
 

 

  
Abstract— The worst-case execution time assumption for 

scheduling of real-time systems often lead to a waste of resources. In 
hard real-time systems these types of estimates are essential to 
guarantee temporal requirements are met. However in soft real-time 
systems using other measurements, such as average-case timing, to 
complement the worst-case estimates can lead to better utilisation of 
resources while ensuring most, if not all, deadlines are met. 

In this paper we propose a methodology to optimize resource 
budgeting by integrating ACET information as a base for scheduling 
of soft real-time systems. We demonstrate the usability of the 
approach and illustrate it via a typical Real-Time Java programs. 
 

Keywords—ACET, OCET, Scheduling, Soft Real-Time Systems, 
Timing Analysis, WCET.  

I. INTRODUCTION 

urrently in real-time systems, in general cost estimations 
are based exclusively on worst-case execution time 

(WCET) [1].  This of course is essential in hard real-time 
systems where missing a deadline can have catastrophic 
consequences.  However there exist real-time systems where an 
occasional missed deadline is acceptable.   

For certain tasks in a real-time system the WCET may 
overshoot the actual time of a large proportion of the 
executions of the task.  This occurs when one execution 
requires an abnormally large amount of time relative to the 
other cases.  Consequently budgeting on the WCET leads to a 
large waste of resources on most executions of the task. In such 
cases additional information to complement the WCET to 
calculate more flexible cost estimates would be advantageous, 
e.g. [2]. Indeed, an accurate measurement of a tasks 
average-case execution time (ACET) can assist in the 
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calculation of more appropriate deadlines.   
 

Table 1: Task execution times 

 

For example, let us consider three tasks in a real-time system: 
task 1, task 2 and task 3. The best, average and worst case 
execution time estimations for each of them are displayed in 
Table 1. The gap between ACET and WCET based cost 
estimates is illustrated in Fig. 1. 

 
Fig. 1: WCET and ACET cost estimates 

 

The goal of our research work is to improve scheduling by 
incorporating ACET information. In this paper we describe a 
methodology for ACET based scheduling of real-time systems.  

In order to achieve this we calculate a parameter called OCET 
(Optimal Case Execution Time). This parameter is 
automatically obtained using a function which takes as 
parameters: a user defined acceptable missed deadline percent, 
WCET and ACET. To determine timing performances (WCET 
and ACET) we consider two classes of methods: static timing 
analysis methods and measurement-based methods. 

The need for optimal resources budgeting is well researched; 
it has already been discussed in [3]. One option is to use 
alternatives to WCET for scheduling. The authors in [4] 
propose to cut the processing time assigned to a task below its 
worst-case needed to avoid under-utilization of resources. 
Within this time an acceptable percent of executions 
successfully complete, while the remaining computations will 
be processed later. This can be used for imprecise computation 
and algorithms that can be interrupted at any time. In [5], the 
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hard and soft real-time performance of sorting algorithms were 
investigated and compared with their average performance. 
The author intended to work out how to select the right 
algorithm for an application based on demand performance 
criterion. [6] describes the use of decision-theory to optimize 
the value of computation with uncertain and varying resource 
limitations. Also in [7], a system for estimating ACET has been 
developed to aid in resource allocation for distributed systems.  
In industry, in general the estimations of ACET, obtained by 
measurement, are sometimes used to improve cost estimates. 

The remainder of the paper is organised as follows: in section II 
we give a brief description of the Real-Time Specification for 
Java. In section III we give an overview of the methods to 
obtain ACET. Section IV describes a new methodology to 
incorporate ACET information in real-time scheduling for soft 
real-time systems. In section V we present the results of our 
approach on a typical real-time implementation of a sorting 
algorithm.  We end in section VI by giving a discussion of our 
work and outlining future perspectives. 

II. REAL-TIME SPECIFICATION FOR JAVA (RTSJ) 

The RTSJ is designed to allow programmers to engineer large 
scale real-time systems in a modern, type-safe programming 
environment. Features such as memory safety, checked 
exceptions, and a rigorously specified memory model, make 
Java a good programming language for developing mission 
critical applications. RTSJ can be viewed as Java SE with new 
features that provide real-time benefits. Here is a summary of 
the additional features of RTSJ: 

RealtimeThread is used for soft real-time scheduling, this class 
uses a real-time garbage collector. 

• NoHeapRealtimeThread is used for hard real-time 
scheduling and synchronisation, in this case the garbage 
collector is not used. 

• Twenty-eight new levels of strictly enforced priority 
levels. The highest priority JRTS thread is truly the 
highest priority thread in the system and will not be 
interrupted. 

• ScopedMemory memory contains live objects, but these 
are destroyed immediately when all schedulable objects 
leave the scope. Scopes allow the developer to control 
precisely when objects are created and destroyed without 
the interference of garbage collection. 

• ImmortalMemory memory contains objects that are not 
destroyed until the end of the application.  

• Asynchronous event handlers handle external events and 
allow one to schedule the application’s response without 
spoiling the temporal integrity of the overall system. 

• Asynchronous transfer of control allows one to transfer 
control from one thread to another or quickly terminate a 
thread. 

• High-resolution timers have true nanosecond accuracy. 

• Direct physical memory access is safely allowed. 

III. METHODS TO DETERMINE ACET 

There are mainly two major approaches for ACET and 
WCET analysis: (1) static analysis of programs and (2) 
measurement-based techniques. 

A. Automatic static analysis techniques 
Static analysis aim to determine the behaviour of a given task 

by analyzing the code and its execution environment: analyze 
the set of possible control flow paths and combine control flow 
with some model of the hardware architecture (abstract in 
general) to obtain timing performance. Here we consider two of 
the main techniques used for automatic ACET calculation. 

 
1) Lambda-Upsilon-Omega (LUO) 

LUO is a well researched average-case analysis tool, 
developed by INRIA, France [8]−[10]. It is an academic 
prototype designed to perform automatic average-case analysis 
of well-defined classes of algorithms.  

 
Fig. 2: LUO structure 

 
The LUO system is based on the combination of two ideas: 

1. Computing automatically the generating function 
equations of the program. This is based on the 
relationship between data structure and algorithm 
specifications.  

2. Extracting the asymptotic form of the generating 
function coefficients. 

The LUO system consists of three major components: the 
Algebraic Analyzer (ALAS), the SOLVER, and the Analytic 
Analyzer (ANANAS). Fig. 2 shows how the average cost is 
derived from a program through the different components. 
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2) Modular Quantitative Analysis tool (MOQA) 
MOQA [11]−[13] is a tool dedicated to automatic 

average-case analysis.  

 
Fig. 3: MOQA Process 

 
As shown in Fig. 3, MOQA allows the generation of 

recurrence equations for the Average-Case Time from MOQA 
programs. Once a recurrence is obtained, a secondary 
recurrence can be derived specifying the standard deviation. 
Fig. 3 also indicates standard approaches which can be 
followed to either completely solve the recurrence equations 
through generating functions and a mathematical software 
package such as Maple, or to obtain information on the average 
time for inputs within a given size bound through the standard 
approach of computing the recurrence via dynamic 
programming ([14]). 

B. Measurement based techniques 
Measurement-based analysis techniques are still current 

practice in industry. These techniques do not always give 
satisfactory results for either ACET or WCET because it is 
impossible to enumerate all possible (infinitely many) inputs 
for a program and measure each execution time. 
Measurement-based analysis techniques raise the question of 
whether or not there exists a more pessimistic scenario in which 
the execution time exceeds the WCET observed so far. 

One major problem with this approach is that the execution 
time of basic blocks differs when different input parameters are 
provided. Also, different inputs cause different paths to be 
taken to reach basic blocks and the correlation between input 
and execution time is not obvious.  

The worst-case behaviour of a basic block can be exposed 
easily, but this is generally considered as not being sufficient 
since it is hard to prove that this is the case. However, when 
considering ACET, measurement-based techniques offer more 
accurate results. This is particularly true, as shown in later 
sections, when considering a well distributed input sample. 

For ACET, if the required measurements consider timing of 
separate program components, combining these measured 
times to obtain the result for the complete task is a key issue. 
This is guaranteed by compositionality, which is very important 
property in program analysis. The essence of compositionality 

is to derive compositional analyzers, where the analysis of a 
program can be obtained by composing the analysis of its 
sub-components.  

In general, measurement-based analysis can provide a 
picture of the actual variability of the execution time. They can 
also provide validation for static analysis approaches. 

IV. ACET BASED SCHEDULING OF SOFT REAL-TIME SYSTEMS 

It is often not viable or simply undesirable to schedule tasks 
using pessimistic WCET estimates.  As soft real-time systems 
are capable of withstanding occasional deadline misses the 
developer may often choose an arbitrary value for the deadline.  
The selection of this value may be based on the WCET or 
simply an educated guess which is then tested to confirm that 
an unacceptable number of deadline misses are not observed.  
We will see later that WCET based scheduling alone is not 
optimal for soft real-time systems which require high resource 
utilization. 

In order to reduce the burden on the developer and to 
improve the precision of the task deadlines we have developed 
an ACET based scheduling technique. We propose the use of a 
new timing analysis variable OCET, Optimal Case Execution 
Time, as the parameter for scheduling rather than using WCET. 
In soft real time systems and with an efficient OCET, we can 
increase resource utilization while minimising the potential 
number of deadline misses. OCET is calculated using an 
acceptable deadline miss percent as chosen by the designer, 
WCET and ACET. 

A. Methods to calculate OCET 
The acceptable deadline miss rate represents an upper bound 

on the percent of allowable missed deadlines for a given task.  
For example, if a task has an acceptable deadline miss rate of 
one percent this implies that: 

1. The OCET is set high enough to ensure that no more 
than one deadline is missed on average in every one 
hundred executions of the task. 

2. The OCET is set low enough to ensure maximum 
resource utilization while obeying the acceptable 
deadline miss constraints. 

In the following section we outline the two methods we have 
used to calculate OCET. 

 
1) Asymptote Method 

In the asymptote method, the value of OCET is initially set to 
the value of ACET. The OCET is then gradually increased until 
it reaches the acceptable deadline miss rate or the WCET.  This 
is implemented using the following equation: 

 
yACET)(WCETACETOCET ∗−+=     )10( ≤≤ y  

 
From Fig. 4 we can see that as the value of y gradually moves 

from 0 to 1, the value of OCET moves from ACET to WCET.   
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Fig. 4: Asymptote method 

 
We use givenPercent to represent the acceptable missed 

deadline percent provided by the designer. The missPercenti is 
the actual missed deadline percent which results from using 
OCETi. Each time we calculate OCETi we count the number of 
execution times that are greater than the OCETi and work out 
the missed deadline percent (missPercenti). The developer 
chooses an increment value which is used as the initial value of 
y.  The larger the increment value the faster that OCET is 
found, however the smaller it is the closer it will be to its 
theoretical value. Therefore it is vital, while using this 
algorithm, to choose an appropriate increment value. 

 
2) Binary Search Method 

An efficient method to obtain the OCET is to use a binary 
search algorithm. This is achieved by applying the following 
equation where UpperBound and LowerBound are set to 
WCET and ACET respectively:  

 

2

LowerBoundUpperBoundOCETn
+

=
 

 
Using OCET1 as the deadline we execute the task noting the 

number of deadline misses. This value is recorded as a percent 
of the total number of executions and stored as missPercent1. If 
missPercent1 is equal to the acceptable missed percent 
(givenPercent), OCET1 is chosen as the OCET. 

However, if missPercent1 is less than the acceptable missed 
percent, then we know that the OCET must exist somewhere in 
the range between the LowerBound and OCET1.  Therefore we 
can eliminate the other half of the range from our search by 
setting UpperBound to OCET1.  In case that missPercent1 is 
greater than the acceptable missed percent, we proceed in a 
similar way by setting LowerBound to OCET1. This process is 
illustrated in Fig. 5.  We simply repeat the search using the 
same technique by applying the equation. 

Continuing this binary search we will get OCET2, OCET3, 
OCET4, …, OCETi … as well as missPercent2, missPercent3, 
missPercent4, …, missPercenti, …, until the missPercentk is 
equal to the givenPercent. In this case OCETk is chosen as the 
OCET. If missPercentk does not equal givenPercent but is 
within a pre-defined acceptable margin then we stop searching. 
In this case if the missPercentk < givenPercent then the OCET 

is set to OCETk. If the missPercentk > givenPercent OCET is set 
to OCETk-1. 

 

 
Fig. 5: Binary search method 

 
Using either of the two methods described above we can 

obtain the OCET if we know the ACET, WCET and the 
acceptable missed deadline percent. In our example the binary 
search method has been applied for illustration purposes to a 
typical Real-Time Java sorting program. 

 

B. ACET based scheduling for RTSJ 
 The Real-Time Specification for Java (RTSJ) [15] provides 

an integrated approach to scheduling periodic threads and 
monitoring their CPU execution. In our study we use a 
PeriodicParameters object which takes a start time, period, cost, 
deadline, overrun handler and miss handler as parameters. 

PeriodicParameters are a subclass of the ReleaseParameters 
class. The parameter deadline is the latest permissible 
completion time measured from the release time of the 
associated invocation of the periodic real-time thread. The 
missHandler is invoked if the run method of the periodic 
real-time thread is still executing after the deadline has passed. 
The parameter cost here presents the processing time per 
release and the overrunHandler is invoked if an invocation of 
the periodic real-time thread exceeds cost in the given release. 
It supports a cost enforcement model and also a deadline 
monitoring model. 

As we get the OCET based on the execution time, we can 
assign it to the cost parameter and count the overrun real-time 
threads to see how the OCET influences the execution of the 
real-time thread. The obtained OCET can also be used as the 
value of the deadline parameter. 

However, during our experiments we found that the 
overrunHandler is released when cost overruns occurred but 
the real-time thread remains executable until the execution on 
the list finished. When a deadline was missed, the missHandler 
is released and the real-time thread is automatically 
descheduled. The missHandler must reschedule the real-time 
thread by calling the SchedulePeriodic method, allowing 
execution to continue. After calling the SchedulePeriodic 
method, execution on the list which did not finish in the former 
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period will continue to execute in the next period until it 
finishes. This means one time execution of a list may cause 
several deadline misses.  

Since we require the number of cases that do not complete 
execution within OCET, we choose to use the costoverrun 
handler in our study. We set the cost within the OCET value 
and assign values to deadlines ensuring that all executions 
complete within their deadlines.  

In our experiments we used linear time memory areas 
(LTMemory) which are scoped memory areas that are 
guaranteed by the system to have linear time allocation and are 
not subject to garbage collection. 

V. OCET SCHEDULING EXAMPLES 

In the previous section we have described the methods to 
determine the ACET and OCET of a given task. In this section 
we will demonstrate the usability of the method within RTSJ, 
considering quicksort and quickselect as the example 
algorithms using the binary search method described in section 
IV part A to calculate the OCET. The advantages and 
disadvantages of using OCET for RTSJ scheduling will also be 
examined. 

We execute our quicksort and quickselect tasks on samples 
of 10,000 randomly generated lists on the Java RTS, which is 
Sun Microsystems implementation of the RTSJ. The platform 
chosen for the examples was a Sunfire V240 running Solaris 
10. The worst-case and average-case execution times of the 
algorithms are obtained using the measurement based approach 
as described in part B of section IV. The OCET is then 
calculated using the ACET, WCET and the acceptable missed 
percent, where the latter is provided by the designer. 

A. Generating input data 
The quality of the experiments are highly dependent on the 

distribution of the data in each of our lists. We choose Jakarta 
Commons Math [16] which is a library of lightweight, 
self-contained mathematics and statistics components 
addressing the most common problems not available in the Java 
programming language. The Commons Math random package 
includes utilities for generating random numbers.  

The random data we generate using Jakarta Commons Math 
makes a well balanced distribution for the input. Fig. 6 shows 
the timing results that execute (a) quicksort and (b) quickselect 
algorithms in our experiments as examples. Maintaining a large 
sample and list size minimises the possibility of jitter. 

 
Fig. 6 (a): Execution times distribution for quicksort 

 
Fig. 6 (b): Execution times distribution for quickselect 

 

B. Quicksort 
The quicksort algorithm, developed by C.A.R. Hoare [17], is 

one of the simplest and most efficient algorithms for sorting. 
The executions of the algorithm fall into three steps: 

1. Pick an element, which is called the pivot, from the 
list. 

2. Reorder the list so that all elements which are less than 
the pivot come before the pivot, all elements greater 
than the pivot come after it. Elements which are equal 
to the pivot can go either way. After this partitioning, 
the pivot is in its final position. This is called the 
partition operation. 

3. Recursively sort the sub-list of lesser elements and the 
sub-list of greater elements. 

Here is a sample for Real-Time Java quicksort code: 
 

private class QuickSort extends RealtimeThread{ 
 
  public void run(){ 
    algSort(list,0,count-1); } 
        
  public int part(int a[], int low, int high){ 
    int pivot, p_pos, I; 
    p_pos = low; 
    pivot = a[p_pos]; 
    for (I = low + 1; I <= high; i++){ 
      if (a[i] > pivot){ 
        p_pos++; 
        swap(a, p_pos, i); 
      } 
    } 
    swap(a, low, p_pos); 
    return p_pos; 
  } 
         
  private void algSort(int a[], int low, int high){ 
    int pivot; 
    if (low < high){ 
      pivot = part(a, low, high); 
      algSort(a, low, pivot – 1); 
      algSort(a, pivot + 1, high); 
} } } 

 
We developed a sample Real-Time Java application to 

execute the quicksort algorithm. We use real-time threads in 
our implementation. A real-time thread is one kind of 
schedulable object which associates release, scheduling, 
memory and processing group parameters. Release parameters, 
among them, characterize how often a schedulable object is 
released and provide an estimate of the worst-case processor 
time needed for each release, and a relative deadline by which 
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each release must have completed. 
1) Calculation of OCET 

While executing the application we measure the ACET and 
WCET. OCET is determined by the WCET, ACET and the 
acceptable missed percent. OCET values are calculated using 
the binary search method described earlier in section IV part A. 
Here we examine the WCET, ACET and OCET on variable 
sized lists while maintaining a fixed acceptable missed deadline 
percent. 

Fig. 7 shows the worst, average and optimal case execution 
times obtained in our experiments. It can be observed that there 
is a significant gap between the WCET and both the ACET and 
the OCET. This confirms that in such systems optimal-case 
execution time leads to a large saving of resources while 
minimising deadline misses to an acceptable level. 

It should be noted in Fig. 7 that the ACET and the OCET 
displayed are straight line graphs however the WCET graph is 
jagged. It is widely accepted that the WCET is often unlikely to 
occur even when a significantly large random input sample is 
used. Even if the input which produced the WCET for the given 
algorithm is known and used it may not be possible to 
determine if that execution was indeed the worst case. This is 
caused by the complexity which arises if the underlying 
processor architecture uses speculative components such as 
caches and pipelines. Due to the difficulty involved in proving 
that the actual WCET has been observed, many systems are 
scheduled using the worst observed execution time. For hard 
real-time systems it is often necessary to add a safety margin to 
the observed WCET in order to guarantee deadlines are met. 
The intricacy involved in calculating the true WCET is another 
motive for looking at an alternative scheduling foundation. 

It can be seen from Fig. 7 that OCET is closely coupled with 
the ACET rather than the WCET.  This demonstrates the 
significance of using ACET in scheduling for soft real-time 
systems as opposed to most real-time methodologies which are 
based merely on WCET values. 

 

 
Fig. 7: Comparison of ACET, WCET and OCET 

 
2) Analysis of the missed deadline percents 

In this section we analyse the relationship between the 
acceptable missed deadline percent and the OCET. We also test 

to ensure that the actual number of missed deadlines does not 
exceed the threshold we have set. 

The relationship between the acceptable missed deadline 
percent and the corresponding OCET values are presented in 
Fig. 8. As the acceptable missed deadline percent moves 
towards zero the OCET tends towards WCET. Conversely as 
the acceptable missed deadline percent increases the OCET 
tends towards the ACET which in this case is 0.706ms. As the 
WCET is 6ms its inclusion in the graph would skew the 
effectiveness of the graph and has therefore been omitted. 

 

 
Fig. 8: Relationship between acceptable  

missed percent and OCET 
 
Fig. 9 presents the acceptable missed deadline percent and 

the actual missed deadline percent we obtain while calculating 
the OCET. In each instance the actual number of missed 
deadlines is less than or equal to the acceptable missed deadline 
percent. 

 

 
Fig. 9: Missed percent for OCET calculation 

 
3) Performance of OCET scheduling 

The derived OCET is used as the cost value in the periodic 
real-time thread to execute the quicksort algorithm and count 
the number of times the thread overruns. The number of 
overruns is used to calculate the actual missed deadline percent 
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as observed when using the OCET as the cost value. Similarly, 
the actual missed deadline percent should be equal to or less 
than the acceptable missed deadline percent. Fig. 10 shows the 
acceptable missed deadline percent and the actual missed 
deadline percent as observed when scheduling using the OCET. 
It can be seen in the graph that the missed percent obtained by 
scheduling with the OCET is less than the acceptable missed 
percent.    
 

 
Fig. 10: Acceptable missed percent vs 

actual missed percent 
 

C. Quickselect 
Our new approach for ACET based scheduling has also been 

used on quickselect algorithm as example. Quickselect is one of 
the most efficient algorithms for quickly finding the k-th 
smallest element of an unsorted list of n elements. It is trivial 
with pre-sorted data to find the k-th smallest element, but it is 
harder when the data is not sorted. Quickselect works by 
sorting only the areas it needs to find the desired element. After 
a quickselect, the data will be roughly sorted and the desired 
element will be in its correct position. To implement a 
quickselect we carry out the following steps:   

1. Choose a pivot element. 
2. Move the pointer from the left of the list to the right, 

checking each element in turn. If an element whose 
value is less than the value of the pivot it is moved  to 
the less-than value list. Similarly, if it is greater than 
the value of the pivot it is moved to the greater-than 
value list.  

3. If k is less than or equal to the size of the less-than list, 
then the k-th smallest element you are searching for 
resides in the less-than list. In this case we return to 
step 1, using the less-than list as our full list.  
However, if k is greater than the size of the full list 
minus the size of the greater-than list, then the k-th 
smallest element exists in the greater-than list. In this 
case we return to step 1, using the greater-than list as 
our full list and reducing the value of k by the size of 
the full list minus the size of the greater-than list.  If 
neither is true, then the k-th smallest element is the 

pivot value. 
The input data for quickselect, consisting of a list and value k 

are randomly generated using Jakarta Commons Math [16]. We 
use real-time threads in our implementation to execute the 
quickselect algorithm, the same manner as the previous 
example.  

Fig. 11 presents the worst and average case execution times 
of the quickselect algorithm as observed in our experiments 
along with the optimal case execution time as calculated using 
the binary search method. It can be seen that there is a 
significant gap between the WCET and both the ACET and the 
OCET. The OCET is closely coupled with the ACET rather 
than the WCET. 

 
Fig. 11: Comparison of ACET, WCET and OCET 

 
Fig. 12 shows the relationship between the acceptable 

missed percent and the corresponding OCET values. In the case 
of the quickselect algorithm, the figure shows that when the 
acceptable missed deadline percent moves towards zero the 
OCET tends towards WCET. As the acceptable missed 
deadline percent increases, the OCET tends towards the ACET. 
Again, the WCET has been omitted form Fig. 12, as it is greater 
than 4ms and its inclusion would skew the effectiveness of the 
graph. 

 

 
Fig. 12: Relationship between acceptable missed 

 percent and OCET 
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Fig. 13 presents the acceptable missed deadline percent and 

the actual missed deadline percent of quickselect algorithm we 
obtain while calculating the OCET. In each case the actual 
number of missed deadlines is less than or equal to the 
acceptable missed deadline percent. 

 

 
Fig. 13: Missed percent for OCET calculation 

 
Fig. 14 describes the relationship between the acceptable 

missed deadline percent and the actual missed deadline percent 
when scheduling using the obtained OCET for the quickselect 
algorithm. It can be observed that all of the actual missed 
deadline percentages are equal to or less than the acceptable 
missed deadline percent. 

 
Fig. 14: Acceptable missed percent vs actual missed percent 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have outlined a methodology we have 
developed for ACET based scheduling of soft real-time 
systems. This has been illustrated through an evaluation study 
using well known sorting and selection algorithms as examples. 
The results demonstrate the benefits of this method for soft 
real-time scheduling.  

In future research we intend to evaluate our approach using 
different scheduling algorithms as shown in [18]. We intend 
also to integrate static techniques to derive OCET. This can be 

achieved using probability density functions to obtain the 
distributions of executions times.  

ACKNOWLEDGMENT 

We would like to thank Sun Microsystems for providing us 
with the hardware, software and technical information which 
has made this research possible. 

REFERENCES   
[1] H. Jamal, Z. A. Khan and M. M. Rahmatullah, “FPGA Based 

Hardware Scheduler for Multiprocessor Systems”, WSEAS 
Applied Computing Conference (ACC '08), Istanbul, Turkey, May 
27-30, 2008. 

[2] D. Mittermair and P. Puschner, Which Sorting Algorithms to 
Choose for Hard Real-Time Applications. In Proc. Euromicro 
Workshop on Real-Time Systems, p. 250-257, Toledo, Spain, June 
1997. 

[3] P. Puschner, A. Burns, “Time Constrained Sorting – A Comparison 
of Different Algorithms”, 11th Euromicro Conference on 
Real-Time Systems, 1999. 

[4] P. Puschner, A. Burns, Time Constrained Sorting- A Comparison 
of Different Algorithms, 11th Euromicro Conference on 
Real-Time Systems, 1999. 

[5] P. Puschner, Real-Time Performance of Sorting Algorithms, 
Real-Time Systems, Volume 16, Number 1, 1999 , pp. 63-79(17). 

[6] Eric Horvitz, Reasoning Under Varying and Uncertain Resource 
Constraints, In Proc. of the   7th National Conference on Artificial 
Intelligence, pages 11-116, Minneapolis, MN, USA, 1988. Morgan 
Kaufmann, San Mateo, CA. 

[7] Vivek Sarkar, “Determining Average Program Execution Times 
and their Variance”, ACM SIGPLAN 1989 Conference on 
Programming language design and implementation. 

[8] P. Flajolet, J. S. Vitter, “Average-Case Analysis of Algorithms 
and Data Structures, Handbook of Theoretical Computer 
Science, Volume A: Algorithms and Complexity”, Elsevier, 
431-524, 1990. 

[9] P. Flajolet, B. Salvy, P. Zimmerman, “Automatic average-case 
analysis of algorithms”, Theoretical Computer Science 79, 37 - 
109, 1991. 

[10] P. Flajolet, R. Sedgewick, An Introduction To The Analysis of 
Algorithms, Addison Wesley, 1995. 

[11] M. P. Schellekens, “A Modular Calculus for the Average Cost of 
Data Structuring”, Springer book to appear 2008, 250 pages. 

[12] M. P. Schellekens, “A randomness preserving product 
operation”, Extended version accepted for publication on 
ENTCS, Elsevier's series "Electronic Notes in Theoretical 
Computer Science", 2007. 

[13] M. Boubekeur, D. Hickey, J. Mc Enery  and M. Schellekens, "A 
Modular Average-Case  Timing of Real-Time Languages", 
WSEAS Transactions on Computers, Issue2, Volume 1, 
December 2006, ISSN: 1991-8755. 

[14] A. Aho, J. Hopcroft and J. Ullman. Data structures and 
algorithms. Addison-Wesley Series in Computer Science and 
Information Processing, Addison-Wesley, 1987. 

[15] http://www.rtj.org/ 

[16] http://jakarta.apache.org/commons/math/ 

[17] Hoare, C. A. R. Algorithm 65, FIND. Comm. Assoc. Comput. 
Mach. V4 321-332, 1961. 

[18] V. Salmani, M. Naghibzadeh, et al., “Performance Evaluation of 
Deadline-based and Laxity-based Scheduling Algorithms in 
Real-time Multiprocessor Environments”, The 6th WSEAS 
International Conference on Systems Theory and Scientific 
Computation (ISTASC'06), August 18-20, 2006, Elounda, Agios 
Nikolaos, Crete Island, Greece.  

 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 1, 2007

89




