
More scalability at lower costs –
Server Architecture for Massive Multiplayer

3D Virtual Spaces powered by GPGPU
Alin Moldoveanu, Florica Moldoveanu, Victor Asavei

Abstract—3D massive multiplayer virtual spaces are getting

more and more popular, not only as computer games but as complex
simulation and interaction environments, heading to become the next
paradigm of multi-user interface. Still their universal adoption is
hindered by some serious practical issues, mainly revolving around
development costs and scalability limitations. The authors consider
that the main cause for these limitations resides in the particularities
of server-side software architectures - traditionally designed as
clusters of single processor machines. The paper gives a brief
overview of current solutions and their limitations and proposes two
innovative architectural concepts which have a big potential for
creating cheaper and more scalable solutions. We describe a region
based decomposition of the virtual space together with supporting
middlewares of messaging, distributed control and persistence, which
allow an efficient and flexible work effort distribution on server side.
The solution allows for both horizontal and vertical scalability. The
vertical scalability is then mapped in an innovative manner on the
last generation of SIMD-like multi-processor graphics cards. The
huge processing power of these cards, with the right architecture, can
take over the bulk of the server-side effort. Our prototype tests
indicated that the solution is feasible and may represent an important
turnaround in the development of more scalable and much cheaper
massive multi-player server architectures for various types of virtual
spaces.

Keywords—3D, virtual space, massive multiplayer, server
scalability, GPGPU, CUDA

I. INTRODUCTION
D massive multiplayer virtual spaces offer rich

information delivery, interaction and collaboration
possibilities. They are getting more and more popular each
day, not only as computer games but also as simulations,
training, edutainment or work-oriented applications [8]–[10].
Considering the huge attraction and interest from the users, it
is highly probable that not far in the future they will be the
standard user-interface paradigm.

Right now, the market adoption of such virtual spaces is
hindered by the huge costs involved in their creation,
operation and maintenance. Creation costs regard software

Manuscript received December 15, 2008
All authors are in the Faculty of Automatic Control and Computers,

University Politehnica of Bucharest, Bucharest 060042, ROMANIA
http://www.pub.ro/
http://www.acs.pub.ro/

development and content creation. Content creation is
basically open to everyone, with many easy to use tools
available, but the software creation is prohibitive.

The architecture for such applications is typically client-
server. The server manages the content of the virtual world
while clients provide access to it for remote users, through
internet.

While client applications are well supported by libraries,
graphics, physics, audio, multiplayer etc. engines and RAD
tools, this does not stands for the servers for massive
multiplayer 3D virtual spaces.

Particularities of the domain are:
– the real time multi-player aspect
– the complexity of interactions
– requirements about persistence and up-time
– (most important,) the short response time (round trip

latency) that users expect
All of these, put together, will make the development of a

3D multi-player virtual space a challenging task, accessible
only to a selected elite of software developers and, of course,
very costly.

Operation and maintenance cost tend to be very high due to
the traditional approach to server design for this type of
application.

According to our researches, there is no highly scalable
accepted solution of 3D massive multiplayer virtual spaces
server in the public domain

Judging by the little confidential information that leaked
out, it seems that even biggest operators of such spaces don’t
have a perfect solution and they are running huge operating
costs because of this.

The paper proposes a high level architectural solution
designed for high scalability, both horizontal (on multiple
computers) and vertical (on multi-processor machines). Then
we show how the vertical scalability can be mapped to benefit
from the huge parallel power of the new generations of
graphics processing units.

II. SERVER RESPONSIBILITIES AND ISSUES

A. Server responsibilities
The vast majority of 3D massive multiplayer virtual spaces

are implemented as client-server applications. This comes

3

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

117

http://www.acs.pub.ro/

from the competitive and security issues existing in most of
them. Even if, theoretically, some virtual space can also have
efficient peer to peer solutions, this is excluded in practice,
because it will be possible, actually quite probable, that some
users will try to exploit the inherent weakness of the
architecture by reverse engineering and modifying the client,
as is actually happening with the clients of most successful
MMORPGS.

Hence, the first role of the server, which force the client-
server approach, if to be the unique supervisor and arbiter of
the virtual space.

To accomplish this role, the server must [3]–[5]:
• keep a full semantical representation of the internal state

of the virtual space
• validate the significant actions of each user according to

the virtual space rules, to prevent exploits by reverse
engineering the client

• detect patterns of bot-like actions and possible frauds and
stop them etc.

Besides this arbiter role, typical responsibilities of the
server are:

• characters/avatars creation and changing
• login system
• implementing the non-user controlled aspects of the

virtual space logics:
– events
– NPCs (non-player characters)
– changing geography
– resources
– mobs creation
– mobs control
– quests
– artificial intelligence

• permanent updating each client about all the events of
interest for him

B. Scalability issues for the server
As we will argument below, the scalability of a massive

multiplayer virtual space server is substantially different from
other classical scalability problems [1].

For example, for applications consisting of highly intensive
more or less complex database accesses and queries, the
scalability is almost entirely solved by classical techniques at
database or file system level. There are no synchronization
problems that can't be solved with the basic locking of records
or tables. There are no real time challenges. The clients for
these applications also have usually small complexity, they
just acting at presentation level - GUI.

Other applications, like search engines, rely on specific
algorithms for dividing a query in several smaller ones, which
is easily distributed over several machines, the results of the
independent sub-queries being relatively easy to assemble
also.

Most of these applications do not have to address the issues
typical for a massive multiplayer virtual space:

• permanent connections to a large number of clients
• high amount of information exchanged in real time (users

actions and their effects)
• the absolute demand for a fast, guaranteed response time

to users actions (round-trip latency)
• the relative complexity of the logics and interactions in

the virtual space, which usually implies:
– there is no straightforward full hierarchical tree

decomposition of the problem
– even if a decomposition is found bases on some

criteria, the resulting subtasks will require some
amount of communication between them

1) Low latency
Virtual spaces are mostly used in entertainment (games).

From other uses, they also make up good simulation and
training environments. In both cases, the users do expect and
need the response to their actions and to other users’ actions in
real time, as fast as possible. A usual value is in the rank of
tens to hundreds of milliseconds, anything above affecting the
quality of the interaction (is usually called lag and hated by
the users).

This is so important that some specific techniques like
"guessing" the results of an action or the expected next
position during movement, followed by later corrections or
adjustments when necessary, are sometimes employed to
minimize latency, as observed by the user.

Such techniques are anyway more or less just workarounds
or tricks. Above them, is essential the architectural design of
the whole system to minimize the latency.

2) Strongly linked multi-user interactions
Unlike other application types, where the work flow is

initialized and directed by a single user, virtual spaces support
complex interactions, involving many users at the same time.
The actions of an individual user and their effects, usually
calculated by the server, must be propagated in real time to all
those affected by them.

Obviously this requires a communication architecture with
support for broadcast. This has no impact over scalability

However, of maximum importance for scalability is the
accomplishment of the following thumb-rule:

• the division and distribution of users and tasks over
different processing units (processor or computers) must
allow very fast retrieval of the necessary information
about all the users potentially affected by an action

This requires:
• designing the scenario of the virtual space, the geography

of the world, the possible interactions between users and
the quests

• the internal data structures on storage
• the server communication middleware

III. LIMITATIONS OF THE CURRENT SOLUTIONS
Due to legacy background and education, most massive

multiplayer virtual spaces developers are oriented to classical

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

118

architectures, with a very small number of processes or
threads, since the time of single-processor computers. Hence,
first scalability attempts followed this approach, ending to be
more or less like some partial work-around for the problem.

A. Virtual world independent instances
Totally independent instances of the virtual world, usually

called realms in games terminology, are created and reside on
completely independent servers. Users can access any of these
instances, but, as any moment in time, the interaction is
limited server-wide and generally, character/avatar transfer
between worlds is restricted or limited. Sometimes, minimal
connection between these world exists though, but they are
minimalistic and don't have real time behavior.

B. Instance dungeons
A similar workaround is the instance dungeon concept – a

subspace of the virtual space, for which an independent copy
is spawned each time a user or a group of users is accessing it.
Users in a dungeon can only interact with others in the same
dungeon.

From users’ point of view, this limits the competition for
resources in that area to an acceptable degree.

However, from developers point of view is a tricky way to:
• reduce server workload by limiting the number of users

in an dungeon and therefore reducing the overall number
of interactions

• divide the server effort, since the dungeons are quasi-
independent and they can be hosted on different
computers.

C. Static spatial decomposition
Sometimes, the geography of the world can be exploited or,

even more, can be designed to be decomposed in several
totally-independent regions. For example a virtual world made
of planets, or islands, or having some non-passable natural
barriers can benefit from this idea. The transition from one
region to another is done through some key points and usually
is not instantaneous.

Hence, the server workload can naturally be divided by
these regions, each being handled by a different processing
unit, usually a different computer.

This approach is a nice workaround for many cases; still it
has some serious limitations or disadvantages:

– the resulting virtual world lacks total spatial continuity
– some computers corresponding to overcrowded

regions may not be able to handle all the workload,
resulting in lag, while others, for empty or scarcely
populated regions, are not used at their capacity

– to obtain realtime speed, the processes that handle
each region are usually defined and statically allocated
on different computers; transferring a region process
from one computer to another might be costly in terms
of runtime speed and is usually avoided - limitation to
good load balancing

It is obvious that this solution is still a workaround to the

real scalability issue.

IV. DYNAMICAL SPATIAL DECOMPOSITION
We suggest a more powerful approach, which would divide

the virtual space into regions dynamically, at runtime.

A. The decomposition method
It is based on some heuristic function that calculates the

workload for a region. When the function value exceeds a
threshold, the region can be subdivided into smaller regions,
and so on.

The heuristic can take into account:
• number of users in the region
• number of mobs in the region
• number of inanimate objects in region
• dynamics of interactions, etc.
The dynamic decomposition will have a tree-like structure.

A binary or quad-tree fits perfect this idea.
Quad or oct-trees are common structures use in many 3D

applications, exactly for their ability to easily and flexibly
decompose the space according to the different criteria of each
application.

The decomposition starts by seeing the whole 3D virtual
space as a top region, which will be divided into sub-regions,
which in turn will be further divided and so on.

The decomposing process should stop when each region
computes a value for the heuristic lower than the threshold, or
the region dimensions are lower than a given constant, usually
depending on the users and mobs perceiving range.

In practice, the algorithm must take care of various aspects
like:

– users or objects passing from one region to another
– users or objects situated on the edges of two or more

regions
The mechanism is exemplified in Fig. 1: the dots represent

the users, the heuristic is very simple, equal to the number of
users within the region, quad-tree is used and the
decomposing threshold is 4. Basically, a region will be
divided when noUsers(region) >= 4.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

119

This decomposition allows:
• reduction of the workload, as each users actions targets

will be tested and their effects calculated only on the
users in its region (or neighboring, if user is on close to
border)

• division of the workload across several computing units,
each region or groups of regions being assigned to
different processing unit

The division of the workload works like this:
– a computing unit handle a number of regions, usually

from same branches
– when the estimated workload exceeds its computing

capacity, it will delegate some of the regions to a
difference computing unit

A computing unit can be either:

– an independent computer from the server network
(horizontal scaling)

– a processor from a multi-processor machine (vertical
scaling)

Fig. 2 illustrates this process, building on the decomposition
from Fig. 1: at the moment of the last division, it is also
decided that the processing unit 1 cannot handle all the
workload, therefore some of the resulting regions will be
assigned to processing unit 2.

The division in regions, and also the assignment of regions
to processing units can be highly dynamic.

When the heuristic workload estimation value for a
previously divided region goes back under the threshold, its
sub-regions can be grouped back into the original region to
reduce the tree.

Fig. 1 spatial decomposition

B. Required Middlewares
To support this highly dynamic division and load balancing

possibilities, some underlying middlewares are required. They
must allow:

– fast transfer of users between the regions processing
tasks that run on different computers

– fast transfer of a region data from one computer to
another

– scalability
As this paper focus mostly on the decomposition and on

scalability issues, we will just give a brief overview of the
needed middlewares and our solutions for each of them:

1) Control layer
The conceptual model of a virtual space is highly event

based - basically all changes in system state are caused by
users’ actions.

Therefore, the control layer will be responsible only with
initializing the system and supervising the regional division
and eventually load balancing [2].

Tasks not handled directly by the regions (e.g. commerce)
will be separated from the control layer with a plugin system.

Fig. 2 division of the workload

2) Communication layer
Considering the nature of the system and the scalability

requirements, we consider that the best choice will be a
publish-subscribe messaging system.

This is basically a paradigm of communication through
asynchronous messages where transmitters (also names
publishers or producers) do not sent the messages to a specific
destination. Rather, the messages are classified in classes and
have attributes. The subscribers declare their interest for some
classes of messages or having some attributes and will receive
only the corresponding messages.

Main advantage of this method is the total decoupling
between producers and consumers, this usually allowing for
great scalability

There are many variants and implementation topologies for
this paradigm. Without going into many details, we have
decided that best choice is:

– message filtering based on type and content, with the
possibility of specifying very strong filters

– domain server topology
– low level networking service tuned to transmit very

fast the small sized messages, these being the huge
majority of the messages in our case

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

120

With publish-subscribe, moving a user from a region to
another comes to changing subscriptions [6], updating the
domain server and sending a message with essential real time
user data.

3) Persistence layer
This layer is used just to save periodically essential system

state.
For example, in a MMORPG, the will be saved:
• existing characters

– name
– level
– skills
– items
– values for life, mana, etc.
– progress in various quests

• virtual world geography, is dynamic
• the state of the essential non-player aspects of the system
Traditionally, the persistence layer works more like a

backup system: all the above elements are saved periodically
to the system database as some fixed time intervals. This
approach is due to the slowness of database management

systems compared to the realtime requirements of most 3D
virtual spaces.

The only advantage is that it simplifies the architecture, by
separating the persistency from the real time logic of the
system.

There are however two important drawbacks:
– in the case of some system failure, either hardware or

software, important realtime data can be lost, only
solution being to restore the virtual space to a previous
state

– scalability is also affected: considering the workload
and system data is distributed over several computers,
when one of them stop working because of some
hardware failure, then data needed by other modules is
lost also so the system as a whole needs to be restored.

We consider that recent advances in database engines mark
the time to switch to a full realtime allow its extended use to
store real time persistency, with the help of some intelligent
caching system.

In such case, data that is used by the regions will also be
replicated in the database, thus allowing easy transfer of the

Fig. 3 scalable server for 3D massive multiplayer virtual spaces with spatial decomposition, publish-subscribe messaging and plugins system

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

121

regions tasks from one computer to another, either as normal
functioning of the system or to take over from the failure of
some computing unit.

4) Plugins
Designing the virtual space server as a basic infrastructure

for plugins and implementing all the actual logics and
functionality would offer huge advantages related to
modularity and reusability of the logics.

Plugins can also migrate freely from one computer to
another which can increase scalability.

There will be two categories of plugins:
• Basic/predefined, covering all the basic functionality:

– zone managers
– virtual world geography
– in-game resources management (gold, minerals etc.)
– player (level, skills etc.)
– inventory
– combat
– AI
– mobs generation
– mobs control
– marketing

• particular plugins, specific to each game
– 3rd party ones, for example:

 vehicles control
 special effects
 weapons
 common quests

– Implemented by the developers
Considering their instantiations, plugins can also be divided

in two classes:
• global plugins: have an unique instance throughout the

system
• regional plugins: have an instance on each region

manager

C. System architecture
Considering the elements describes above, a high level

view of the system architecture is illustrated in Fig. 3.
The structure of a region manager, with regional plugins, is

shown in Fig. 4.

Fig. 4 region manager with local plugin instances

V. VERTICAL SCALING USING GPGPU
Previous section has described the dynamical regional

decomposition and middleware components required for
horizontal scalability

In this section we describe a brand new idea that builds on
the decomposition idea to make use of the huge parallel
computing power of the new generations of graphics
processing units.

A. GPUs evolution
A graphics processing unit (GPU) is a specialized hardware

module, used as component of a PC, graphics station or
gaming console, specialized in performing high speed
graphics calculations.

GPUs spectacular evolution can be briefly resumed:
– First GPUs only supported basic graphics functions; as

hardware they were adapted general purpose co-
processors or signal processors, use to take some of
the graphics processing workload from the main
computer

– PC market boom turned the GPU into a standard
component, taking over most standard 2D and 3D
graphics calculation from the CPU, being
manufactured by many companies and rapidly
evolving.

– Programmable shaders were introduced, being the first
form of GPU programmability, with the aim of giving
the graphics applications developer more control over
the operations performed in the graphics pipeline

– General-Purpose Computation on GPUs (GPGPU)

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

122

came into picture and keeps getting more and more
popularity.
GPGPU is basically about using the GPU to perform
computation in many applications traditionally
handled by the CPU – made possible by the addition
of programmable stages to the rendering pipelines and
various libraries and development toolkits
Struggling with the peculiarities of the GPUs
programming, GPGPU developed a set of specific
techniques to convert general parallel computations to
the forms accepted by GPUs [7].

– In the near future the trend of turning dedicated GPUs
architectures into more general parallel ones will
certainly continue, together with some hybrid
solutions, like the announced Intel's Larrabee
All these trends and influences will certainly change
the traditional role of the GPUs and CPUs, as
hardware and programming models and development
toolkits.

Fig. 5 shows a comparative evolution of GPU (illustrated
by NVIDIA graphics cards) and desktop CPU (illustrated by
Intel processors) computational power.

The growth tendency much higher for GPUs is backed by

the fact that they tend to increase computing power by
increasing the number of processors, rather than the power of
each individual processor, as CPUs do.

Other explanation for the huge difference is that GPUs tend
to use most of their hardware for highly parallel computational
operations, rather than control operations and caches – as
CPUs, as shown symbolically in Fig. 6.

Fig. 6 symbolic usage of transistors in CPUs and GPUs

B. Current GPGPU concepts and limitations
1) Streams

The closest concept to the hardware and programming
model of a modern GPU is that of a SIMD machine, or stream
processing.

Fig. 5 comparative evolution of GPU and desktop CPU
(from: Case studies on GPU usage and data structure design
- Jens Breitbart)

Streams are sets of records with identical format that
require similar processing. In the case of GPGPU, the most
natural format for a stream is that of a 2D grid, which fits with
the rendering GPU model.

2) Kernels
The processing or functions that work on stream are usually

named “kernels”.
For example, vertex or fragment shaders are particular

cases of kernels.
In the particular case of GPUs, the kernels can be seen as

the body of loops iterated over 2D matrixes.
Depending on actual GPGPU model, there is some

flexibility in organizing the kernels in groups, groups having
some things in common, for instance fast registries or some
shared memory with faster access then the global memory
used by all threads.

3) Flow control and limitations
The common flow control mechanisms that all

programmers are used to (like if-then-else or loops) have been
only recently added to GPU. Many limitations still exist, for
example:

– runtime ramifications come with a big performance
cost

– recursivity is not supported and can just be partially
emulated

– data transfer from/to memory is also costly in terms of
performance

We must highlight that a runtime branching followed by
barrier synchronization for a group of threads running same
kernel might come, depending on actual GPU model, at a cost
of hundreds of normal operations. Same for data transfer
to/from memory.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

123

This makes the GPGPU only suitable for some kinds of
operation that require few data transfers and have a high
degree of parallelism.

However, GPU designers are taking into consideration the
demands of the on growing GPGPU market and trying to
improve the programming models supported by GPUs, either
by more flexible end efficient architecture or by specialized
GPGPU libraries and toolkits.

VI. REGIONAL DECOMPOSITION WITH GPGPU
The regional decomposition method is general enough to be

used for both horizontal (multiple computers) and vertical
(multi-processor computers) scalability.

We describe here our idea to map the method to the huge as
computing power but limited as programming flexibility form
of parallelism supported by most modern GPUs.

The challenge is to distribute the workload between CPU
and GPU in an efficient way.

The following aspects must be considered:
– granularity of kernels must be small and their nature

highly parallel (runtime ramifications should be
minimalistic)

– coordination should be performed by the CPU, to
integrate easily in the rest of the server architecture

– data transfers CPU-GPU must be minimized
– Workload distribution over streaming processors must

be adaptable in real time
We have divided the tasks performed on a computer that

relate to region management, as described in previous
paragraphs, into two classes, considering the particularities of
the GPU and CPU programming models and the specific of
each task.

– GPU tasks
– CPU tasks

A. GPU tasks
GPU should only handle computational intensive tasks,

organized in low granularity and highly parallel (static and at
runtime also) kernels:

– collision detection
– advanced physics calculations
– basic decisional AI

The code executed by GPU will have two components:
• a component that creates the kernels, assign them to

processor groups and launches them
• the kernels

B. CPU tasks
Will be responsible for the high level control:

– regions decomposition
– input/output
– distributed control, messaging, persistence
– synchronization with GPU

Of course, CPU will also handle all other regional level
tasks that are not suitable for GPGPU.

C. Frames, Execution and Synchronization
The server workflow consists of frames. A frame is a very

short time interval, which, as a design choice, can be fixed or
variable.

During a frame the following things will happen:
– user input is taken from input queues, pre-processed

and passed to the GPU code of control.
– GPU will interpret input and create kernels to handle

it.
For example, a collision detection kernel will be
created for each pair of moving objects from the
virtual space

– kernels are launched over streaming processors
– the streaming processors execute the kernels
– depending on frame type:

 when all kernels are completed (in case of
variable frame design)
or

 when the frame duration has elapsed (in case of
design with fixed frame)

the available results from kernels execution are placed
in output queues

D. Load balancing
A computer can handle some number of regions. Each

region is assigned a number of GPU streaming processors,
according to its computational needs.

If this number can be changed dynamically, the load
balancing comes naturally at no cost.

Most current GPUs do not offer possibilities to explicitly
specify the number of processors assigned to a group of
kernels, but most of them offer facilities that allow emulating
this behavior (for example, in NVIDIA’s CUDA, the kernels
in a group share a region of faster shared memory).

It is also expected that incoming generations of GPU will
include more facilities for controlling processors allocation to
groups of threads, maybe even explicitly.

E. Tuning
Optimizing the GPU tasks require perfect knowledge of the

actual GPU hardware and software particularities.
In most cases, data transfer is quite slow; hence GPU tasks

and data structures must be designed in a way to minimize
these.

Fig. 4 shows the costs (processor cycles) related to each
type of operation on some NVIDIA GPU. We can make draw
the following conclusions:

– major penalties for memory access
– high costs also for the operation of synchronizing

groups of kernels.
It is desirable that GPU tasks have small memory transfer

footprints and also minimal runtime ramifications, but this is
not always possible.

F. Using the solution in frameworks for RAD
An actual implementation of the proposed solution will be

heavily dependent upon hardware/software particularities of

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

124

GPU models.
If such solution is to be integrated in a framework for RAD

of massive multiplayer 3D virtual spaces, it should be made as
easier to use as possible.

This apparently difficult issue can be solved by rigorous
design of the framework, by pre-integrating the solution for
basic cases and also making it easily adaptable or extensible
for special cases.

Basically, at least the following aspects need to be carefully
considered:

– the solution should be pre-integrated and configured to
handle most common highly computational tasks

– the developer should be able to explicitly specify the
tasks to be handled by GPU

– both the GPU control code and the kernels should be
programmable in a simple scripting language (e.g.
Python), many developers being used to this approach

– the documentation should warn the developers about
the GPU programming particularities and prevent
them from writing inefficient code

– the system should include profiling facilities, allowing
measurement of the execution time of tasks, so that the
developer can tune his application

G. Prototype and results
The solution described above was tested by creating a

server prototype, during the “Graphics and Virtual Reality
Workshop 2008”, which took place in the University
“POLITEHNICA” from Bucharest.

The architectural concept was implemented using NVIDIA
graphics cards as hardware and CUDA as development
toolkit.

The workshop focused on GPGPU and its main project was
to validate the architectural concept described in this paper.

It was created a prototype for a massive multiplayer 3D
virtual space as server the decomposition method
implemented with GPGPU, a client and a testing environment.

The server prototype only included basic elements for
testing:

– basic TCP/IP multi-player communication
– CPU and GPU implementation of the regions

decomposition and management concept
– GPGPU collision-detection
– support for profiling the CPU and GPU tasks

execution time
There was also created a basic client to run the tests, and a

testing environment.
The actual tests performed were about creating collisions

between huge numbers of objects in the 3D virtual space and
measuring the difference from performing collision detection
with CPU implementation and with GPU implementation, as
described in previous paragraphs.

The results were really encouraging, showing speeding up
of more than one order of magnitude for some types of tasks
when adapted to GPU.

We are determined to further explore the possibilities of the
concept.

VII. CONCLUSION
The decomposition idea and its mapping to GPGPU have a

huge significance for the 3D massive multiplayer virtual
spaces server world.

If the proposed architectural solution will be successfully
implemented, we can see, in the near future the hundreds of
computers server farms in use by successful MMORPGs
being replaced with only a few PCs equipped with
multiprocessors GPUs.

As the GPUs and CPUs programming models are evolving
very fast, merging more or less, we can expect that all the
limitations (that make an actual implementation of the of the
solution describe in this paper to be quite hard) to become
history, and variants of the solution to be easily
implementable in the near future on next generations of
GPUs/CPUs.

Full scalability, full spatial continuity for large 3D virtual
spaces, rapid prototyping, cheap and flexible hosting and
maintenance and many other benefits may emerge as result of
these.

Such possibilities will contribute to the acceptance of 3D
massive multiplayer virtual spaces as the next paradigm for
human-computer-human interaction, used throughout almost
all human activities.

Fig. 4 overview of instructions cost on the G80 architecture
(from: Case studies on GPU usage and data structure design - Jens

Breitbart)

REFERENCES
[1] J. Waldo, “Scaling in Games and Virtual Worlds,” Communications of

the ACM, Vol 51, No 08, 2008, pp. 38–44.
[2] Ta Nguyen, Binh Duong, Suiping Zhou, “A dynamic load sharing

algorithm for massively multiplayer online games,” The 11th IEEE
International Conference on Computational Science and Engineering,
2003, pp. 131–136.

[3] P. Morillo, J. Orduña, M. Fernández, “Workload Characterization in
Multiplayer Online Games,” ICCSA (1), 2006, pp. 490–499.

[4] S. Ferretti, “Interactivity Maintenance for Event Synchronization in
Massive Multiplayer Online Games,” Technical Report UBLCS-2005-
05, March 2005.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

125

[5] S. Bogojevic, M. Kazemzadeh, “The architecture of massive multiplayer
online games,” M.S. thesis, Lund Institute of Technology, Lund
University, Lund, Sweden, 2003.

[6] Multiverse Platform Architecture [Online]. Available:
http://update.multiverse.net/wiki/index.php

[7] John R Humphrey, Daniel K. Price, James P. Durbano, Eric J. Kelmelis,
Richard D. Martin, “High Performance 2D and 3D FDTD Solvers on
GPUs,” Proceedings of the 10th WSEAS International Confenrence on
Applied Mathematics, Dallas, Texas, USA, November 1-3, 2006, pp.
547–550.

[8] A.S.Drigas, L.G.Koukianakis, G. Glentzes, “A virtual Lab for Hellenic
cultural Heritage,” Proceedings of the 5th WSEAS Int. Conf. on Artificial
Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain,
February 15-17, 2006, pp291–296.

[9] N. Ibrahim, M.A.M. Balbed, A.M. Yusof, F. Hani, M. Salleh, J. Singh,
M.S. Shahidan “Virtual Reality Approach in Acrophobia Treatment,”
7th WSEAS Int. Conf. on Applied Computer & Applied Computational
Science (ACACOS '08), Hangzhou, China, April 6-8, 2008, pp. 194–197.

[10] N. Sala, “Multimedia and Virtual Reality in Architecture and in
Engineering Education,” Proceedings of the 2nd WSEAS/IASME
International Conference on Educational Technologies, Bucharest,
Romania, October 16-17, 2006, pp. 18–23.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 1, 2007

126

http://update.multiverse.net/wiki/index.php

