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Abstract—Voice Activity Detection (VAD) Systems have 

various standards. One of the famous and practical standards is ITU-
U G.729B. In G.729B, VAD decision, compare with other standards 
and new methods, has poor performance for voice frames especially 
in low Signal-to-Noise Ratios (SNRs).  However, since this standard 
has good properties that we try to modify its low performance in 
adverse environments. One point that we focus on this standard is 
trying to have minimum changes. Therefore we use some new 
methods without major modification on basic structure. In this 
methodology we use some parameters in the first part and connect it 
to the main block. 
We compare the proposed method, using objective parameters, with 
basic version of G.729B standard and ETSI AMR option 1 and 2. 
This comparison study in various types of noises like Gaussian, 
Vehicle and Babble noise. 
 

Keywords— Geometrically Adaptive Energy Threshold, LPFing 
method, Periodicity Estimation, True Envelope LPC, Voice Activity 
Detection. 

I. INTRODUCTION 
S is well-known, voice        activity      detection (VAD) 
achieves silence compression, which is important in 

both fixed and mobile telecommunication systems [1]. In 
communication systems based on variable bit rate speech 
coders, it represents the most important block, reducing the 
average bit rate; in a cellular radio system using the 
discontinuous transmission (DTX) mode, a VAD is able to 
increase the number of users and power consumption in 
portable equipment. Unfortunately, a VAD is far from 
efficient, especially when it is operating in adverse acoustic 
conditions. 

While previous work in the area of speech analysis, such as 
detection, voicing classification or pitch estimation, have 
attempted to exploit some of the observed features of the 
statistics of speech signals, little has been done in providing an 
analytical framework for using these cumulates: in [15], a 
voiced/unvoiced detector using the bispectrum is developed 
and based on the observation that unvoiced phonemes are 
produced by a Gaussian-like excitation and thus result in a 
small bispectrum whereas the same is  not true for voiced 
phonemes.  

In [16] a method based on Gaussian tests for the bispectrum 
and the triple correlation is used to discriminate voiced and 
unvoiced segments.  

The method exploits the Gaussian blindness of statistics but 

not the peculiarities of the statistics of voiced speech to better 
classify the segments.  

 
 

In [17], the normalized skewness and kurtosis of short-term 
speech segments are used to detect transitional speech events 
(termed innovation), based on the observation that these two 
statistics take on nonzero values at the boundaries of speech 
segments, but no analytical ground is given to support the 
results.  

In [18] a pitch estimation method based on the periodicity of 
the diagonal slice of the third-order cumulant is described and 
yields more reliable pitch estimates than the autocorrelation, 
but the claim of the third-order Cumulant slice having similar 
periodicity as the underlying speech is not clearly 
demonstrated. 

Earlier algorithms are based on the Itakura LPC distance 
measure [l9], energy levels, timing, pitch and zero crossings 
rates [20], and periodicity measure [21].  

Haigh [22] developed an algorithm using cepstral features, 
and Yoma, McInnes and Jack used adaptive noise modeling 
where they assumed the noise to be reasonably stationary and 
correlated [23].  

In parallel, those algorithms are tested on specific 
applications like the Pan-European digital cellular mobile 
telephone service [24], cellular networks [25], digital cordless 
telephone systems [26], and structured noise environments 
[27]. Most recently, El-Maleh and Kabal compared various 
detection algorithms for wireless personal communications 
systems [28].  

Unfortunately, the present speech detection algorithms have 
problems in low SNRs and also in nonstationary noise 
environments.  

Consistent accuracy cannot be achieved since most 
algorithms rely on a threshold level for comparison. This 
threshold level is assumed to be fixed [29] or calculated in the 
non-speech intervals.  

For example, in the autoregressive analysis with the LMS 
algorithm, non-speech intervals are required to train the FIR 
filters used [30]. Similarly, third order statistics-based VAD 
initially requires noise-only frames [31]. When the 
background noise is nonstationary and when the speech signal 
is dominated by voiced segments, the optimum threshold 
value should be monitored in each time frame to achieve 
reliable detection. To obtain that, methods which can 
effectively adapt to the changing background noise are 
required.   

In order to evaluate the impact of background noise on 

A 
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recent voice activity detectors, this paper presents a 
performance evaluation and comparison of recent ITU-T and 
ETSI VAD algorithms. The latest ITU-T VAD standard is 
Rec.  

G.729 Annex B [2], developed for fixed telephony and 
multimedia communications. This method provides a poor 
performance, in noisy environments especially for non-
stationary noise or low Signal-to-Noise Ratios (SNRs), 
compare with other standards (e.g., ETSI AMR option 1 and 2 
[3]) and new methods (e.g., statistical or estimation methods 
[10], [11]).  

In this paper, we modify G.729 method by minimum change 
in its structure and compare its performance with other 
standards by objective measures. 

II. G.729B VAD STANDARD 
As an extension to the G.729 speech coder, ITU-T SG16 

released G.729 Annex B in order to support DTX by means of 
VAD, CNI, and CNG. G.729B conducts a VAD decision 
every frame of 10 ms, using four different parameters: 

   1) differential power in the 0–1 kHz band (ΔEl); 
   2) differential power over the whole band (ΔEf); 
   3) differential zero crossing rate (ΔZC); 
   4) spectral distortion (ΔLSF). 

where Ef, El, LSFi, and ZC are the full-band energy, low-band 
energy, ith line spectral frequency, and zero-crossing rate of 
the input signal. Ef, El, LSFi, and ZC are the noise 
characterizing parameters updated using the background noise. 

The block diagram of G.729B VAD is shown in Fig. 1. The 
input parameters for the VAD can be obtained from the input 
signal or from the intermediate values of the speech encoder. 
Subsequently, the difference parameters, ΔEf, ΔEl, ΔLSF, and 
ΔZC, are computed from the input and noise parameters. A 
decision of voice activity is conducted over a four dimensional 
hyper-space, based on a region classification technique, 
followed by a hangover scheme.  

The noise parameters are updated based on a first order 
autoregressive (AR) scheme, if the full-band energy difference 
is less than a certain fixed threshold. Unfortunately these 
parameters do not provide a good performance in various 
environments, that caused by parameters features. As an 
example the zero crossing rate has problems at low SNRs, 
especially in the presence of noise and speech with high zero 
crossing rates and the energy threshold method has problems 
in non-stationary noise and low SNRs. Therefore, in this 
paper, by changing some blocks in G.729 diagram, we try to 
increase the system performance in various environments also 
in low SNRs. 

III. PARAMETERS USED FOR MINIMIZATION 
As described in section II, the G.729B standard needs to 

have a set of modifications to provide the better performance. 
Before description of this modification, we indicate some new 
methods:  

 

A. TE-LPC 
The true envelope estimator and then using the band limit 

envelope to derive an all pole envelope model named TE-
LPC.  

This proposition to improve the spectral envelope estimation 
is based on the true envelope estimator. The resulting 
estimation can be interpreted as a band limited interpolation of 
the observed sub-sampled spectral envelope [5]. 

Related to the speech signal, the resulting predictor is not 
optimal in the sense of the MSE criteria but it is supposed to 
fit closer the spectral envelope. A comparison between LPC 
and TE-LPC is shown in Fig.1.  
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Fig. 1 Block diagram of ITU-T G.729B VAD 

 
The results show that TE-LPC performs better Spectral-Peak 

Flatness Measure (SPFM) maximization in all the cases we 
measured. While the improvements are rather small if 
measured over the whole spectrum or the high frequency 
band, they are significant in the low frequency band which is 
more perceptually important.  

The improvement is bigger for high-pitched signals and is 
not very sensitive to the model order for the selected order 
values.  

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

21



Improvements found for the unvoiced cases could be due to 
voiced and mixed parts remaining in the unvoiced segments 
[6]. 

 

 
Fig. 2 Example of LPC and TE-LPC spectral fitting 

 

B. Low Pass Filtering 
A Low Pass Filtering (LPFing) operation is introduced as a 

pre-processing stage prior to decimation in order to overcome 
the problems of spectral aliasing present in the LSF 
calculation of the classic methods. 

An LPFing experiment was performed to show the effect 
such an operation has on the resultant smoothed LSF vectors. 
The setup was as follows: 
-   First, LSF vectors f were extracted from 15 Hz bandwidth-

expanded LPC parameters A=α1, α2, α3,…, αp calculated 
every sample for Hamming windowed speech data of size 
200 samples at 8 kHz sampling rate. 

-   LSF tracks fi were then produced from the LSF vectors f. 
-   Finally, filtering was performed in the frequency domain 

(using a rectangular window) for each LSF track fi 
separately with a cut-off frequency as given by fc=1/ (2τ) 
(where τ is the system’s LSF vector transmission rate 
according to sampling and decimation theories). This 
generated a second LSF vector set g=g1, g2, g3, . . . , gp. 
 

A tenth-order LPC filter (i.e. p=10) was used and we 
therefore have ten LSF tracks. In Fig. 3a, it can be seen that all 
LSF tracks spectra have a substantial amount of their energy 
in the low frequency band (below 100 Hz). Fig. 3b shows the 
region of interest, from Fig. 3a, for 20, 10 and 5 ms LSF 
vector transmission rates. 

Each LSF track was generated from a speech file (for either 
a male or a female speaker, uttering two sentences of 4 s 

each). The FFT size used was sufficiently large (N = 65536) 
for the side lobe effects of the rectangular window to be 
ignored. 

 Figs. 4a and 4b show a section of the variations of certain 
LSF tracks for both classic fi and LPFed gi methods (for fc= 25 
Hz). It is evident in Fig. 4 that significant variations exist in 
the LSF tracks produced by the classic method because of the 
weak stationarity assumption within the analysis window, 
especially at transitions from the voiced speech segment to the 
unvoiced speech segment (offset) and vice versa (onset). The 
LPFed method, however, produces smoother and slowly 
evolving LSF tracks [32]. 

Knagenhjelm and Kleijn [33], show that using a 
perceptually smoothed (from an interpolation point of view) 
power spectral envelope leads to a significant increase in 
subjective performance.  

Additionally, Eriksson et al. [34] show that low-rate 
quantization is possible through smoothing (from an LPFing 
perspective) the LSF parameter evolution. (Note that LPFing 
an over-sampled signal will follow the changes better than 
what is achieved through interpolation). 

An informal listening test was conducted for synthesized 
speech of both male and female speakers, generated using 
both the classic, f, and LPFed, g, LSF vectors. The LPFed 
tracks gi was decimated to an LSF transmission rate of 20 ms 
so that it could be used in the 2.4 kbps SB-LPC speech codec 
[35]. SB-LPC is a sinusoidal-based speech codec, which at the 
encoder extracts, quantizes and transmits speech model 
parameters [i.e. LPC (LSFs), pitch, energy, spectral 
amplitudes (excitation)  and voicing].  At  the  decoder,   these  
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Fig. 3 Logarithmic magnitude spectrum of LSF tracks 

 
parameters are dequantized to produce the excitation, which 
along with the LPC parameters, produces synthesized speech. 
Excitation in SB-LPC is discrete Fourier transform (DFT)-
based, using a technique similar to that of the MELP coder 
[36]. All model parameters (in the listening tests) were 
quantized as in the original system [35]. Only LSF vectors 
were unquantized to measure whether LPFing removes 
important spectral details. Six expert listeners participated in 
the test in which they listened to 16 (4s) speech segments and 
then specified their preferences as A, B or similar. Ninety-five 
percent thought they were similar, whereas 5% 
interchangeably preferred one over the other. This similarity in 
the synthesized speech quality of both original and LPFed 
LSFs led us to believe that selecting the cut-off frequency of 
the LPF according to the final LSF vector transmission rate 
only removes the non-important information while keeping the 
quality and important information intact. Additionally, 
because the LPFed LSF vector tracks possess smoother and 
slower varying tracks, advantages are expected in terms of 
easier quantization and of gains through bit saving and better 
quality synthesized speech [32]. 

A. GAET 
Recently Özer and Tanyer developed a new technique to 

estimate the optimum threshold for noise in the presence of 
speech accurately by using the amplitude probability 
distributions. The geometrically adaptive energy threshold 
(GAET) method is developed to set the threshold level 
adaptively without the need of voice inactive segments by 
using the amplitude probability distributions of the speech 
signal [7]. The GAET method is robust to non-stationary noise 
but false triggering is often observed when noise has short 
burst. 

 

 
Fig. 4 Typical LSF track variations over time 

a LSF tracks f1 and g1 

b LSF tracks f7 and g7 

B. LSPE 
Tucker designed a VAD based on periodicity [8] named 

Least-Square Periodicity Estimator (LSPE). The major 
difficulty in designing a VAD based on periodicity is its 
sensitivity to any periodic signal which may well be 
interference or a background signal. Great care should be 
taken to avoid false triggering on non-speech periodic signals. 
If the speech signal contains non-periodic components, 
inaccurate values for endpoints of the voice-active segments 
could be obtained. Tucker used a preprocessor to detect and if 
possible remove, most of the expected types of interference. 
Different environments will have different interference, so the 
exact nature of the preprocessor will depend on the expected 
type of interference. 

IV. MODIFYING G.729B VAD 
In Fig. 5 we introduce a modified version of G.729 Annex 

B standard, based on four differential parameter that describe 
in section II. 
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Fig. 5 Block diagram of Modified ITU-T G.729B VAD 

 
The energy threshold methods (include of Low and Full-

Band energy) have some problems in nonstationary and low 
values of SNR. 

As we seen in new methods to modify the performance of 
VAD systems in the case of energy threshold [10]-[11], we 
used an adaptive threshold. In this way, we use one of the best 
methods that work rapid and have a good performance 
especially in Low-SNR. It is the GAET method. 

Zero-Crossing (ZC) method has a better performance. 
However, this method also has some problems in Low- SNRs 
especially in presence of periodic noise and speech with high 
Zero-Crossing Ratios. To solve the problem of periodic speech 
we use the LSPE method. By using this method, the ZC 
eliminate in periodic speech that cause some improvements in 
rate of the system in the case of Low-SNR. 
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Fig. 6 Approximate numbers of numerical operations by 

the algorithm as a function of analysis blocks size. 

 
To repair the LPC coefficients and estimate better spectrum 

shape of the speech signal, we use TE-LPC method. It has a 
good performance also its rate is two times better than LPC 
method. 

We compare the complexity of commonly used VAD 
algorithms with our proposed method in Fig. 6. This method 
used four differential parameters and the complexity of the 
system is equal to sum of two methods; Adaptive energy 
method and periodicity measure. In the case of low SNRs, that 
the blocks size comes great, this method is better that higher 
order statistics method in rate.  

V. PARAMETERS USED FOR COMPARISON 
Using the implemented system outlined in Section 4, the 

effectiveness of the proposed algorithm was evaluated. 
Surveying literature indicates two distinct schools pertaining 
to VAD evaluation, namely subjective and objective 
evaluation. In general, subjective evaluation methods attempt 
to determine the effect of erroneous VAD decisions on human 
perception [9]. Tests such as the ABC [9] however does not 
take into consideration the effect of false alarms and as such 
are inappropriate for a thorough evaluation of VAD 
performance. Therefore, in order to evaluate the performance 
of the proposed scheme objective evaluation was used. In 
order to evaluate the amount of clipping and how often noise 
is detected as speech; the VAD output is compared with that 
of an ideal VAD, i.e., one obtained by manual marking of the 
database. The performance of a VAD is evaluated on the basis 
of the following four traditional parameters: 
• Front End Clipping (FEC): Clipping introduced in passing 
from noise to speech activity. 
• Mid Speech Clipping (MSC): Clipping due to speech 
misclassified as noise. 
• OVER: Noise interpreted as speech due to the VAD flag 
remaining active in passing from speech activity to noise. 
• Noise Detected as Speech (NDS): Noise interpreted as 
speech within a silence period. 
• Correct VAD decision (Correct): Correct decisions made by 
the VAD.  

The FEC and MSC parameters give the amount of clipping 
introduced, whereas OVER and NDS give the increment in the 
activity factor. Fig. 7 shows the objective parameters for 
performance evaluation. 

 

 

Active

Inactive

VAD decision

FEC MSC OVER NDS

Fig. 7 objective parameters for performance evaluation 
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VI. RESULTS 
VAD performance comparison is complicated and time 

consuming process. It should be considered carefully. Ideally, 
a VAD should maximize the correct value, and minimize all 
errors. However failing this, the affect different types of errors 
have on the discontinuous speech signal (speech signal with 
non-speech periods removed and comfort noise inserted) 
should be considered. The purpose of a VAD in the context of 
a telephone conversation is to enable data savings by not 
transmitting non-speech periods, while maintaining speech 
quality. Speech quality should be of utmost importance. 
Therefore, it is important to note the affect that each of the 
different errors have on speech quality.  

In contrast, insertion errors such as NDS and OVER do not 
have any effect on speech quality. They do however result in 
reduced effectiveness of the VAD scheme. Here we will use 
the broad notion that clipping errors are less desirable than 
insertion errors. In Fig. 8 we show a comparison of correct 
parameter for three standards, ITU-T G.729 Annex B, ETSI 
AMR option 1 and 2 with our proposed method. In the case of 
G.729B, it exhibits the worst average results over the correct 
test. In Fig. 6, the first part shows the signal in the gaussian 
noise. It is observed that, AMR2 and proposed method have 
same performance in high SNRs, but the modified G.729B has 
a better performance in low SNRs. In the case of babble noise 
that illustrate in the second part, we have a good modification 
and in the third part, the proposed scheme has a good 
performance but lower than ETSI AMR1 for vehicle noise. 
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Fig. 8 Comparison of Correct Parameter for G.729B, ETSI AMR1, 2 

and Modified version of G.729B in (a) Gaussian,  
(b) Babble and (c) Vehicle Noise 

 
One of the other parameters that exhibit in Fig. 7 is FEC 

parameter for three standards, and our proposed method. As 
you know, we try to minimize Front End Clipping (FEC) 
parameter. In the case of G.729B, it exhibits the worst average 
results over the FEC test. In Fig. 9, the first part shows the 
signal in the gaussian noise. It is observed that, AMR option 2 
and proposed method have same performance in high SNRs, 
but AMR option 2 has a better performance in low SNRs.  
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Fig. 9 Comparison of FEC Parameter for G.729B, ETSI AMR1, 2 

and Modified version of G.729B in (a) Gaussian,  
(b) Babble and (c) Vehicle Noise 

 
In the case of babble noise that illustrate in the second part, 

we has a good modification but ESTI AMR1 and 2 have better 
performance and in the third part, the modified version of 
G.729B has some modification in respect of G.729B. Gaussian 
noise is complicated respected in babble and vehicle noise. 

Another parameter that we exhibit in Fig. 7 is MSC 
parameter for three standards, ITU-T G.729 Annex B, ETSI 
AMR option 1 and 2 and our proposed method.  

Mid Speech Clipping (MSC) parameter, like FEC 
parameter, must be minimized. In the case of G.729B, it 
exhibits the worst average results over the MSC test. In Fig. 8, 
the first part shows the signal in the gaussian noise. It could be 
observed that, AMR option 2 and proposed method have same 
performance in high SNRs, but our proposed method has a 
better performance in low SNRs.  

In the case of babble noise that illustrate in the second part, 
we have a good modification and the performance of proposed 
method and ESTI AMR1 and 2 are same; and in the third part, 
the modified version of G.729B has some modification in 
respect of G.729B but ETSI AMR1 and 2 are better. In 
summary this parameter, after correct parameter is very 
important. 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

5

10

15

20

25

30

35

SNR (dB)

M
SC

 

 

ETSI1

G729B

ETSI2

Proposed Method

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

5

10

15

20

25

SNR (dB)

M
SC

 

 

ETSI1

G729B

Proposed Method

ETSI2

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

SNR (dB)

M
SC

 

 

ETSI1

G729B

Proposed Method

ETSI2

 
Fig. 10 Comparison of MSC Parameter for G.729B, ETSI AMR1, 2 

and Modified version of G.729B in (a) Gaussian,  
(b) Babble and (c) Vehicle Noise 

 
Next parameter that occur in the silence parts of speech 

signal and shows in Fig. 11 is NDS parameter for three 
standards, ITU-T G.729 Annex B, ETSI AMR option 1 and 2 
and our proposed method. This parameter is greater when are 
in noisy environments and low SNRs. Noise Detected as 
speech (NDS) parameter, like FEC and MSC parameters, must 
be minimized. 

In the case of G.729B, it exhibits the worst average results 
over the vehicle noise, but in the case of babble and gaussian 
noise, ETSI AMR1 is worst. In Fig. 9, the first part shows the 
signal in the gaussian noise. 

It is observed that, ETSI AMR option 2 has the better 
performance and proposed method is next; although all of this 
standards and this method have good performance in respect 
of babble and vehicle noise.  

In the case of babble noise that illustrate in the second part, 
the G.729B standard has a good performance and we have a 
good modification. The performance of ESTI AMR2 is 
excellent; and in the third part, the modified version of 
G.729B has some modification in respect of G.729B and same 
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to ETSI AMR1 and 2. An important care should be give in the 
case of babble noise.  

It could be observed that in the second figure, previous 
standards have not good performance in the babble noise but 
modified version of G.729B easily extracts the speech signal 
in a loud and noisy environments. 
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Fig. 11 Comparison of NDS Parameter for G.729B, ETSI AMR1, 2 

and Modified version of G.729B in (a) Gaussian,  
(b) Babble and (c) Vehicle Noise 

 
Finally, the last parameter that could be observed in Fig. 7 

occurs when noise interpreted as speech due to the voice 
activity detection flag remaining active in passing from speech 
activity to noise. It’s the opposite parameter of the FEC that 
we want it to minimize.  

As you know, in the most processors of speech signal, we 
have periodic properties and consider that noise is a random 
signal; but in the some parts of speech signal it may be a 
random, also the noise has some periodic properties. In this 
case OVER parameter may occur. 

Fig. 12 shows the OVER parameter in three standards, ETSI 
AMR option 1, 2, G729B and the modified version of G.729B. 
In the same way, we compare this method by other modern 
standards in the various noisy environments. 

In previous parameters ETSI standards, especially ETSI 
AMR2, have good performance but in this parameter, G.729B 
is better and we can simply modify it. 

In the case of ETSI AMR2, it exhibits the worst average 
results the OVER test. In Fig. 12, the first part shows the 
signal in the gaussian noise. 

It is observed that, G.729 and the modified version have 
same and better performances and ETSI AMR is good for low 
SNRs; although all of this standards and this method have 
good performance in respect of babble noise. 

In the case of babble noise that illustrate in the second part, 
the G.729B standard has a good performance and we have a 
good modification. The performance of ESTI AMR1 is better 
than AMR2.  

In the third part, for vehicle noise, the modified version of 
G.729B has some modification in respect of G.729B and 
better than ETSI AMR1 and 2. An important care should be 
give in the case of babble noise because it’s heave for 
programming systems.  

This parameter is very important in the packet networks, 
because we don’t want to transmit empty packets and joint 
them to the speech signal. OVER parameter and FEC 
parameter are not great but important. This is one of the main 
targets of voice activity detection systems. 
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Fig. 12 Comparison of OVER Parameter for G.729B, ETSI AMR1, 2 

and Modified version of G.729B in (a) Gaussian,  
(b) Babble and (c) Vehicle Noise 

 
In summary, the proposed scheme presents a better 

alternative compare with standardized algorithms. It exhibits a 
consistent correct rate over a variety of noise environments 
and conditions. It has lower average NDS than all 
standardized algorithms over the test set and has low FEC and 
MSC while maintaining a low OVER rate. 

These characteristics make it a simple and reliable choice 
for many VAD applications. Further, the scheme requires only 
low computation time and memory. 

The simplicity of the proposed VAD coupled with the 
encouraging results, mathematical tractability and high 
detection consistency make it a good alternative to current 
schemes. The behavior of the VAD is easily altered by 
changing one meaningful parameter, and as such makes the 
VAD well suited to varying applications. 

VII. CONCLUSION 
There are a lot of works in the case of Voice Activity 

Detection Systems. But many of these methods are not 
practical for telecommunication systems, because it must be 
matched with modern standards. G.729B standard uses four 
parameter for VAD system. Unfortunately it has a poor 

performance in low SNRs. In this paper, whereas the rate and 
complexity of this standard are better than spectral shape (i.e. 
GSM-FR) and sub-band energy standards (i.e. IS-95, AMR 1 
and 2), we try to modify G729B standard with minimum 
changes.  
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