
1

An Adequate Design for Large Data Warehouse
Systems: Bitmap index versus B-tree index

Morteza Zaker, Somnuk Phon-Amnuaisuk, Su-Cheng Haw
Faculty of Information Technologhy

Multimedia University, Malaysia

Abstract—Although creating indexes on database is usually
regarded as a common issue, it plays a key role in the query
performance, particularly in the case of huge databases like a
Data Warehouse where the queries are of complicated and ad
hoc nature. Should an appropriate index structure be selected,
the time required for query response will decrease extensively.
To best of our knowledge, to date no comprehensive guideline
has been provided for Data Warehouse analysts to opt for
suitable indices. Conventionally, most experts go for the Bitmap
index as a preferred indexing technique for cases where the
indexed attributes are of few distinct values (i.e., low cardinality).
Once the index size is huge, the cardinality of indexed columns
increases causing the query response time to rise. On the other
hand, owing to its indexing and retrieving mechanisms, B-tree
index is assumed to be the adequate technique as the column
values increase in cardinality. The paper seeks to illustrate how
such assumptions mentioned above may not be true under certain
circumstances. Empirical evidence is provided to confirm that
even though the level of column cardinality may be determined
by the index file size, the query processing time is not necessarily
set by the level of column cardinality. Surprisingly, the results
also indicate how the Bitmap index can be more expeditious than
B-tree index on a large dataset with multi-billion records.

Index Terms—Data warehouse, Bitmap index, B-tree index,
Query processing

I. INTRODUCTION

AData Warehouse (DW) is the foundation for Decision
Support Systems (DSS) with a large collection of

information that can be accessed through an On-line
Analytical Processing (OLAP) application. This large
database stores current and historical data that come from
several external data sources [1]–[3], [5] . The queries built
on DW systems are complex and usually include some join
operations that incur computational overhead which rises
the response time especially when queries are performed on
a large dataset. To increase the performance, DW analysts
commonly use some solutions such as indexes, summary
tables and partition mechanism [4] .

There are various index techniques supported by database
vendors such as Bitmap [4], B-tree [3], [6], [7], [9], Projection
[8], Join bitmap [10], and Range base bitmap indices [11]
among others. A Bitmap index for example is advisable for
a system comprising data that are not frequently updated by
many concurrent processes [12]–[14] . This is mainly due
to the fact that a Bitmap index stores large amounts of row
information in each block of the index structure. In addition,
since Bitmap index locking is at the block level, any insert,

update, or delete activity may result in locking an entire
range of values [16]. By contrast, a B-tree index is adequate
for a system which is frequently updated because it does not
need re-balancing as frequently as other self-balancing search
trees. In addition, all leaf blocks of the tree are at the same
depth [7]. Thus, choosing the proper type of index structures
has a significant impact on the DW environment.

The main problem is that there is no definite guideline
for DW analysts to choose appropriate indexing methods.
According to common practice, Bitmap index is best suited
for columns having low cardinality and should be only
considered for low-cardinality data [1], [3], [7] .
Strohm [7]concludes that the advantages of using Bitmap
indexes are greatest for low cardinality columns, i.e., columns
which have a small number of distinct values compared to
the number of rows in the table. If the number of distinct
values of a column is less than 1%, then the column is a
candidate for a Bitmap index. This assumption may be correct
to some extent based on previous algorithms and based on
old machine processing used by the database software and
hardware respectively, but, as the usage of data is exploding,
this assumption may no longer be applicable.

In this paper, we demonstrate that:

(i) Bitmap index on a column with high cardinality is
more efficient than a B-tree index.

(ii) The query response time in multi-dimensional queries is
not pursued by the time that is needed to one-dimensional
queries on both Bitmap index and B-tree index.

(iii) Query utilizing Bitmap index which is executed
within a range of predicates is affected by the distribution
of data, but does not have any affinity by the cardinality
conditions.

The rest of the paper is organized as follows. Sections
2 presents the background studies on Bitmap index, B-tree
index and cardinality concepts. Section 3 defines a case
study and performance methodology with a set of queries to
compare the performances of Bitmap index and B-tree index.
Section 4 discusses the experimental results followed by the
conclusion in section 5.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 2, 2008

39



2

TABLE I
BASIC BITMAP INDEX ADOPTED BY[10]

RowId C B0 B1 B2 B3
0 2 0 0 1 0
1 1 0 1 0 0
2 3 0 0 0 1
3 0 1 0 0 0
4 3 0 0 0 1
5 1 0 1 0 0
6 0 1 0 0 0
7 0 1 0 0 0
8 2 0 0 1 0

II. BACKGROUND AND RELATED WORKS

A. Bitmap index

Bitmap index is built to enhance the performance on
various query types including range, aggregation and join
queries. It is used to index the values of a single column
in a table. Bitmap index is derived from a sequence of the
key values which depict the number of distinct values of a
column. Each row in Bitmap index is sequentially numbered
starting from integer 0. If the bit is set to ”1”, it indicates
that the row with the corresponding RowId contains the key
value; otherwise the bit is set to ”0”.

To illustrate how Bitmap indexes work, we show an example
which is based on the example illustrated by E.E-O’Neil and
P.P-O’Neil [12] . ” Table I shows a basic Bitmap index on a
table containing 9 rows, where Bitmap index is to be created
on column C with integer values ranging from 0 to 3. We say
that the column cardinality of C is 4 because it has 4 distinct
values. Bitmap index for C contains 4 bitmaps, shown as B0,
B1, B2 and B3 corresponding to the value represented. For
instance, in the first row where RowId =0, column C has the
value 2. Hence, in column B2, the bit is set to ”1”, while the
rest of bitmaps bits are set to ”0” . Similarly, for the second
row, bit of B1 is ”1” because the second row of C has the
value 1, while the corresponding bits of B0, B2 and B3 are
all ”0” . This process repeats for the rest of the rows [12].”

B. B-tree index

B-tree [6] stores the index pointers and values to other
index nodes by using a recursive tree structure. The data
could be easily retrieved by tracing on the pointer. The
top-most level of the index is known as root while the lowest
level is known as the leaf node. All the other levels in
between are called branches (Internal nodes). Both the root
and branches contain entries that point to the next level in
the index. Leaf nodes consist of the index key and pointers
pointing to the physical location in which the corresponding
records are stored. For more information we provides general
information about the structure of B-tree index and its pages.

A B-tree structure is used by the database server to set
up index information. Fig 1 guides that a B-tree index is
arranged by the following three types of index nodes:

Fig. 1. B-Tree Index structure

1) Root Node:
It includes node pointers to its down branch nodes.

2) Branch Nodes:
A branch node includes pointers to leaf nodes or the
other branch nodes.

3) Leaf Nodes:
It includes horizontal pointers and index items to the
other leaf nodes.

Index Items: The essential piece of an index is called Index
Item. It includes a key value that depicts the value of the
indexed column for a special row and also contains RowId
that the database uses to locate the row in a datapage.

Nodes: It is an index page that group of index items
stores in it for the three kind of nodes.

According to some research studies [3], [13], B-tree index
has features that make it a well selection criterion on columns
with high cardinality values especially in DW’s designing.

C. Cardinality

Definition of cardinality in set theory refers to the number
of members in the set. On database theory, the cardinality of
a table refers to the number of rows contained in a particular
table. In terms of OLAP system, cardinality refers to the
number of rows in a table. On the other hand, on a data
warehousing point of view, cardinality usually refers to the
number of distinct values in a column. Generally, there
are four levels of cardinalities (as following items); Low,
Normal, High and Very high cardinality (also known as Full
Cardinality).

Low-cardinality refers to columns which have a very few
unique values. Low-cardinality column values are typically
Boolean values such as gender or a check-box. For instance,
the Product table with a column named Active-Bt is a column
with low-cardinality. This column contains only 2 distinct
values: 1 or 0, denoting whether the product is available.
Because there are just 2 possible values in this column, its

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 2, 2008

40



3

cardinality level would be called as low-cardinality.

Normal-cardinality refers to columns which have sporadic
unique values. Examples of such columns with normal-
cardinality are addresses or product types. For instance,
column named Name-Bit in Order table contains the name
of the customers. There may be some customers with the
general name, such as John, while others have dissimilar
names. While there are many possible values in this column,
its cardinality level would be called as normal-cardinality.

High-cardinality is related to columns which has a large
number of distinct values containing very unique values. From
the DW point of view, since the grouping of characteristics
that are not related in one dimension; high cardinality can
be called the number of unique combination of values in a
dimension which are very high.

Full-cardinality is related to columns which has a very
large number of distinct values. Full cardinality values are
generally like identification number or e-mail addresses. As
an example, in the USER table, an auto-generated number
is assigned to each user to uniquely identify them. Recently,
full-cardinality is also known as Very High Cardinality in the
database community.

D. Related Works

Recently, there are some significant research studies
investigating the main limitation of Bitmap index. New
indexing strategy applied to bitmap compression schemes
requires less space and provides performance gains [12], [14],
[17], [20]–[22].

In [19], [20], they have been shown that WAH compression
is effective in reducing Bitmap index size. They show that
query processing time grows linearly as the index size
increases. Besides, they also demonstrate that the query
processing time is linear in the number of hits when using
a WAH compressed bitmap index. They prove that WAH
compressed bitmap indexes/indices are optimal for both low
cardinality and high cardinality and that the techniques for
compressing bitmap index increase efficiency of in-memory
logical operations.

In [14], they investigate some recent developments in
bitmap indexing technology under three categories, i.e.,
encoding, compression, and binning. They discuss how
various encoding methods could reduce the index size and
improve the query response time. On the other hand, though,
several methods of indexing, including B*-tree and B+-tree
(extensions of B-tree) are theoretically best suited for single
dimensional range queries, but most of them cannot be used
to efficiently answer arbitrary multi-dimensional range queries.

In [21], we see the FastBit is a compressed Bitmap
index which is implemented with a particular compression

schema(is this scheme or schema?). This indexing scheme can
answer range queries many times faster than the well-known
indexing schemes.

In [22], they claim that FastBit is efficient in both terms of
speed and compression amongst data management techniques.

In [12] they show an efficient bitmap index design on mod-
ern processors by analyzing the RIDBit and Fast-Bit with the
physical design aspects of the two packages. They show that
the FastBit indexes are usually larger than RIDBit indexes, but
it can answer many queries in less time because it accesses the
needed bitmaps in less I/O operations. In fact, the optimizer of
database software cannot make use of any indexes to execute
some kind of queries. Rather these databases will prefer to do
a full table scan. Since there is an abnormal growth of data,
table scan will be needed to increase physical disk reads to
avoid insufficient memory allocation. Therefore, FastBit can
support these queries directly [17], [21], [22] where Oracle
11G does not utilize this method of implementation.

III. METHODOLOGY

A. Query Set

In order to compare efficiency of Bitmap index and B-
tree index we build a series of queries on some columns for
evaluation. In our dataset, there are 3 tables namely Order,
Sales and Product. Table II depicts these tables with their col-
umn cardinalities indicated. Each table has approximately 1.6
billion records. These records are generated randomly using
PL/SQL Block by Oracle11G tools. The Sales table involves
low-cardinality columns, while the Order and Product tables
involve normal and high cardinality columns respectively. All
tables have the Id-Bit and Name-Bit columns while the Active-
Bit column only presented in the Product table involving
Bitmap index with low cardinality. Likewise, the Id-Bt and
Name-Bt are present in all the tables. However, the Active-Bt
column in the Product table involves B-tree index with low
cardinality. We use a number of queries to study performance
of B-tree and Bitmap indexes. In each column, C1k has
1000 distinct values appearing randomly on approximately
1,600,000 times each, C1M has 1,000,000 distinct values and
C120M has 120,000,000 distinct values. The columns Id-Bit
and Name-Bit indicate Bitmap index and Id-Bt and Name-Bt
indicate B-tree index in all tables.

TABLE II
VARIOUS COLUMNS WITH THEIR ASSOCIATED DATA TYPES AND COLUMN

CARDINALITIES

Id-Bit Id-Bt Name-Bit Name-Bt Active-Bt Active-Bit
Numeric Numeric Varchar Varchar Number 1Byte Number 1Byte

8 Byte 8 Byte 8 Byte 8 Byte

Sales C1K C1K C1K C1K

Order C1M C1M C1M C1M

Product C120M C120M C120M C120M 2 2

The Set Query Benchmark has been used for frequent-
query application as Star-Schema within data-warehouse
design [25], [26] . The Queries of the Set Query Benchmark
have been designed on business analysis missions.In order

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 2, 2008

41



4

to evaluate the time required to answer different query
types including range, aggregation and join queries; we
implemented the six queries adopted by the Set Query
Benchmark. Briefly, we describe all of our selected SQL
queries used for our performance measurements as indicated
in Listing 1 to 6.

Query1A: SELECT count (*) FROM table WHERE
ColumnX = 10;

ColumnX is one of Id-Bit and
Id-Bt and table is one of Sales with C1k

cardinality on its columns,
Order with C1M, and Product with

C120M cardinality respectively.
Query1B: SELECT count (*) FROM table

WHERE ColumnY = ’ABCDEFGH’;
ColumnY is one of Name-Bit and Name-Bt.
According to E. O’Neil and P. O’Neil [12],

since they involve only one column at a
time in the WHERE clause, we call Query1

as one-dimensional (1-D) query. There
are 12 different instances of Query1B.

Listing 1: Description for Query 1

Query2A: SELECT count (*) FROM tables
WHERE ColumnX in (100000, 100000000);

ColumnX is one of Id-Bit and Id-Bt.
Query2B0: SELECT count (*) FROM tables

WHERE Id-Bit= 1000 and NOT ID-Bit = 1000000.
Query2B1: SELECT count (*) FROM tables

WHERE Id-Bt = 1000 and NOT Id-Bt = 1000000;
Query2B0 and Query2B1 are two-dimensional
queries where each WHERE clause involves

conditions on two columns. There are 12
different instances of Query2B.

Listing 2: Description for Query 2

Query3A: SELECT sum (ColumnM) FROM
tables WHERE ColumnN between 100000

and 100000000.
ColumnM, ColumnN is one of Id-Bit and

Id-Bt and and M=N= Id-bit or M=N= Id-bt.
There is 6 instances of Query3A.

Query3B: SELECT Sum (ColumnM) FROM tables
WHERE (ColumnN between 100000 and 1000000

or ColumnN between 1000000 and 10000000
or ColumnN between 10000000 and 30000000
or ColumnN between 30000000 and 60000000

or ColumnN between 60000000 and 100000000);
CoulmnM, ColumnN is one of Id-bit and Id-bt

and M=N= Id-bit or M=N= Id-bt .
There are 6 instances of Query3B.
Listing 3: Description for Query 3

Query4A: SELECT * FROM tables WHERE
columnX is in (1000, 100000, 1000000,

100000000, 1000000000).
ColumnY is one of Id-Bit and Id-Bt.

There is 8 instance of Query4A.
In the Product table we have 2 other

columns, namely Active-Bit and Active-Bt
with 2 cardinalities. The Active-Bit

is concern with Bitmap index and the
Active-Bt is concern with B-tree index

in the same table.
Query4B: SELECT * FROM Product WHERE

ColumnX is in (1000, 100000, 1000000,
100000000, 1000000000) and Active-bit = 1

ColumnZ is one of Id-Bit and Id-Bt.
There are 2 instances of Query4B.
Listing 4: Description for Query 4

Query5A: SELECT Id-Bit, Name-bit, count (*)
from tables GROUP BY Id-Bit,Name-bit.

Query5B: SELECT Id-Bt, Name-bt, count (*)
from tables GROUP BY Id-Bt, Name-bt;

tables is one of the three existent
Tables. There are 8 instances of

Query5A and Query4B.
Query5C: SELECT sum (ColumnM) FROM

tables WHERE ColumnN > 9000 and
ColumnN < 9100

ColumnM, ColumnN is one of Id-Bit
and Id-Bt and and M=N= Id-bit or
M=N= Id-bt. There is 6 instances

of Query5C.
Listing 5: Description for Query 5

Query6: SELECT sum(D.ColumnM) FROM
sale E, tables D WHERE E.ColumnN= D.

CoulmnP Group by columnM;
Here ColumnM, ColumnN and ColumnP is

one of Id-Bit and Id-Bt that
M=N=P=Id-Bit or M=N=P= Id-Bt and

tables is one of the
three existent tables except the

Sales table. There are 6
instances of Query6.

Listing 6: Description for Query 6

B. Experimental Setup

We performed our tests on the Microsoft Windows Server
2003 machine with Oracle11G database systems. Table III
shows some basic information about the test machines and
the disk system. To make sure the full disk access time is
accounted for we disabled all unnecessary services in the
system and kept the same condition for each query. To avoid

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 2, 2008

42



5

inaccuracy, all queries were run 4 consecutive times to give
an average elapsed time.

TABLE III
INFORMATION ABOUT THE TEST SYSTEM

CPU Pentium 4 (2.6 GHZ)
Disk 7200 RPM,

500 GB
Memory 1 GB
Database Oracle11G

IV. RESULTS AND DISCUSSIONS

We present the performance measurement experiments in
two main parts, namely, (i) the index file size and index
construction time and (ii) query retrieval time.

A. Index File Size and Index Construction Time

The time taken to construct B-tree and Bitmap indexes is
shown in Table IV. We see that the Bitmap requires slightly
more time to build high-cardinality columns (Product table) as
compared low-cardinality (Sales table) on the same columns.
B-tree, on the other hand, requires considerably more time
to build all indexes regardless of the columns’ cardinalities.
Table IV summarizes the indexes size over various kinds
of data cardinality. In Fig 2, we consider only the size of
the two columns on Bitmap and B-tree indexes. For high-
cardinality cases, Bitmap generates a large number of small
bitmap objects and spends much time in allocating memory
of these bitmaps. Since the index file size of Bitmap index
depends on the cardinality of the column; ultimately, the index
size on the columns will be smaller than a B-tree even for full
cardinality (100% distinct values) on the same column.

TABLE IV
INDEX FILES SIZE AND INDEX CONSTRUCTION TIME

Sales Order Product

Size(MB) Time(S) Size(MB) Time(S) Size(MB) Time(S)

ID-Bit 326 1580 1222 2805 3012 3534

Id-Bt 26211 21090 26532 21319 26568 21580

Name-Bit 418 1673 1341 2605 3215 3892

Name-Bt 26911 21638 26821 21430 27190 21802

Active-Bit 288 1544

Active-Bt 0.06 4678

Previous research [18] shows that the index file size of
a Bitmap index on column which would be a candidate for
primary key will be much larger than a B-tree index on the
same column. In contrast, according to our test results, the
index file size of a Bitmap index on the above-mentioned
column will not be larger than a B-tree index. Similarly, in
terms of index construction time, Bitmap index outperforms
B-tree significantly.

Table IV and Fig 2 show that to build index on a large
column which is involved by B-tree is prohibitively expensive
in terms of space and creation time. In other words, the index

Fig. 2. Index file size of bitmap with various cardinality

file size of column which is involved by Bitmap index is
significantly smaller than the same column which is involved
by B-tree index.

B. Query Response Time

In this section, we evaluate the time required to answer
the queries. These timing measurements directly reflect the
performance of indexing methods. A summary of all the
timing measurements on several kinds of queries, as indicated
in Listing 1 to 6, are shown in Table V.

Now, we examine the performance on count queries
(Query1 and Query2) in detail. In Query1, when the
cardinality of the column is high, it takes slightly more time
to execute the queries. In all the tables with cardinalities of
1K, 1M and 120M, the average time used by Bitmap index to
read in the index blocks is nearly 0.021 s (21 ms). However,
in most cases, the average time used by B-tree index is more
than 52 ms. Hence, we show that Bitmap index could be best
suited for one-dimensional count queries.

In Query2A and Query2B (which are two-dimensional
queries and involve two conditions clause of the same
structure as Query1), generally, we expect the response time
of both indexes to be about twice as long as that of Query1.
However, it seems that estimate is not accurate for Bitmap
index. Therefore, the time in multi-dimensional queries is not
pursued by the time that is needed to one-dimensional queries.
On the other hand, B-tree index has a much more growth in
the response time (90 ms) as well. We also observed that the
time used by Bitmap index is slightly less than the time used
by B-tree index.

Next, we focus on Query3. The query response time is
different from that of Query1 and Query2. Overall, we see that
the time required by both indexes has risen significantly. Since
the Bitmap and B-tree indexes use different mechanisms to
organize for the table data, the time to resolve the conditions
on Query3 will conclude the total query response time. The
number of records by these queries that has to be selected is
uniformly scattered among rows 100,000 and 100,000,000.
Consequently, the elapsed time of both indexes that is needed

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 2, 2008

43



6

TABLE V
QUERY RESPONSE TIME PER SECONDS

Sales Order Product

(Low Cardinality) (Normal Cardinality) (High Cardinality)

Bitmap B-tree Bitmap B-tree Bitmap B-tree

Query1A 0.018 0.051 0.019 0.053 0.020 0.052

Query1B 0.023 0.056 0.023 0.055 0.024 0.057

Query2A 0.017 0.078 0.017 0.075 0.023 0.076

Query2B 0.021 0.097 0.024 0.101 0.022 0.090

Query3A 21.21 113.52 22.12 112.39 21.20 115.68

Query3B 307.61 1230 308.56 1246.2 308.54 1243.9

Query4A 0.081 0.140 0.081 0.138 0.097 0.151

Query4B 0.044 0.110

Query5C 1.15 5.21 0.92 5.20 0.92 5.23

Query5A ,B 1560.6 1554.3 1730.21 1701.52 1846.98 1840.03

Query6 1108.87 1400.3 1113.39 1440.12

to answer the queries which are executed within a range of
predicates is affected by the distribution of data and does not
follow the cardinality conditions.

The response time required to retrieve the data for Query4
has a similar trend to that for Query3 with just one difference.
The difference stems from the column under the second
condition which has extremely low cardinality. Here, with a
Bitmap index on the Active-Bit column (Cardinality = 2) in
place, we created another Bitmap index on the Id-Bit column
containing equal values between 1000 and 1000000000 and
then executed Query4A. Subsequently, the Query4B will be
re-executed with B-tree indexes on the same conditions. In
the previous version of Oracle database software; the Oracle
optimizer will choose a full table scan and rather make it use
index for B-tree [18] .
Even though the query response time demonstrates that B-tree
index takes about twice as much time as Bitmap index, in
contrast, we have not observed the mentioned trend during
execution tracing in our test system. Thus, we can conclude
that with Bitmap indexes, the optimizer of Oracle11G answers
to these queries, which are involved with AND, OR and so
on is as fast as B-tree index.

Another query that can be a main way to exercise the
indexing performance of Bitmap and B-tree is Query5. In
Query5A and Query5B, we see that the response time of
B-tree is slightly less than that of Bitmap index. On the other
hand, the required time to answer these queries is extremely
more than that of others. That is because to execute this type
of queries, the optimizer will not make use of any indexes.
Rather, it will prefer to do a full table scan. Since there is an
abnormal growth of data, table scan will be needed to increase
physical disk reads to avoid insufficient memory allocation.
So this does not scale very well as data volumes increase.
Even though there is a certain implementation of Bitmap
indexes (FastBit) which can support these queries directly
[17], [21], [22], Oracle 11G does not utilize this method
of implementation. The required time to answer Query5C
that involves Bitmap index is slightly unusual. The time is
decreased for a column with high cardinality compared to
columns with low cardinality.

Fig. 3. Query elapse time for Bitmap and B-tree index on high cardinality

Fig. 4. Query elapse time for Bitmap and B-tree index on high cardinality

Since more general join queries are often submitted
interactively, reducing their response time is a critical issue
in the DW environment [14], [15] . Thus, the ability to
answer Query6 has a strong impact on the query processing
performance. Even though, Oracle 11G [7] has implemented
the Join Bitmap index to join columns, this is not always
possible for ad hoc query, therefore it is strongly necessary
to know which indexes are best suited. Nevertheless, we see
that the elapsed time of this type of query which is involved
in join operations is much faster than that of B-tree index in
the case of either high cardinality or low cardinality.

In summary, Fig 3 and Fig 4 shows the query elapse time
for the Product table (table with high cardinality). This figure
shows that Bitmap index is much faster than B-tree index.
Thus, it can be claimed that Bitmap index is adequate for
all levels of column cardinality as shown in Fig 5 and Fig 6
where the query elapse time is about constant for each query
type.

V. CONCLUSIONS

It is commonly accepted that Bitmap index is more efficient
for low cardinality attributes. Our experiment shows that
Bitmap index effectively reduces the query response time for

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 2, 2008

44



7

Fig. 5. Query elapse time for Bitmap index on various level of column
cardinality

Fig. 6. Query elapse time for Bitmap index on various level of column
cardinality

a column with high cardinality compared B-tree index. We
have also shown that Bitmap index file size and index creation
time grow gradually as the column cardinality increases as
compared to B-tree which grows significantly. In addition, we
have demonstrated that although the index file size of bitmap
index is affected by column cardinality; the query processing
time is constant as the column cardinality increases. Besides,
Bitmap index is also efficient for other types of queries,
such as joins on keys, multidimensional range queries and
computations of aggregates. Thus, we conclude that Bitmap
index is the conclusive choice for a DW designing no matter
for columns with high or low cardinality.

It is often considered that I/O cost dominates the query
response time. Moreover, main memory size may play a role
in index performance as small memory size might trigger a
lot of paging activities, which then could change the query
performance of Both indexing. Thus, our future work includes
the evaluation of I/O costs on an upgraded hardware system.

ACKNOWLEDGMENT

We would like to express our deep and sincere gratitude
to Professor Ralph Kimball, Professor Bill Inmon, Professor
Patrick O’Neil and to all those who have guide us by their
inestimable knowledge and logical way of thinking. Their
books and papers have been of great value for us.

REFERENCES

[1] S. Chaudhuri, U. Dayal,An Overview of Data Warehousing and OLAP
Technology., ACM SIGMOD RECORD. 1997

[2] P. O’Neil, Model 204 Architecture and Performance. In Proceedings
of the 2nd international Workshop on High Performance Transaction
Systems, Lecture Notes In Computer Science, vol. 359. Springer-Verlag,
London, (September 28 - 30, 1987),pp.40-59

[3] R. Kimball, L. Reeves, M. Ross, The Data Warehouse Toolkit. John
Wiley Sons, NEW YORK, 2nd edition, 2002

[4] W. Inmon, Building the Data Warehouse., John Wiley Sons, fourth
edition, 2005

[5] C. DELLAQUILA and E. LEFONS and F. TANGORRA, Design and
Implementation of a National Data Warehouse. Proceedings of the 5th
WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering
and Data Bases, Madrid, Spain, February 15-17, 2006 pp. 342-347

[6] D. Comer,Ubiquitous b-tree, ACM Comput. Surv. 11, 2, 1979, pp. 121-13

[7] R. Strohm, Oracle Database Concepts 11g,Oracle, Redwood City,CA
94065, 2007

[8] P. O’Neil and D. Quass, Improved query performance with variant
indexes, In SIGMOD: Proceedings of the 1997 ACM SIGMOD
international conference on Management of data.1997

[9] C. Dell aquila and E. Lefons and F. Tangorra, Analytic Use of Bitmap
Indices. Proceedings of the 6th WSEAS International Conference on
Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu
Island, Greece, February 16-19, 2007 pp. 159

[10] P. O’Neil and G. Graefe, Multi-table joins through bitmapped join
indices, ACM SIGMOD Record 24 number 3, Sep 1995 , pp. 8-11.

[11] K. Wu and P. Yu, Range-based bitmap indexing for high cardinality
attributes with skew, In COMPSAC 98: Proceedings of the 22nd
International Computer Software and Applications Conference. IEEE
Computer Society, Washington, DC, USA, 1998, pp. 61-67.

[12] E. E-O’Neil and P. P-O’Neil, Bitmap index design choices and their
performance impli-cations, Database Engineering and Applications
Symposium. IDEAS 2007. 11th International, pp. 72-84.

[13] C. Imho and N. Galemmo and J. Geiger, Mastering Data Warehouse
Design : Relational and Dimensional Techniques, John Wiley and Sons,
NEW YORK.2003

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 2, 2008

45



8

[14] K. Stockinger and K. Wu, Bitmap indices for data warehouses, In Data
Warehouses and OLAP ,IRM Press,2007, Chapter 7.

[15] A. Mitea, A multiple join index for data warehouses. Proceedings of the
5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS
and COMPUTERS, Bucharest, Romania, October 16-17, 2006 pp. 7

[16] J. Lewis,Oracle index management secrets, BMC Software
(http://www.dbazine.com), 2006, pp. 37-47.

[17] K. Stockinger and E. Bethel and S. Campbell and E. Dart and K.
Wu,Detecting distributed scans using high-performance query-driven
visualization, In SC ’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, 2006

[18] V. Sharma, Bitmap index vs. b-tree index: Which and when,
http://www.oracle.com.2006

[19] K. Wu and E. Otoo and A.Shoshani,Optimizing bitmap indices with
efficient compression., ACM Trans. Database Syst. 31, 1 (Mar. 2006),
pp. 1-38.DOI=http://doi.acm.org/10.1145/1132863.1132864

[20] K. Stockinger and K. Wu and A. Shoshani,A performance comparison
of bitmap indexes, In CIKM 01: Proceedings of the tenth international
conference on Information and knowledge management,2001

[21] K. wu, An Efficient Compressed Bitmap Index Technology,
Http://sdm.lbl.gov/fastbit/, 2008.

[22] L. Gosink and J. Anderson and W. Bethel and K. Joy, Variable
Interactions in Query Driven Visualization, The Visualization and
Graphics Research Group of the Institute for Data Analysis and
Visualization (IDAV), 2007

[23] L. Gosink and J. Anderson and W. Bethel and K. Joy, Bin-Hash
Indexing: A Parallel GPU-Based Method For Fast Query Processing,
The Visualization and Graphics Research Group of the Institute for Data
Analysis and Visualization (IDAV), 2007

[24] K. Stockinger and K. Wu and A. Shoshani,Strategies for processing ad
hoc queries on large data warehouses, In Proceedings of the 5th ACM
international Workshop on Data Warehousing and OLAP (McLean,
Virginia, USA, November 08 - 08, 2002). DOLAP ’02. ACM, New York,
NY,2002, pp. 72-79. DOI= http://doi.acm.org/10.1145/583890.583901

[25] P. O’Neil, The Set Query Benchmark. In The Benchmark Handbook For
Database and Transaction Processing Benchmarks, Jim Gray, Editor,
Morgan Kaufmann, 1993.

[26] P. ONeil and E. ONeil, Database Principles, Programming, and
Performance, 2nd Ed. Morgan Kaufmann Publishers. 2001.

Morteza Zaker is a research student for the faculty
of Information Technology, Multimedia University.
His research interests are ERP, Advanced Databases
and Data Warehouse architecture. He is a system
analyst during the last decade.

Somnuk Phon-Amnuaisuk received his B.Eng.
from King Mongkut Institute of Technology (Thai-
land) and Ph.D. in Artificial Intelligence from the
University of Edinburgh (Scotland). He is currently
an associate Dean for the faculty of Information
Technology, Multimedia University, Malaysia where
he also leads the Music Informatics Research group.
His current research works span over multimedia in-
formation retrieval, polyphonic music transcription,
algorithmic composition, Bayesian networks, data
mining and machine learning.

Dr. Su-Cheng Haw’s research interests are in XML
Databases and instance storage, Query processing
and optimization, Data Modeling and Design, Data
Management, Data Semantic, Constraints Depen-
dencies, Data Warehouse, E-Commerce and Web
services

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 2, 2008

46




