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On the Enhanced Hyper-hamiltonian Laceability of
Hypercubes
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Abstract— A bipartite graph is hamiltonian laceable if there exists
a hamiltonian path between any two vertices that are in different
partite sets. A hamiltonian laceable graph G is said to be hyper-
hamiltonian laceable if, for any vertex v of G, there exists a
hamiltonian path of G —{v} joining any two vertices that are located
in the same partite set different from that of v. In this paper, we
further improve the hyper-hamiltonian laceability of hypercubes by
showing that, for any two vertices x, y from one partite set of
Qn, n > 4, and any vertex w from the other partite set, there
exists a hamiltonian path H of @, — {w} joining x to y such that
dp(x,2z) =1 for any vertex z € V(Qn) — {x,y,w} and for every
integer [ satisfying both dg,, (x,z) <1 < 2" —2 —dg, (z,y) and
2|(l = dg, (x,2)). As a consequence, many attractive properties of
hypercubes follow directly from our result.
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Hyper-

I. INTRODUCTION

multiprocessor/multicomputer interconnection network

is usually modeled as a graph [2], [4], [8], [14],

[16], [19], [20], in which vertices correspond to proces-
sors/computers, and edges correspond to connections or com-
munication links. Throughout this paper, a network is repre-
sented as a loopless undirected graph. For graph definitions
and notations, we follow the ones given by Hsu and Lin [4].
A graph G is a two-tuple (V, E), where V' is a nonempty set,
and E is a subset of {(u,v) | (u,v) is an unordered pair of
V'}. We say that V is the vertex set and F is the edge set. For
convenience, we use V(G) and E(G) to denote the vertex set
and the edge set of G, respectively. A graph G is bipartite if its
vertex set V(G) is the union of two disjoint subsets, denoted
by Vo(G) and Vi(G), such that every edge joins a vertex of
Vo(G) to a vertex of V4 (G). Two vertices, u and v, of a graph
G are adjacent if (u,v) € E(G). A path P of length k from
vertex x to vertex y in a graph G is a sequence of distinct
vertices (v, vs,...,Ug+1) such that vy = z, vp41 = y, and
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(vi,vi41) € E(G) for every 1 < i < k if k > 1. Moreover,
a path of length zero, consisting of a single vertex z, is
denoted by (z). We also write P as (z, P,y) to emphasize
its beginning and ending vertices. For convenience, we write
P as (v1,...,0;,Q,vj,...,0541), Where Q = (v;,...,v;).
In particular, let P~! = (vg41,v,...,v1) denote the reverse
of P. A cycle is a path with at least three vertices such that
the last vertex is adjacent to the first one. For clarity, a cycle
of length k is represented by (vi,vs, ..., vk, v1). The length
of a path P, denoted by ¢(P), is the number of edges in P.
The distance between two distinct vertices v and v in graph
G, denoted by dg(u,v), is the length of the shortest path
between u and v. A hamiltonian cycle (or hamiltonian path)
of a graph G is a cycle (or path) that spans G. A bipartite
graph is hamiltonian laceable [15] if there exists a hamiltonian
path between any two vertices that are in different partite
sets. A hamiltonian laceable graph G is hyper-hamiltonian
laceable [9] if, for i € {0,1} and for any vertex v € V;(G),
there exists a hamiltonian path of G — {v} between any two
vertices of V1_,;(G).

The hypercube is one of the most popular interconnection
networks for parallel computer/communication system [4],
[8], [19]. This is partly due to its attractive properties such
as regularity, recursive structure, vertex and edge symmetry,
maximum connectivity, as well as effective routing and broad-
casting algorithm. The definition of hypercubes is presented
as follows. For clarity, we use boldface letters to denote n-
bit binary strings. Let u = b,_1...b;...bg be an n-bit
binary string. For any i, 0 < i < n — 1, we use (u)
to denote the binary string b,_; . ..b;...by. Moreover, we
use (u); to denote the bit b; of u. The Hamming weight
of u, denoted by wy(u), is defined as [{0 < j < n—1 |
(u); = 1}|. The n-dimensional hypercube (or n-cube for
short) Q,, consists of 2™ vertices and n2" ! edges. Each
vertex corresponds to an n-bit binary string. Two vertices
u and v are adjacent if and only if v = (u)® for some 4,
and we call the edge (u, (u)?) i-dimensional. The Hamming
distance between u and v, denoted by h(u,v), is defined to
be [{0 < j <n-—1](u); # (v),;}|. Hence, two vertices
u and v are adjacent if and only if h(u,v) = 1. Clearly,
dg, (u,v) equals h(u,v), and @, is a bipartite graph with
partite sets V(Qn) = {v € V(Qn) | wu(v) is even} and
V1(Qr) = {v € V(Q,) | wg(v) is odd}. Moreover, Q,, is
vertex-symmetric and edge-symmetric [8].

The problem of embedding paths into hypercube is widely
addressed by many researchers [1], [3], [5], [6], [10], [12],
[13], [18]. In particular, Li et al. [10] proved that between
any two different vertices x and z of @, there exists a path
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Py(x,z) of length [ for any [ with h(x,z) <[ < 2" —1 and
2|(I — h(x,z)). It is intriguing to consider whether such path
P(x,z) can be further extended by including the remaining
vertices not in P;(x,z) to form a hamiltonian path between x
and some other vertex y. For this motivation, Lee et al. [7]
showed that, for any two vertices x and y from different partite
set of @, and for any vertex z € V(Q,,)—{x,y}, there exists
a hamiltonian path R from x to y such that dr(x,z) = for
any integer [ satisfying h(x,z) <1 < 2" — 1 — h(z,y) and
2|(I — h(x,z)). In this paper, we further improve such result
by proving that, for any two vertices x, y from one partite set
of @,, and any vertex w from the other partite set, there exists
a hamiltonian path H between x and y in @, — {w} such
that dy (x,2) = [ for any vertex z € V(Q,) — {x,y,w} and
for every integer [ satisfying both dg, (x,2z) <1< 2" —2 —
dg, (z,y) and 2|(l — dg, (x,2)). According to the proposed
improvement, many attractive properties of hypercubes follow
directly from our result.

II. PRELIMINARIES

Lemma 1-4 and Theorem 5 were proved in [7], [9], [15],
[17]. They will be used to prove our main result in the next
section.

Lemma 1:
tonian laceable.

Lemma 2: [9] For any positive integer n, (), is hyper-
hamiltonian laceable.

Lemma 3: [17] Suppose that n > 4. If x and y are any
two vertices from different sets of @Q,,, then @, — {x,y} is
hamiltonian laceable.

Two paths Py and Py are disjoint if V(P1) NV (P) = 0.
The following lemma is proved by Lee et al. [7].

Lemma 4: [7] Assume that n > 4. Let u, x be any pair
of distinct vertices in V;(@,,). Moreover, let v, y be any pair
of distinct vertices in V;(Q,,). Suppose that [; and Iy are two
arbitrary odd integers satisfying I; > h(u,v), Iz > h(x,y),
and l; + lo = 2™ — 2. Then there exist two disjoint paths P;
and P, such that the following two conditions are satisfied:
(1) P joins u to v with £(P;) = [y, and (2) P; joins x to y
with ((PQ) = Is.

Now, we make some remarks to illustrate that some inter-
esting properties of hypercubes are consequences of Lemma
4,

[15] For any positive integer n, @Q,, is hamil-

Remark 5: The hamiltonian laceable property of hyper-
cubes, proved in [15], states that there exists a hamiltonian
path of @, joining any vertex u € V;(Q,) to any vertex
y € V1(Q.). Now, we prove that (), is hamiltonian laceable
by Lemma 4. Obviously, @,, is hamiltonian laceable for n =
1,2, 3. Since n > 4, we can choose a pair of adjacent vertices
v and x such that v € V1(Q,,) with v # y and x € V(Q5,)
with x # u. By Lemma 4, there are two disjoint paths P;
and P» such that (1) P; is a path joining u to v, (2) Ps is
a path joining x to y, and (3) P, U P, spans @,,. Obviously,
(u, P1,v,x, Py, y) forms a hamiltonian path joining u to y.
Thus, @, is hamiltonian laceable.

Remark 6: The bipanconnected property of (),,, proved in
[10], stated that between any two different vertices x and y
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of @, there exists a path P;(x,y) of length [ for any [ with
hi(x,y) <1 <2"—1and 2| (I — h(x,y)). Now, we prove
that (Q,, is bipanconnected by Lemma 4. Obviously, @, is
bipanconnected for n = 1,2,3. Now, we consider n > 4.
Without loss of generality, we assume that x € Vp(Q,).

Suppose that y € V1(Q). Thus, h(x,y) is odd. Let | be
any odd integer with h(x,y) <1 < 2™ — 1. Suppose that | =
2" — 1. By Remark 5, (),, is hamiltonian laceable. Obviously,
the hamiltonian path of (),, joining x and y is of length 2™ —1.
Suppose that [ < 2™ —1. Since n > 4, we can choose a pair of
adjacent vertices u and v such that u € V5(Q,,) with u # x
and v € V(Q,) with v # y. Obviously, h(u,v) = 1. By
Lemma 4, there exist two disjoint paths P, and P, such that
(1) P is a path joining u to v with [(P) =2" —2—1, (2)
P, is a path joining x to y with [(P;) =, and (3) P, U Py
spans (Q,,. Obviously, P is a path of length [ joining x to y.

Suppose that y € Vp(Qy,). Thus, h(x,y) is even. Let [ be
any even integer with h(x,y) <! < 2™ — 1. Since n > 4, we
can choose two different neighbors u and v of y such that
h(x,u) = h(x,y) — 1. By Lemma 4, there exist two disjoint
paths P, and P» such that (1) P; is a path joining x to u
with [(P;) = 1 — 1, (2) P is a path joining y to v with
I(P) =2 —1—1, and (3) P, U P, spans @,,. Obviously,
(x, Py, u,y) is a path of length [ joining x to y.

Thus, @, is bipanconnected.

Remark 7: The edge-bipancyclic property property of @)y,
proved in [10], stated that for any edge e = (x,y) and for any
even integer with 4 < [ < 2™ there exists a cycle of length
l containing the edge e if n > 2. Again, we we prove that
@, is edge-bipancyclic by Lemma 4. Obviously, @,, is edge-
bipancyclic for n = 2,3. Thus, we consider n > 4. Suppose
that [ = 2™. By Remark 5, there exists a hamiltonian path
P joining x to y. Obviously, (x, P,y,x) forms a hamiltonian
cycle of length 2™ containing the edge e. Suppose that [ < 2.
Since n > 4, we can choose a pair of adjacent vertices u
and v such that u € V;(Q,,). By Lemma 4, there exist two
disjoint paths P, and P, such that (1) P, is a path joining u
to v with [(P;) = 2" — [ — 1, (2) P is a path joining x to
y with [(P,) =1 —1, and (3) P; U P, spans @,,. Obviously,
(x, Py, y, %) is a cycle of length [ containing the edge e. Thus,
@y, is edge-bipancyclic for n > 2.

Now, we start to prove Lemma 4.

Proof: By brute force, we can check the theorem holds
for n = 4. Assume the theorem holds for any ) with
4 < k < n. Without loss of generality, we can assume that
Iy > l. Thus, I < 2"~! — 1. Since @, is vertex-symmetric
and edge-symmetric, we can assume that u € V5(Q%_;) and
x € Vo(QL_,). We have the following cases.

Case 1: ve V1(QY_;) and y € V1(QL_,).

Suppose that I < 277! — 1. By Remark 5, there exists
a hamiltonian path R of Q% , joining u and v. Since the
length of R is 2"~ —1, we can write R as (u, Ry, p,q, R2, v)
for some vertex p € V1(Q,) with p” # x and some vertex
q € Vo(Q,) with g # y. Obviously, h(p™,q™) = 1. By
induction, there exist two disjoint paths S; and S5 such that
(1) S; is a path joining p"™ to g™ with [(Sy) = [; —2"71, (2)
Ss is a path joining x to y with [(S3) = lo, and (3) S1 U So
spans QL _,. We set P as (u, R1,p,p", S1,9",q, Rz, v) and
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set P5 as So. Obviously, P, and P, are the required paths. See
Figure 4(a) for illustration.

Suppose that I, = 2"~! — 1. By Remark 5, there exists a
hamiltonian path P; of Q%_, joining u and v and there exists
a hamiltonian path P, of QL _; joining x and y. Obviously, P
and P, are the required paths. See Figure 4(b) for illustration.
Case 2: {v,y} C V1(Q}L_)).

Suppose that l; < 2"~ — 1. We choose a neighbor p of
v such that p # x. Obviously, p € V5(Q,). By induction,
there exist two disjoint paths S; and S5 such that (1) S is a
path joining p to v with [(Sy) = I; —2"71, (2) S5 is a path
joining x to y with [(S2) = 2, and (3) S1US5 spans QL _,. By
Remark 5, there exists a hamiltonian path R of Q°_, joining
u and p". We set P; as (u, R, p™,p,S1,Vv) and we set P, as
So. Obviously, P, and P, are the required paths. See Figure
4(c) for illustration.

Suppose that I, = 2"~! — 1. Again, we choose a neighbor
p of v such that p # x. By induction, there exist two disjoint
paths S; and S such that (1) Sy is a path joining p to v
with [(S1) = 1, (2) Sy is a path joining x to y with (S3) =
2n=1 — 3, and (3) S; U Sy spans QL _;. Obviously, we can
write Sy as (x, 53, r,s, 5%, y) for some vertex r € V1(Q,,)
with r™ # u. Again by induction, there exist two disjoint
paths R; and Ry such that (1) R; is a path joining u to p”
with I[(R;) = 27! — 3, (2) Ry is a path joining r" to s"
with [(Rg) = 1, and (3) Ry U Ry spans Q" ;. We set Py
as (u, Ry,p",p,v) and set Py as (x,S3,r,r" s s, 53,y).
Obviously, P, and P, are the required paths. See Figure 4(d)
for illustration.

Case 3: y € V1(Q%_,) and v € V1(QL_,).

Suppose that [, = 1. Obviously, x = y™. Let p be a
neighbor of y in Q%_, such that y" # v and let q be a
neighbor of p in Q% _; such that p # y. By induction, there
exist two disjoint paths R; and Ry such that (1) R; is a path
joining u to g and [(R;) = 2" "1 -3, (2) Ry is a path joining p
to y and [(Ry) = 1, and (3) R; U Ry spans Q¥ _;. Obviously,
p" € V1(Q,) and " € V5(Q,). Again by induction, there
exist two disjoint paths 57 and So such that (1) S; is a path
joining q™ to v with I(S;) = 2771 — 3, (2) Sy is a path
joining x to p™ with [(S2) = 1, and (3) S; U S spans Q. _;.
We set Py as (u, Ri,q,p,p",q", S1,v) and set P as (X,y).
Obviously, P; and P» are the required paths. See Figure 4(e)
for illustration.

Suppose that Iz > 3. We set p be a neighbor in Q% _; of y
with p # u if h(x,y) = 1 and set p be a neighbor of y in

Y _, with p#uand h(p,y) = h(x,y) — 1 if h(x,y) > 3.
Let q be a neighbor v in Q¥ _; such that q # y and q" # x.
Thus, h(q™,v) = 1. By induction, there exist two disjoint
paths ?; and Ry such that (1) R; is a path joining u to p
with [(Ry) = 2"~! — 3, (2) Ry is a path joining q to y with
I[(R2) =1, and (3) R1 U Ry spans QY _,. Again by induction,
there exist two disjoint paths S; and Sy such that (1) S7 is a
path joining q" to v with [(S7) = [; — 2" 1 +2, (2) Sy is
a path joining x to p™ with {(S3) = 15 — 2, and (3) S1 U Sy
spans Q) _;. We set P, as (u, R1,q,q", S1,Vv) and set P, as
(x,S2,p",p,y). Obviously, P; and P; are the required paths.
See Figure 4(f) for illustration.

Case 4: {v,y} C V1(Q%_,).

n—1
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Suppose that [ = 1. Obviously, y = x". By Remark 5,
there exist a hamiltonian path R of Q% , joining u to v.
Obviously, R can be written as (u, R1,p,y,q, Re, v). Note
that u = p if I(Ry) = 0. Obviously, p and q are in V;(Qp,).
Thus, p” and q" are in V;(Q,). Let r be a neighbor of
q" in QL_, such that r # x. By induction, there exist two
disjoint paths S; and Sy such that (1) S; is a path joining
p" to r with [(S;) = 27! — 3, (2) S, is a path joining q"
to x with [(S2) = 1, and (3) Sy U Sy spans QL ;. We set
Py as (u,Ry,p,p", S1,r,9",q, R2,v) and set P; as (x,y).
Obviously, P, and P, are the required paths. See Figure 4(g)
for illustration.

Suppose that [ > 3. We set p be a neighbor of y in

Y_, with p # u if h(x,y) = 1 and set p be a neighbor
of y in Q¥ _, with p # u and h(p,y) = h(x,y) — 1 if
h(x,y) > 3. By induction, there exist two disjoint paths
Ry and R, such that (1) R; is a path joining u to v with
I(Ry) = 2»71 — 3, (2) Ry is a path joining p to y with
I(R2) =1, and (3) R; U Ry spans Q°_,. Obviously, we can
write Ry as (u, R},s,t, R?,v) for some vertex s € V1(Q,)
such that s™ # x. By induction, there exist two disjoint paths
S1 and Sy such that (1) Sy is a path joining s™ to t™ with
[(S1) =13 —2"71 — 2, (2) Sy is a path joining x to p" with
1(S2) =l — 2, and (3) S; U S, spans QL ;. We set P as
(u, R}, s,s™, S1,t",t, R?, v) and set P, as (x,S2,p",p,y).
Obviously, P, and P, are the required paths. See Figure 4(h)
for illustration. |

By Lemma 4, the next result can be derived.

Theorem 8: [7] Assume that n > 2. Let x and y be any
two vertices from different partite sets of @,,, and let z be
any vertex of @, — {x,y}. Then there exists a hamiltonian
path H of @Q,, joining x to y such that dy(x,z) = [ for any
integer [ satisfying both h(x,z) <1 < 2" —1 — h(z,y) and

2|(l — h(x,2)).
Proof: By brute force, we can check the theorem holds
for n = 2,3. Now, we consider n > 4. Without loss of

generality, we assume that x € V(Q,,) and z € V1(Q,,).

Suppose that y € V1(Qy,). Obviously, h(y,z) > 2. There
exists a neighbor w of y such that w # x and h(w,z) =
h(y,z) — 1. Obviously, w € V;(Q,). By Lemma 4, there
exist two disjoint paths R; and Ry such that (1) R; is a path
joining x to y with I(Ry) = I, (2) Ry is a path joining w
to z with {(Ry) = 2" — [ — 2, and (3) R; U Ry spans Q.
We set R as (x, R1,y, W, Ra,z). Obviously, R is the required
hamiltonian path.

Suppose that y € V5(Q,,). Obviously, h(x,y) > 2. There
exists a neighbor w of y such that w # z and h(w,x) =
h(y,x) — 1. Obviously, w € Vi(Q,). By Lemma 4, there
exist two disjoint paths R; and Ry such that (1) R; is a path
joining x to w with {(R1) =1 — 1, (2) Ry is a path joining
y to z with [(Ry) = 2" — [ — 1, and (3) R; U Ry spans Q.
We set R as (x, Ry, w,y, Ra,z). Obviously, R is the required
hamiltonian path. |

III. HYPER-HAMILTONIAN LACEABILITY

For 0 < j <n-—1andie€ {0,1}, let QJ" be a subgraph of
@, induced by {u € V(Q,) | (u); = i}. Obviously, Q%" is
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Fig. 1. Tllustration for Lemma 4.

isomorphic to @Q),,_1. Then we can prove our main result by
induction.

Theorem 9: Suppose that n > 4. Let x, y be any pair of
distinct vertices in V;1(Q,,) and w be any vertex of Vy(Qy,).
Moreover, let z € V(Q,) — {x,y,w}. Then Q, — {w}
contains a hamiltonian path H between x and y such that
du(x,2z) = [ for every integer ! satisfying both dg, (x,2z) <
1<2"—-2—dg, (z,y) and 2|(l — dg, (x,2)).

Proof: 'We prove this theorem by induction on n. As
the induction basis, we check, by computer program, that this
result holds for n = 4. Assume that the result is true for any
integer k£ with 4 < k < n. Since @, is vertex-symmetric and
edge-symmetric, we assume that w = 0™. If z € V{(Q,,), then
let j be an integer of {0,1,...,n — 1} such that (x); # (y);
and (x)’ # z. Otherwise, let j be an integer of {0,1,...,n—
1} such that (x); # (y); and (w)? # z. Then we can partition
Q. along dimension j into Q% and Q%!. Without loss of
generality, we assume that x is in Q%°, and y is in Q%!. To
construct a hamiltonian path H of Q,, — {w} joining x to y
with dp(x,2z) = [, the following cases are distinguished.

Case 1: Suppose that z € V,(Q7"). We further consider
the following subcases.

Subcase 1.1: Suppose that [ < 2"~! — 3. Let v be a vertex
of @70 adjacent to z. By inductive hypothesis, Q%° —{w} has
a hamiltonian path L between x and v such that d,(x,z) =1
for every integer [ satisfying both dg, (x,z) <1 < 2"~! —
2—dg, (z,v) =2""1—3 and 2|(l —dg, (x,2)). Thus we can
write L as (x, L1,2, Lo, v). By Lemma 1, Q%" is hamiltonian
laceable. Since (v)’ and y are in the different partite sets,
Q%! has a hamiltonian path R between (v)/ and y. Let H =
(x,L1,2, Ly, v,(v)?,R,y). As a result, H is a hamiltonian
path of @,, — {w} joining x to y such that dy(x,z) = [ for
any odd integer | < 2"~! — 3. See Figure 2(a) for illustration.

Subcase 1.2: Suppose that [ > 2"~! — 1. Let k €
{0,1,...,n—1} —{;j} such that (z), # (y),. Then we set v
to be (z)*. Trivially we have dq, (v,z) = 1.
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Firstly, we consider that (z)” # y. By inductive hypothesis,
Q%% — {w} has a hamiltonian path L between x and v
such that dp(v,z) = 1. Accordingly, we can write L as
(x,L1,2,v). Since /(L) = 2""1 -3 > 5 for n > 4, we write
Ly as (x, L}, u,z), where u is some vertex of Q7:¥ adjacent
to z. Hence path L can be represented as (x, L}, u,z,v). By
Lemma 4, there exist two disjoint paths R; and Ry in Q%!
such that R; joins (u)’ to (z)? with ¢(R;) =1 —2""1 +2,
and Ry joins (v)? to y with ((Ry) = 2" — 1 — 4. Let
H = (x,Ly,u,(u), Ry, (2z)?,2,v,(v)’, Ra,y). As a result,
H turns out to be a hamiltonian path of Q,, — {w} between x
and y such that dg(x,z) = [ for any odd integer [ > 2"~ —1
if (z)7 #y. See Figure 2(b) for illustration.

Secondly, we consider that (z)’ = y. Again, the inductive
hypothesis ensures that Q7" — {w} has a hamiltonian path
L between x and v such that dj(v,z) = 1. Hence we can
write L as (x,L1,z,v). Since £(L;) = 2"71 —3 > 5 for
n > 4, we write Ly as (x,r, L}, z), where r is some vertex of
Q7%° adjacent to x. Accordingly, path L can be represented as
(x,r, L}, z,v). By Lemma 4, there exist two disjoint paths R
and R, in Q%! such that Ry is a path of length [ —2"~1 +2
joining (x)” to (r)’, and R5 is a path of length 2" —{—4 joining
(v) toy.Let H = (x,(x)’, Ry, (v)’,r, L}, z,v,(v), Ra,y).
As a consequence, H forms a hamiltonian path of @, — {w}
between x and y such that dy(x,z) = [ if (z)’ = y. See
Figure 2(c) for illustration.

Case 2: Suppose that z € V;(Q%°). Similar to the case
described earlier, we consider the following subcases.

Subcase 2.1: Suppose that [ < 2771 — 4. Let v € V1(Q%°)
such that dg, (v,z) = 2. By inductive hypothesis, Q%" —
{w} has a hamiltonian path L between x and v such that
dr(x,z) = [ for every integer [ satisfying both dg, (x,2z) <
1<2m 1t —2—dg,(z,v) =2""' —4 and 2|(I — dg, (x,2)).
For clarity, we write L as (x, L1,2, Lo, V). Since (v)’ and
y are in the different partite sets of ),,, Lemma 1 ensures
that Q%! has a hamiltonian path R between (v)’ and y. Let
H = (x,L1,z, La,v,(v)’, R,y). Consequently, path H turns
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out to be a hamiltonian path of Q,, — {w} joining x and y
such that dp7(x,z) = [ for any even integer [ < 2"~1 — 4. See
Figure 3(a) for illustration.

Subcase 2.2: Suppose that [ > 277! Let r be a vertex
of @70 such that h(x,r) = 1 and (r)’ # y. By inductive
hypothesis, Q7° — {w} has a hamiltonian path L between
x and z such that dr(x,r) = 1. For clarity, we write L as
(x,r,L1,z). By Lemma 4, there exist two disjoint paths R,
and R, such that Ry is a path of length [ — 2"~ + 1 joining
(x)” to (r)’, and R, is a path of length 2" — [ — 3 joining
(z)) toy. Let H = (x,(x)/, Ry, (r)?,r,L1,2,(2), Ra,y).
Therefore, H is a hamiltonian path of @, — {w} between x
and y such that dy(x,z) = . See Figure 3(b) for illustration.

Subcase 2.3: Suppose that [ = 27~ — 2. Since x and z are
in the same partite set, Lemma 2 ensures that Q7 — {w} has
a hamiltonian path L between x and z. By Lemma 1, Q%!
is hamiltonian laceable. Thus Q%! has a hamiltonian path R
between (z)? and y. Let H = (x, L, z, (z)’, R,y). As aresult,
H is a hamiltonian path of @,, — {w} between x and y such
that dp (x,2z) = [ = 2”1 — 2. See Figure 3(c) for illustration.

Case 3: Suppose that z € V(Q%1). We consider the
following subcases.

Subcase 3.1: Suppose that [ < 2"~ ! — 3. Let v be a vertex
of @Q%° such that dg, (v, (z)?) = 2. By inductive hypothesis,
Q%% — {w} has a hamiltonian path L between x and v
such that dr,((z)’,x) = [ — 1. For clarity, we write L as
(x,L1,(z)7, L2, v). Since dg, (v, (z)’) = 2, path Ly can be
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written as ((z)7,u, L3, v), where u is some vertex of QJ°
adjacent to (z)”.

Firstly, we assume that (u)’ # y. By Lemma 4, there exist
two disjoint paths R; and Ry such that R, joins z to (u)’,
Ry joins (v)” to y, and 4(Ry) + (Ry) = 2"~ — 2. Let
H = (x,L,(z),2z,Ry, (n),u, L3, v, (v)?, Ry,y). Then H
is a hamiltonian path of @), — {w} between x and y such that
dp(x,z) = l. See Figure 4(a) for illustration.

Secondly, we assume that (u)’ = y. By Lemma 2, Q%! —
{y} has a hamiltonian path R between z and (v)’. Let
H = (x,L1,(z),2,R,(v)],v,L3",u,y). Then H forms a
hamiltonian path of @, — {w} between x and y such that
dyg(x,z) = . See Figure 4(b) for illustration.

Subcase 3.2: Suppose that [ > 2771 +1. Let u € V5(Q%0)
such that dg,(x,u) = 1 and (u)/ # y. By inductive
hypothesis, @%° — {w} has a hamiltonian path L between
x and (z)’ such that dg,(x,u) = 1. Thus we can write
L as (x,u, Ly, (z)’). By Lemma 4, there exist two disjoint
paths R; and Ry such that R; joins (x)? to (u)’ with
((Ry) =1—2""1 and R, joins z to y with £(Ry) = 2" —[—2,
Let H = (x,(x)?, Ry, (u)?,u, L1, (z)?,2z, Ra,y). Then H is
a hamiltonian path of @, — {w} between x and y such that
dp(x,z) = l. See Figure 4(c) for illustration.

Subcase 3.3: Suppose that [ = 2"~! — 1. By Lemma 2,
Q%0 is hyper-hamiltonian laceable. Since x and (z)’ belong
to the same partite set of Q,,, Q%" — {w} has a hamiltonian
path L between x and (z)’. By Lemma 1, Q%! is hamiltonian
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laceable. Therefore, Q7! has a hamiltonian path R between z
and y. We set H to be (x,L,(z)?,z, R,y). As a result, H is
a hamiltonian path of Q,, — {w} between x and y such that
dr(x,z) =1 =2""1 — 1. See Figure 4(d) for illustration.

Case 4: Suppose that z € V1(Q}"). Similarly, we consider
the following subcases.

Subcase 4.1: Suppose that [ < 2771 — 2. Let u € V(Q%1!)
such that dg, (u,y) = 1 and (u)! # x. By Lemma 3,
Q%% — {x,w} is hamiltonian laceable. Clearly, (z)’ and (u)’
are in different partite sets. Therefore, Q%° — {x,w} has
a hamiltonian path L between (z)’ and (u)’. By Lemma
4, there exist two disjoint paths Ry and R, such that R;
joins (x)7 to z with ¢(R;) = | — 1 and Ry joins (u)’
to y with /(Ry) = 2"~! — [ — 1. Then we set H to be
(x,(x)?, R1,2,(z)7, L, (u)/,u, Ry, y). As a result, H is a
hamiltonian path of @, — {w} between x and y such that
dp(x,2z) = l. See Figure 5(a) for illustration.

Subcase 4.2: Suppose that [ > 2”71 Let u € V(QZ%°)
such that dg, ((u)?,z) = 1. By Lemma 2, Q%% — {w} has a
hamiltonian path L between x and u. By Theorem 8, there
exists a hamiltonian path R of Q%! joining (u)’ to y such
that dp((u)?,z) = | — 2" + 1. Then we set H to be
(x,L,u,(u)’,z,R,y). Consequently, H forms a hamiltonian
path of @, — {w} between x and y such that dp(x,z) = [.
See Figure 5(b) for illustration. |

IV. CONCLUSION

In this paper, we prove that, for any two vertices x and
y from one partite set of ), (n > 4) and for any vertex w
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from the other partite set, there exists a hamiltonian path A of
Q@ —{w} joining x to y such that dy (x,z) = [ for any vertex
z € V(Qn)—{x,y,w} and for every integer [ satisfying both
dg, (x,2) <1< 2" -2 —dg, (zy) and 2|(l — dg, (x,2)).
Specifically, we give the following example to indicate why
such a result is not true for (J3. See Figure 6 for illustration,
in which we assume that x = 100, y = 010, w = 000, and
z = 110. Clearly, there does not exist any hamiltonian path
H in Q3 — {w} joining x to y such that dy(x,2z) = 3.

w
100 D000

101G

001

Fig. 6. Q3 — {w} has no hamiltonian path H between x and y such that
dp(x,2z) = 3.
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