measurement-based methods.

The need for optimal resources budgeting is well researched;
it has already been discussed in [3]. One option is to use
alternatives to WCET for scheduling. The authors in [4]
propose to cut the processing time assigned to a task below its
worst-case needed to avoid under-utilization of resources.
Within this time an acceptable percent of executions
successfully complete, while the remaining computations will
be processed later. This can be used for imprecise computation
and algorithms that can be interrupted at any time. In [5], the

ACET Based Scheduling of Soft Real-Time Systems:
An Approach to Optimise Resource Budgeting

X. Guo, M. Boubekeur, J. McEnery, and D. Hickey

C

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 1, 2007

82

hard and soft real-time performance of sorting algorithms were
investigated and compared with their average performance.
The author intended to work out how to select the right
algorithm for an application based on demand performance
criterion. [6] describes the use of decision-theory to optimize
the value of computation with uncertain and varying resource
limitations. Also in [7], a system for estimating ACET has been
developed to aid in resource allocation for distributed systems.
In industry, in general the estimations of ACET, obtained by
measurement, are sometimes used to improve cost estimates.

The remainder of the paper is organised as follows: in section II
we give a brief description of the Real-Time Specification for
Java. In section III we give an overview of the methods to
obtain ACET. Section IV describes a new methodology to
incorporate ACET information in real-time scheduling for soft
real-time systems. In section V we present the results of our
approach on a typical real-time implementation of a sorting
algorithm. We end in section VI by giving a discussion of our
work and outlining future perspectives.

II. REAL-TIME SPECIFICATION FOR JAVA (RTSJ)

The RTSJ is designed to allow programmers to engineer large
scale real-time systems in a modern, type-safe programming
environment. Features such as memory safety, checked
exceptions, and a rigorously specified memory model, make
Java a good programming language for developing mission
critical applications. RTSJ can be viewed as Java SE with new
features that provide real-time benefits. Here is a summary of
the additional features of RTSJ:

RealtimeThread is used for soft real-time scheduling, this class
uses a real-time garbage collector.

• NoHeapRealtimeThread is used for hard real-time
scheduling and synchronisation, in this case the garbage
collector is not used.

• Twenty-eight new levels of strictly enforced priority
levels. The highest priority JRTS thread is truly the
highest priority thread in the system and will not be
interrupted.

• ScopedMemory memory contains live objects, but these
are destroyed immediately when all schedulable objects
leave the scope. Scopes allow the developer to control
precisely when objects are created and destroyed without
the interference of garbage collection.

• ImmortalMemory memory contains objects that are not
destroyed until the end of the application.

• Asynchronous event handlers handle external events and
allow one to schedule the application’s response without
spoiling the temporal integrity of the overall system.

• Asynchronous transfer of control allows one to transfer
control from one thread to another or quickly terminate a
thread.

• High-resolution timers have true nanosecond accuracy.

• Direct physical memory access is safely allowed.

III. METHODS TO DETERMINE ACET

There are mainly two major approaches for ACET and
WCET analysis: (1) static analysis of programs and (2)
measurement-based techniques.

A. Automatic static analysis techniques
Static analysis aim to determine the behaviour of a given task

by analyzing the code and its execution environment: analyze
the set of possible control flow paths and combine control flow
with some model of the hardware architecture (abstract in
general) to obtain timing performance. Here we consider two of
the main techniques used for automatic ACET calculation.

1) Lambda-Upsilon-Omega (LUO)

LUO is a well researched average-case analysis tool,
developed by INRIA, France [8]−[10]. It is an academic
prototype designed to perform automatic average-case analysis
of well-defined classes of algorithms.

Fig. 2: LUO structure

The LUO system is based on the combination of two ideas:

1. Computing automatically the generating function
equations of the program. This is based on the
relationship between data structure and algorithm
specifications.

2. Extracting the asymptotic form of the generating
function coefficients.

The LUO system consists of three major components: the
Algebraic Analyzer (ALAS), the SOLVER, and the Analytic
Analyzer (ANANAS). Fig. 2 shows how the average cost is
derived from a program through the different components.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 1, 2007

83

2) Modular Quantitative Analysis tool (MOQA)
MOQA [11]−[13] is a tool dedicated to automatic

average-case analysis.

Fig. 3: MOQA Process

As shown in Fig. 3, MOQA allows the generation of

recurrence equations for the Average-Case Time from MOQA
programs. Once a recurrence is obtained, a secondary
recurrence can be derived specifying the standard deviation.
Fig. 3 also indicates standard approaches which can be
followed to either completely solve the recurrence equations
through generating functions and a mathematical software
package such as Maple, or to obtain information on the average
time for inputs within a given size bound through the standard
approach of computing the recurrence via dynamic
programming ([14]).

B. Measurement based techniques
Measurement-based analysis techniques are still current

practice in industry. These techniques do not always give
satisfactory results for either ACET or WCET because it is
impossible to enumerate all possible (infinitely many) inputs
for a program and measure each execution time.
Measurement-based analysis techniques raise the question of
whether or not there exists a more pessimistic scenario in which
the execution time exceeds the WCET observed so far.

One major problem with this approach is that the execution
time of basic blocks differs when different input parameters are
provided. Also, different inputs cause different paths to be
taken to reach basic blocks and the correlation between input
and execution time is not obvious.

The worst-case behaviour of a basic block can be exposed
easily, but this is generally considered as not being sufficient
since it is hard to prove that this is the case. However, when
considering ACET, measurement-based techniques offer more
accurate results. This is particularly true, as shown in later
sections, when considering a well distributed input sample.

For ACET, if the required measurements consider timing of
separate program components, combining these measured
times to obtain the result for the complete task is a key issue.
This is guaranteed by compositionality, which is very important
property in program analysis. The essence of compositionality

is to derive compositional analyzers, where the analysis of a
program can be obtained by composing the analysis of its
sub-components.

In general, measurement-based analysis can provide a
picture of the actual variability of the execution time. They can
also provide validation for static analysis approaches.

IV. ACET BASED SCHEDULING OF SOFT REAL-TIME SYSTEMS

It is often not viable or simply undesirable to schedule tasks
using pessimistic WCET estimates. As soft real-time systems
are capable of withstanding occasional deadline misses the
developer may often choose an arbitrary value for the deadline.
The selection of this value may be based on the WCET or
simply an educated guess which is then tested to confirm that
an unacceptable number of deadline misses are not observed.
We will see later that WCET based scheduling alone is not
optimal for soft real-time systems which require high resource
utilization.

In order to reduce the burden on the developer and to
improve the precision of the task deadlines we have developed
an ACET based scheduling technique. We propose the use of a
new timing analysis variable OCET, Optimal Case Execution
Time, as the parameter for scheduling rather than using WCET.
In soft real time systems and with an efficient OCET, we can
increase resource utilization while minimising the potential
number of deadline misses. OCET is calculated using an
acceptable deadline miss percent as chosen by the designer,
WCET and ACET.

A. Methods to calculate OCET
The acceptable deadline miss rate represents an upper bound

on the percent of allowable missed deadlines for a given task.
For example, if a task has an acceptable deadline miss rate of
one percent this implies that:

1. The OCET is set high enough to ensure that no more
than one deadline is missed on average in every one
hundred executions of the task.

2. The OCET is set low enough to ensure maximum
resource utilization while obeying the acceptable
deadline miss constraints.

In the following section we outline the two methods we have
used to calculate OCET.

1) Asymptote Method

In the asymptote method, the value of OCET is initially set to
the value of ACET. The OCET is then gradually increased until
it reaches the acceptable deadline miss rate or the WCET. This
is implemented using the following equation:

yACET)(WCETACETOCET ∗−+=)10(≤≤ y

From Fig. 4 we can see that as the value of y gradually moves

from 0 to 1, the value of OCET moves from ACET to WCET.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 1, 2007

84

Fig. 4: Asymptote method

We use givenPercent to represent the acceptable missed

deadline percent provided by the designer. The missPercenti is
the actual missed deadline percent which results from using
OCETi. Each time we calculate OCETi we count the number of
execution times that are greater than the OCETi and work out
the missed deadline percent (missPercenti). The developer
chooses an increment value which is used as the initial value of
y. The larger the increment value the faster that OCET is
found, however the smaller it is the closer it will be to its
theoretical value. Therefore it is vital, while using this
algorithm, to choose an appropriate increment value.

2) Binary Search Method

An efficient method to obtain the OCET is to use a binary
search algorithm. This is achieved by applying the following
equation where UpperBound and LowerBound are set to
WCET and ACET respectively:

2

LowerBoundUpperBoundOCETn
+

=

Using OCET1 as the deadline we execute the task noting the

number of deadline misses. This value is recorded as a percent
of the total number of executions and stored as missPercent1. If
missPercent1 is equal to the acceptable missed percent
(givenPercent), OCET1 is chosen as the OCET.

However, if missPercent1 is less than the acceptable missed
percent, then we know that the OCET must exist somewhere in
the range between the LowerBound and OCET1. Therefore we
can eliminate the other half of the range from our search by
setting UpperBound to OCET1. In case that missPercent1 is
greater than the acceptable missed percent, we proceed in a
similar way by setting LowerBound to OCET1. This process is
illustrated in Fig. 5. We simply repeat the search using the
same technique by applying the equation.

Continuing this binary search we will get OCET2, OCET3,
OCET4, …, OCETi … as well as missPercent2, missPercent3,
missPercent4, …, missPercenti, …, until the missPercentk is
equal to the givenPercent. In this case OCETk is chosen as the
OCET. If missPercentk does not equal givenPercent but is
within a pre-defined acceptable margin then we stop searching.
In this case if the missPercentk < givenPercent then the OCET

is set to OCETk. If the missPercentk > givenPercent OCET is set
to OCETk-1.

Fig. 5: Binary search method

Using either of the two methods described above we can

obtain the OCET if we know the ACET, WCET and the
acceptable missed deadline percent. In our example the binary
search method has been applied for illustration purposes to a
typical Real-Time Java sorting program.

B. ACET based scheduling for RTSJ
 The Real-Time Specification for Java (RTSJ) [15] provides

an integrated approach to scheduling periodic threads and
monitoring their CPU execution. In our study we use a
PeriodicParameters object which takes a start time, period, cost,
deadline, overrun handler and miss handler as parameters.

PeriodicParameters are a subclass of the ReleaseParameters
class. The parameter deadline is the latest permissible
completion time measured from the release time of the
associated invocation of the periodic real-time thread. The
missHandler is invoked if the run method of the periodic
real-time thread is still executing after the deadline has passed.
The parameter cost here presents the processing time per
release and the overrunHandler is invoked if an invocation of
the periodic real-time thread exceeds cost in the given release.
It supports a cost enforcement model and also a deadline
monitoring model.

As we get the OCET based on the execution time, we can
assign it to the cost parameter and count the overrun real-time
threads to see how the OCET influences the execution of the
real-time thread. The obtained OCET can also be used as the
value of the deadline parameter.

However, during our experiments we found that the
overrunHandler is released when cost overruns occurred but
the real-time thread remains executable until the execution on
the list finished. When a deadline was missed, the missHandler
is released and the real-time thread is automatically
descheduled. The missHandler must reschedule the real-time
thread by calling the SchedulePeriodic method, allowing
execution to continue. After calling the SchedulePeriodic
method, execution on the list which did not finish in the former

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 1, 2007

85

period will continue to execute in the next period until it
finishes. This means one time execution of a list may cause
several deadline misses.

Since we require the number of cases that do not complete
execution within OCET, we choose to use the costoverrun
handler in our study. We set the cost within the OCET value
and assign values to deadlines ensuring that all executions
complete within their deadlines.

In our experiments we used linear time memory areas
(LTMemory) which are scoped memory areas that are
guaranteed by the system to have linear time allocation and are
not subject to garbage collection.

V. OCET SCHEDULING EXAMPLES

In the previous section we have described the methods to
determine the ACET and OCET of a given task. In this section
we will demonstrate the usability of the method within RTSJ,
considering quicksort and quickselect as the example
algorithms using the binary search method described in section
IV part A to calculate the OCET. The advantages and
disadvantages of using OCET for RTSJ scheduling will also be
examined.

We execute our quicksort and quickselect tasks on samples
of 10,000 randomly generated lists on the Java RTS, which is
Sun Microsystems implementation of the RTSJ. The platform
chosen for the examples was a Sunfire V240 running Solaris
10. The worst-case and average-case execution times of the
algorithms are obtained using the measurement based approach
as described in part B of section IV. The OCET is then
calculated using the ACET, WCET and the acceptable missed
percent, where the latter is provided by the designer.

A. Generating input data
The quality of the experiments are highly dependent on the

distribution of the data in each of our lists. We choose Jakarta
Commons Math [16] which is a library of lightweight,
self-contained mathematics and statistics components
addressing the most common problems not available in the Java
programming language. The Commons Math random package
includes utilities for generating random numbers.

The random data we generate using Jakarta Commons Math
makes a well balanced distribution for the input. Fig. 6 shows
the timing results that execute (a) quicksort and (b) quickselect
algorithms in our experiments as examples. Maintaining a large
sample and list size minimises the possibility of jitter.

Fig. 6 (a): Execution times distribution for quicksort

Fig. 6 (b): Execution times distribution for quickselect

B. Quicksort
The quicksort algorithm, developed by C.A.R. Hoare [17], is

one of the simplest and most efficient algorithms for sorting.
The executions of the algorithm fall into three steps:

1. Pick an element, which is called the pivot, from the
list.

2. Reorder the list so that all elements which are less than
the pivot come before the pivot, all elements greater
than the pivot come after it. Elements which are equal
to the pivot can go either way. After this partitioning,
the pivot is in its final position. This is called the
partition operation.

3. Recursively sort the sub-list of lesser elements and the
sub-list of greater elements.

Here is a sample for Real-Time Java quicksort code:

private class QuickSort extends RealtimeThread{

 public void run(){
 algSort(list,0,count-1); }

 public int part(int a[], int low, int high){
 int pivot, p_pos, I;
 p_pos = low;
 pivot = a[p_pos];
 for (I = low + 1; I <= high; i++){
 if (a[i] > pivot){
 p_pos++;
 swap(a, p_pos, i);
 }
 }
 swap(a, low, p_pos);
 return p_pos;
 }

 private void algSort(int a[], int low, int high){
 int pivot;
 if (low < high){
 pivot = part(a, low, high);
 algSort(a, low, pivot – 1);
 algSort(a, pivot + 1, high);
} } }

We developed a sample Real-Time Java application to

execute the quicksort algorithm. We use real-time threads in
our implementation. A real-time thread is one kind of
schedulable object which associates release, scheduling,
memory and processing group parameters. Release parameters,
among them, characterize how often a schedulable object is
released and provide an estimate of the worst-case processor
time needed for each release, and a relative deadline by which

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 1, 2007

86

each release must have completed.
1) Calculation of OCET

While executing the application we measure the ACET and
WCET. OCET is determined by the WCET, ACET and the
acceptable missed percent. OCET values are calculated using
the binary search method described earlier in section IV part A.
Here we examine the WCET, ACET and OCET on variable
sized lists while maintaining a fixed acceptable missed deadline
percent.

Fig. 7 shows the worst, average and optimal case execution
times obtained in our experiments. It can be observed that there
is a significant gap between the WCET and both the ACET and
the OCET. This confirms that in such systems optimal-case
execution time leads to a large saving of resources while
minimising deadline misses to an acceptable level.

It should be noted in Fig. 7 that the ACET and the OCET
displayed are straight line graphs however the WCET graph is
jagged. It is widely accepted that the WCET is often unlikely to
occur even when a significantly large random input sample is
used. Even if the input which produced the WCET for the given
algorithm is known and used it may not be possible to
determine if that execution was indeed the worst case. This is
caused by the complexity which arises if the underlying
processor architecture uses speculative components such as
caches and pipelines. Due to the difficulty involved in proving
that the actual WCET has been observed, many systems are
scheduled using the worst observed execution time. For hard
real-time systems it is often necessary to add a safety margin to
the observed WCET in order to guarantee deadlines are met.
The intricacy involved in calculating the true WCET is another
motive for looking at an alternative scheduling foundation.

It can be seen from Fig. 7 that OCET is closely coupled with
the ACET rather than the WCET. This demonstrates the
significance of using ACET in scheduling for soft real-time
systems as opposed to most real-time methodologies which are
based merely on WCET values.

Fig. 7: Comparison of ACET, WCET and OCET

2) Analysis of the missed deadline percents

In this section we analyse the relationship between the
acceptable missed deadline percent and the OCET. We also test

to ensure that the actual number of missed deadlines does not
exceed the threshold we have set.

The relationship between the acceptable missed deadline
percent and the corresponding OCET values are presented in
Fig. 8. As the acceptable missed deadline percent moves
towards zero the OCET tends towards WCET. Conversely as
the acceptable missed deadline percent increases the OCET
tends towards the ACET which in this case is 0.706ms. As the
WCET is 6ms its inclusion in the graph would skew the
effectiveness of the graph and has therefore been omitted.

Fig. 8: Relationship between acceptable

missed percent and OCET

Fig. 9 presents the acceptable missed deadline percent and

the actual missed deadline percent we obtain while calculating
the OCET. In each instance the actual number of missed
deadlines is less than or equal to the acceptable missed deadline
percent.

Fig. 9: Missed percent for OCET calculation

3) Performance of OCET scheduling

The derived OCET is used as the cost value in the periodic
real-time thread to execute the quicksort algorithm and count
the number of times the thread overruns. The number of
overruns is used to calculate the actual missed deadline percent

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 1, 2007

87

as observed when using the OCET as the cost value. Similarly,
the actual missed deadline percent should be equal to or less
than the acceptable missed deadline percent. Fig. 10 shows the
acceptable missed deadline percent and the actual missed
deadline percent as observed when scheduling using the OCET.
It can be seen in the graph that the missed percent obtained by
scheduling with the OCET is less than the acceptable missed
percent.

Fig. 10: Acceptable missed percent vs

actual missed percent

C. Quickselect
Our new approach for ACET based scheduling has also been

used on quickselect algorithm as example. Quickselect is one of
the most efficient algorithms for quickly finding the k-th
smallest element of an unsorted list of n elements. It is trivial
with pre-sorted data to find the k-th smallest element, but it is
harder when the data is not sorted. Quickselect works by
sorting only the areas it needs to find the desired element. After
a quickselect, the data will be roughly sorted and the desired
element will be in its correct position. To implement a
quickselect we carry out the following steps:

1. Choose a pivot element.
2. Move the pointer from the left of the list to the right,

checking each element in turn. If an element whose
value is less than the value of the pivot it is moved to
the less-than value list. Similarly, if it is greater than
the value of the pivot it is moved to the greater-than
value list.

3. If k is less than or equal to the size of the less-than list,
then the k-th smallest element you are searching for
resides in the less-than list. In this case we return to
step 1, using the less-than list as our full list.
However, if k is greater than the size of the full list
minus the size of the greater-than list, then the k-th
smallest element exists in the greater-than list. In this
case we return to step 1, using the greater-than list as
our full list and reducing the value of k by the size of
the full list minus the size of the greater-than list. If
neither is true, then the k-th smallest element is the

pivot value.
The input data for quickselect, consisting of a list and value k

are randomly generated using Jakarta Commons Math [16]. We
use real-time threads in our implementation to execute the
quickselect algorithm, the same manner as the previous
example.

Fig. 11 presents the worst and average case execution times
of the quickselect algorithm as observed in our experiments
along with the optimal case execution time as calculated using
the binary search method. It can be seen that there is a
significant gap between the WCET and both the ACET and the
OCET. The OCET is closely coupled with the ACET rather
than the WCET.

Fig. 11: Comparison of ACET, WCET and OCET

Fig. 12 shows the relationship between the acceptable

missed percent and the corresponding OCET values. In the case
of the quickselect algorithm, the figure shows that when the
acceptable missed deadline percent moves towards zero the
OCET tends towards WCET. As the acceptable missed
deadline percent increases, the OCET tends towards the ACET.
Again, the WCET has been omitted form Fig. 12, as it is greater
than 4ms and its inclusion would skew the effectiveness of the
graph.

Fig. 12: Relationship between acceptable missed

 percent and OCET

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 1, 2007

88

Fig. 13 presents the acceptable missed deadline percent and

the actual missed deadline percent of quickselect algorithm we
obtain while calculating the OCET. In each case the actual
number of missed deadlines is less than or equal to the
acceptable missed deadline percent.

Fig. 13: Missed percent for OCET calculation

Fig. 14 describes the relationship between the acceptable

missed deadline percent and the actual missed deadline percent
when scheduling using the obtained OCET for the quickselect
algorithm. It can be observed that all of the actual missed
deadline percentages are equal to or less than the acceptable
missed deadline percent.

Fig. 14: Acceptable missed percent vs actual missed percent

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have outlined a methodology we have
developed for ACET based scheduling of soft real-time
systems. This has been illustrated through an evaluation study
using well known sorting and selection algorithms as examples.
The results demonstrate the benefits of this method for soft
real-time scheduling.

In future research we intend to evaluate our approach using
different scheduling algorithms as shown in [18]. We intend
also to integrate static techniques to derive OCET. This can be

achieved using probability density functions to obtain the
distributions of executions times.

ACKNOWLEDGMENT

We would like to thank Sun Microsystems for providing us
with the hardware, software and technical information which
has made this research possible.

REFERENCES
[1] H. Jamal, Z. A. Khan and M. M. Rahmatullah, “FPGA Based

Hardware Scheduler for Multiprocessor Systems”, WSEAS
Applied Computing Conference (ACC '08), Istanbul, Turkey, May
27-30, 2008.

[2] D. Mittermair and P. Puschner, Which Sorting Algorithms to
Choose for Hard Real-Time Applications. In Proc. Euromicro
Workshop on Real-Time Systems, p. 250-257, Toledo, Spain, June
1997.

[3] P. Puschner, A. Burns, “Time Constrained Sorting – A Comparison
of Different Algorithms”, 11th Euromicro Conference on
Real-Time Systems, 1999.

[4] P. Puschner, A. Burns, Time Constrained Sorting- A Comparison
of Different Algorithms, 11th Euromicro Conference on
Real-Time Systems, 1999.

[5] P. Puschner, Real-Time Performance of Sorting Algorithms,
Real-Time Systems, Volume 16, Number 1, 1999 , pp. 63-79(17).

[6] Eric Horvitz, Reasoning Under Varying and Uncertain Resource
Constraints, In Proc. of the 7th National Conference on Artificial
Intelligence, pages 11-116, Minneapolis, MN, USA, 1988. Morgan
Kaufmann, San Mateo, CA.

[7] Vivek Sarkar, “Determining Average Program Execution Times
and their Variance”, ACM SIGPLAN 1989 Conference on
Programming language design and implementation.

[8] P. Flajolet, J. S. Vitter, “Average-Case Analysis of Algorithms
and Data Structures, Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity”, Elsevier,
431-524, 1990.

[9] P. Flajolet, B. Salvy, P. Zimmerman, “Automatic average-case
analysis of algorithms”, Theoretical Computer Science 79, 37 -
109, 1991.

[10] P. Flajolet, R. Sedgewick, An Introduction To The Analysis of
Algorithms, Addison Wesley, 1995.

[11] M. P. Schellekens, “A Modular Calculus for the Average Cost of
Data Structuring”, Springer book to appear 2008, 250 pages.

[12] M. P. Schellekens, “A randomness preserving product
operation”, Extended version accepted for publication on
ENTCS, Elsevier's series "Electronic Notes in Theoretical
Computer Science", 2007.

[13] M. Boubekeur, D. Hickey, J. Mc Enery and M. Schellekens, "A
Modular Average-Case Timing of Real-Time Languages",
WSEAS Transactions on Computers, Issue2, Volume 1,
December 2006, ISSN: 1991-8755.

[14] A. Aho, J. Hopcroft and J. Ullman. Data structures and
algorithms. Addison-Wesley Series in Computer Science and
Information Processing, Addison-Wesley, 1987.

[15] http://www.rtj.org/

[16] http://jakarta.apache.org/commons/math/

[17] Hoare, C. A. R. Algorithm 65, FIND. Comm. Assoc. Comput.
Mach. V4 321-332, 1961.

[18] V. Salmani, M. Naghibzadeh, et al., “Performance Evaluation of
Deadline-based and Laxity-based Scheduling Algorithms in
Real-time Multiprocessor Environments”, The 6th WSEAS
International Conference on Systems Theory and Scientific
Computation (ISTASC'06), August 18-20, 2006, Elounda, Agios
Nikolaos, Crete Island, Greece.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 1, 2007

89

