
Performance Analysis of TCP Congestion 
Control Algorithms 

 
 

Habibullah Jamal, Kiran Sultan  
 
Abstract— The demand for fast transfer of large volumes of 
data, and the deployment of the network infrastructures is ever 
increasing. However, the dominant transport protocol of today, 
TCP, does not meet this demand because it favors reliability 
over timeliness and fails to fully utilize the network capacity 
due to limitations of its conservative congestion control 
algorithm. The slow response of TCP in fast long distance 
networks leaves sizeable unused bandwidth in such networks. 
A large variety of TCP variants have been proposed to improve 
the connection’s throughput by adopting more aggressive 
congestion control algorithms. Some of the flavors of TCP 
congestion control are loss-based, high-speed TCP congestion 
control algorithms that uses packet losses as an indication of 
congestion; delay-based TCP congestion control that 
emphasizes packet delay rather than packet loss as a signal to 
determine the rate at which to send packets. Some efforts 
combine the features of loss-based and delay-based algorithms 
to achieve fair bandwidth allocation and fairness among flows. 
A comparative analysis  between different flavors of TCP 
congestion control namely Standard TCP congestion control 
(TCP Reno), loss-based TCP congestion control (HighSpeed 
TCP, Scalable TCP, CUBIC TCP), delay-based TCP 
congestion control (TCP Vegas) and mixed loss-delay based 
TCP congestion control (Compound TCP) is presented here in 
terns of  congestion window verses elapsed time after the 
connection is established.  
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I. INTRODUCTION 

Moving bulk data quickly over high-speed data network 
is a requirement for many applications. These 
applications require high-bandwidth links between 
network nodes. To maintain the stability of Internet all 
applications should be subjected to congestion control. 
TCP [9] is well-developed, extensively used and widely 
available Internet transport protocol. TCP is fast, 
efficient and responsive to network congestion 
conditions but one objection to using TCP congestion 
control is that TCP’s AIMD congestion back-off 
algorithm [1] is too abrupt in decreasing the window 
size, thus it hurts the data rate.    
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Standard TCP constraints the congestion window that 
can be achieved in realistic environments. In the past few 
years, we have witnessed a surge of TCP variants that 
address the under-utilization problem most notably due 
to the slow growth of TCP congestion window that 
makes TCP unfavorable for high BDP networks. The rest 
of the paper is organized as follows: Related works, 
including TCP modifications and new protocols are 
reviewed in section 2. Standard TCP congestion control 
algorithm is described in section 3. Three prominent 
window-based high-speed TCP congestion control 
algorithms that use packet-loss as an implicit indication 
of congestion are described in section 4. TCP Vegas, a 
delay-based TCP congestion control is explained in 
section 5. Compound TCP approach is described in 
section 6. The comparative analysis of these algorithms 
in terms of congestion window growth function verses 
elapsed time for different scenarios of two network 
topologies is presented in section 7. Finally, this work is 
concluded in section 8. 
 

II. BACKGROUND AND RELATED WORK 
The standard TCP congestion control algorithm which 
we refer to as TCP Reno [1] was developed in 1988. [4], 
[5], [6], [7], [8], [10], and [15] explain several 
enhancements in TCP Reno. Few modifications 
addressing the conservative approach of TCP to update 
its congestion window under congestion condition are: 

i. Loss-based TCP congestion control: HSTCP 
[11], BIC-TCP [12], STCP [13], CUBIC-TCP 
[16], HTCP [17] etc. 

ii. Delay-based congestion control: TCP-Vegas 
[22], Fast-TCP [3], TCP-LP [18] etc. 

iii. Mixed loss-delay based TCP congestion 
control: Compound TCP [19], TCP Africa [20] 
etc. 

iv. Explicit congestion Notification: XCP[21] etc 

Most of these protocols deal with modifying the window 
growth function of TCP in a more scalable fashion. 
Tomoya et. al. [2] proposed a TCP-friendly congestion 
control that realizes efficient data transmission in high-
speed networks, fairness with TCP Reno and fair 
bandwidth allocation among flows with different RTTs. 
A scheme that determines the size of congestion window 
each time a new acknowledgment is received instead of 
employing slow start/congestion avoidance approach is 
proposed in [14].  
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III. TCP Reno 
TCP Reno implements the TCP’s AIMD mechanism of 
increasing the congestion window W by one segment per 
round-trip time for each received ACK and halving the 
congestion window for each loss event per round-trip 
time. TCP Reno controls the congestion window as 
follows: 

      Increase:  
1W= W +
W

                               (1)               

     Decrease: 
1W= W- W 
2

                               (2)            

When the link bandwidth does not change, TCP Reno 
periodically repeats the window increase and decrease. 
TCP Reno’s congestion window in terms of packet loss 
rate (p) is defined as: 

       reno 0.5

1.22W  = 
p

                                 (3)  

As shown in equation (3), TCP Reno places a serious 
constraint on the congestion window that can be 
achieved by TCP in realistic environments. For example, 
for a TCP Reno connection with 1500-byte packets and 
100ms RTT, achieving a steady-state throughput of 
1Gbps would require an average congestion window of 
8300 segments, and an average packet loss rate of 2 × 
10−8. This requirement is unrealistic in current networks. 
The congestion window takes more than 4000 RTT to 
recover after a loss event which prevents efficient use of 
the link bandwidth. TCP requires extremely small packet 
loss rate to sustain a large window which is not possible 
in real life networks.  

IV. HIGH-SPEED TCP VARIANTS 
Although TCP performs very well in low to middle speed 
networks (Kbps to several Mbps), it has very poor 
performance in high (tens of Mbps to Gbps) to very high 
(Gbps to Tbps) speed networks, as TCP is very 
inefficient in utilizing the high-speed network bandwidth. 

HighSpeed TCP 
HighSpeed TCP (HSTCP) [11] is a modification to 
TCP’s congestion control mechanism for use with TCP 
connections with large congestion windows. HighSpeed 
TCP’s modified response function only takes effect with 
higher congestion windows, it does not modify TCP 
behavior in environments with heavy congestion, and 
therefore does not introduce any new dangers of 
congestion collapse. HSTCP uses three parameters, WL, 
WH, and PH. To ensure TCP compatibility, HSTCP uses 
the same response function as TCP Reno when the 
current congestion window is WL at most, and uses the 
HSTCP response function when the current congestion 
window is greater than WL. HSTCP ensures that the 

response function follows a straight line on a log-log 
scale as does the response function for Standard TCP, for 
low to moderate congestion. When the value of the 
average congestion window is greater than WL, the 
response function is as follows: 

    W = S
L

L

p ( )  W
P  

                               (4)

                       
where, 

 H L

H L

(logW  - logW )S= 
(log P  - log P ) 

                              (5) 

  
HSTCP keeps average congestion window WH and WL, 
when packet loss rates are PH and PL, respectively. 
Recommended parameters are: WL = 38, WH = 83000 
and PH = 10−7. This loss rate sets an achievable target for 
high-speed environments, while still allowing acceptable 
fairness for the HighSpeed response function when 
competing with Standard TCP in environments with 
packet drop rates of 10-4 or 10-5. PL = 10−3 is computed 
by using equation (3), when WL = 38. Thus, the HSTCP 
response function is computed as follows: 
 

         highspeed 0.835

0.12W  = 
p

                                (6)                            

 
It is clear from equation (6) that HSTCP is more 
aggressive than TCP Reno and a HighSpeed TCP 
connection would receive ten times the bandwidth of a 
standard TCP in an environment with packet drop rate of 
10-6, which is unfair. 
 

Scalable TCP 
Scalable TCP [13] is designed to be incrementally 
deployable and behaves identically to traditional TCP 
stacks when small windows are sufficient. Scalable TCP 
(STCP) and HighSpeed TCP were originally designed for 
high-speed backbone links, and they appear to be the 
major candidates for replacing in the next generation 
Internet the current congestion control mechanism 
implemented by standard TCP. STCP is a simple sender 
side modification to TCP congestion control, and it 
employs Multiplicative Increase Multiplicative Decrease 
(MIMD) technique. Using Scalable TCP, better 
utilization of a network link with the high bandwidth-
delay product can be achieved. If STCP is mixed with 
regular TCP then STCP dominates the bandwidth for 
sufficiently large bandwidth-delay product region. This 
shows unfriendliness towards standard TCP. Scalable 
TCP changes the algorithm to update TCP's congestion 
window to the following:  

     Increase: W = W + 0.01W                            (7) 
      Decrease: W = W - 0.125W                          (8)   
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STCP response function is computed as follows: 

    scalable
0.0745W  = 

p 
                                 (9)                 

   
The recovery time after packet loss is 13.42RTT, i.e. 
proportional to the RTT and independent of congestion 
window size. An STCP connection can recover even a 
large congestion window in a short time and so that it 
makes efficient use of the bandwidth in high-speed 
networks. Suppose a TCP connection has a 1500 byte 
MTU and a round trip time of 200ms, then for 10Gbps 
network, congestion window recovery time after packet 
loss for STCP is 2.7 sec whereas that for Standard TCP is 
approximately 4hrs 43mins. 
 

CUBIC TCP 
CUBIC TCP[16] is an enhanced version of Binary 
Increase Congestion Control shortly BIC[12]. It 
simplifies the BIC window control function and 
improves its TCP- friendliness and RTT fairness as BIC’s 
growth function is too aggressive for TCP especially 
under short RTT or low speed networks. As the name of 
the protocol represents, the window growth function of 
CUBIC is a cubic function in terms of the elapsed time 
since the last loss event, whose shape is very similar to 
the growth function of BIC. CUBIC function provides 
good scalability and stability. The protocol keeps the 
window growth rate independent of RTT, which keeps 
the protocol TCP friendly under short and long RTTs. 
The congestion epoch period of CUBIC is determined by 
the packet loss rate alone. As TCP’s throughput is 
defined by the packet loss rate as well as RTT, the 
throughput of CUBIC is defined only by the packet loss 
rate. Thus, when the loss rate is high and/or RTT is short, 
CUBIC can operate in a TCP mode. The congestion 
window of CUBIC is determined by the following 
function:  

       3
cubic maxW  = C (t-K)  + W                              (10)                 

where, C is the scaling factor, t is the elapsed time from 
the last window reduction, Wmax is the window size just 
before the last window reduction, and K = (Wmaxβ/C) 1/3, 
where β is a constant multiplicative decrease factor 
applied for window reduction at the time of loss event 
(i.e., the window reduces to βWmax at the time of the last 
reduction). To achieve reasonable TCP friendliness, 
fairness, scalability and convergence speed, we set C to 
0.4, β to 0.2, and Smax (window increment) to 160. The 
entire window growth function of CUBIC is described by 
just one function, it dose not need different phases of 
window control as in BIC, thus simplifying the 
complexity of BIC. 

 

 

V. DELAY-BASED CONGESTION CONTROL 
Delay-based TCP congestion control algorithms like TCP 
Vegas attempt to utilize the congestion information 
contained in packet round-trip time (RTT) samples.               

TCP Vegas 
TCP Vegas is a TCP congestion control algorithm that 
emphasizes packet delay, rather than packet loss, as a 
signal to determine the rate at which to send packets. 
TCP Vegas detects congestion based on increasing Round 
Trip Time (RTT) values of the packets in the connection 
unlike TCP Reno which detect congestion only after it 
has actually happened via packet drops. The algorithm 
depends heavily on accurate calculation of the Base RTT 
value. BaseRTT is set to be the minimum of all measured 
RTTs; it is commonly the RTT of the first segment sent 
by the connection. 
 
If the connection is not overflown by the traffic, the 
expected throughput is given by: 
 

WindowSizeExpected Throughput = 
BaseRTT

         (11) 

where WindowSize is the size of the current congestion 
window 

Then current actual sending rate is calculated once per 
round trip time as: 

    
WActual throughput = 

RTT
                              (12) 

The congestion window is adjusted depending upon the 
difference between expected and actual sending rates.  

   Difference = (expected - actual) baseRTT  (13) 

Also two thresholds a and b are defined such that, a < b 
and a > b correspond to having too little and too much 
extra traffic in the network, respectively. When 
Difference < a, TCP Vegas increases the congestion 
window linearly during the next RTT, and when 
Difference > b, TCP Vegas decrease the congestion 
window linearly during the next RTT. The congestion 
window is left unchanged when a < Difference < b.  

VI. MIXED LOSS-DELAY BASED TCP 
CONGESTION CONTROL 

Loss-based high speed algorithms are aggressive to 
satisfy bandwidth requirement but this aggressiveness 
causes TCP unfairness and RTT unfairness. Delay-based 
approaches provide RTT fairness but it is difficult to 
meet TCP fairness. Thus there is another approach that is 
a synergy of delay-based and loss-based approaches that 
addresses the problems in the two approaches. 
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Compound TCP 
Compound TCP [23] integrates a scalable delay-based 
component into the standard TCP congestion avoidance 
algorithm. This scalable delay-based component has a 
fast window increase function when the network is 
under-utilised and reduces the sending rate when a 
congestion event is sensed.  To implement Compound 
TCP maintains the following state variables; cwnd 
(congestion window), dwnd (delay window), awnd 
(receiver advertised window).TCP sending window is 
calculated as follows: 

inW  = min (cwnd+dwnd, awnd)          (14) 

cwnd is updated in the same way as controlled by 
standard TCP. Here in this case, on arrival of an ACK, 
cwnd is modified as: 

       
1cwnd = cwnd + 

(cwnd + dwnd)
              (15) 

Delay-based component is derived from TCP Vegas as 
explained in the above sub section. 

VII. PERFORMANCE EVALUATION 
We assessed performance in terms of congestion window 
verses elapsed time. We used Network Simulator version 
2 (ns-2) for simulations of three loss-based,  high-speed 
TCP variants  HighSpeed TCP, Scalable TCP, and 
CUBIC TCP; delay-based TCP congestion control 
namely TCP Vegas; and mixed loss-delay based TCP 
Congestion control namely Compound TCP in 
comparison with TCP Reno using their default 
parameters for all experiments. The key difference 
among various high-speed TCP implementations lies in 
their congestion window growth behavior in response to 
a congestion event. Experimentation is done on  two 
different  topologies. BDP is set to 30,000. All 
simulations were run long enough to ensure that the 
system had consistent behavior. Figure 1 and figure 7 
show simulation topologies 1 and 2 respectively. The 
type of data traffic is FTP for both scenarios.  
 
Simulation Topology 1 

For simulation topology 1, equal number of data sending 
nodes is connected to each main node labeled as 0, 1, 2 
and 3. All main nodes have direct connections with one 
another in our topology. Flow of data between i number 
of nodes (where i = 1, 2, 3, 4, 5) connected to each main 
node (0, 1, 2, 3) is as follows: 

 
 

 

 

Fig. 1: Simulation Topology 1 

Case a: 

• Ai is a source node for Bi, Ci, and Di. 
• Bi is a source node for Ai, Ci, and Di. 
• Ci is a source node for Ai, Bi, and Di. 
• Di is a source node for Ai, Bi, and Ci. 

Performance of all the above mentioned algorithms was 
individually tested for TCP connections explained in case 
a for figure 1. 
 

Fig. 2: Congestion window verses elapsed time of TCP Reno 

Fig.3: Congestion window verses elapsed time of HighSpeed 
TCP 
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Fig. 4: Congestion window verses elapsed time of Scalable 
TCP 

 

Fig. 5: Congestion window verses elapsed time of CUBIC TCP 

 

Fig. 6: Congestion window verses elapsed time of TCP Vegas 

 

 

Fig.7: Congestion window versus elapsed time of Compound 
TCP 

Figures 2-7 show the results of ‘case a’ of simulation 
topology 1. It can be seen that all flavors of TCP 
congestion control give same response because equal 
number of sink nodes are connected to each source node. 
Thus, no serious congestion event resulting in packet 
drops occurs at any backbone link even though aggregate 
side bandwidth of the links with each main node exceeds 
that of the main links. 

Case b: 

Case b analyzes simulation topology 1 in four different 
ways. Four different scenarios with their simulation 
results is shown below. 

Scenario I: 

• All TCP connections with i=1 have HighSpeed 
TCP support. 

• All TCP connections with i=2 have TCP Reno 
support. 

• All TCP connections with i=3 have Scalable 
TCP support. 

• All TCP connections with i=4 have CUBIC TCP 
support. 

Fig. 8: Combined performance evaluation of TCP Reno, 
HighSpeed TCP, Scalable TCP and CUBIC TCP  

Figure 8 shows there is no serious congestion collapse 
when each network node receives data traffic from 
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source nodes with different loss-based algorithms. 
However, TCP Reno suffers with packet drop events 
because of aggressive window growth behavior of other 
three algorithms. 

 Scenario II: 

• All TCP connections with i=1 have HighSpeed 
TCP support. 

• All TCP connections with i=2 have TCP Reno 
support. 

• All TCP connections with i=3 have TCP Vegas 
support. 

• All TCP connections with i=4 have Compound 
TCP support. 

Fig. 9: Combined performance evaluation of TCP Reno, 
HighSpeed TCP,  TCP Vegas and Compound TCP  

The simulation results for this network flow show unfair 
bandwidth allocation to TCP Reno depicted in figure 9 
also. HighSpeed TCP connection works in TCP mode in 
the start of the connection, TCP Vegas calculates 
BaseRTT in the start of the connection and calculates 
expected throughput and based on the difference between 
actual and expected throughput goes on increasing or 
decreasing the congestion window, so at the start of the 
connection TCP Vegas also does not take an aggressive 
start. Compound TCP also waits and increases window as 
explained in equation 14 and 15. When no congestion 
event occurs and network under-utilization is noticed, i.e. 
for HighSpeed TCP, cwnd = WL; difference < a for TCP 
Vegas; Compound TCP as explained above in section V, 
all the algorithms increase their congestion windows and 
as connection for the backbone links increases, packet 
drop event occurs resulting in retransmissions forcing the 
algorithms to reduce their congestion windows. 

Scenario III: 

• All TCP connections with i=1 have TCP Vegas 
support. 

• All TCP connections with i=2 have TCP Reno 
support. 

• All TCP connections with i=3 have Compound 
TCP support. 

• All TCP connections with i=4 have CUBIC TCP 

support. 

 

Fig. 10: Combined performance evaluation of TCP Reno, TCP 
Vegas, Compound TCP and CUBIC TCP  

This scenario as shown in figure 10 results in serious 
congestion events and retransmissions and slow cwnd 
increase behavior. The cwnd growth is very slow as 
compared to previous two scenarios because four 
different TCP variants based on loss-based, delay-based, 
mixed loss-delay based algorithms are competing for fair 
allocation of bandwidth. 

Scenario IV: 

• All TCP connections with i=1 have HighSpeed 
TCP support. 

• All TCP connections with i=2 have TCP Vegas 
support. 

• All TCP connections with i=3 have Scalable 
TCP support. 

• All TCP connections with i=4 have Cubic TCP 
support. 

Fig. 11: Combined performance evaluation of TCP Vegas, 
HighSpeed TCP, Scalable TCP and CUBIC TCP  

Figure 11 depicts serious congestion events for scenario 
IV like scenario III because high-speed loss-based and 
delay-based TCP algorithms are competing with each 
other for bandwidth allocation.  
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Four scenarios of ‘case b’ show that scenario I has 
optimum results among all other scenarios. Thus, it is the 
most favorable that TCP algorithms belonging to similar 
class either loss-based or delay-based should compete 
with each other. Serious problems and slow responses 
result when loss-based and delay-based algorithms 
compete with each other. 

Simulation Topology 2 

Fig. 12: Simulation Topology 2 

 

Flow of data from sender hosts to receiver hosts is 
explained for simulation topology 2 in table 1.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Data flow between TCP source and sink nodes 
 
 
 

 
Fig. 13: Congestion window verses elapsed time of TCP  Reno 
 
 
 
 
 

 
Fig. 14: Congestion window verses elapsed time of HighSpeed 
TCP 
 
 
 
 
 

 
Fig. 15: Congestion window verses elapsed time of    
Scalable TCP 
 
 

Sources Sinks 
A1 B1, C1, D1 
A2 B1, B2, C2, D1, D2 
A3 B3, C3, D3 
A4 C4, D4 
A5 C5, D5 
A6 C6, D6 
A7 D7 
A8 D8 
B1 A1, A4, A7, C1, C4, D1, D4, D7 
B2 A2, A5, A8, C2, C5, D1, D2, D5, D8 
B3 A3, A6, C3, C6, D6 
C1 B1, D1, D7 
C2 B1, B2, D2, D8 
C3 B3, D3 
C4 D4 
C5 D5 
C6 D6 
D1 C1, B1 
D2 B1, B2, C2 
D3 B3, C3 
D4 C4 
D5 C5 
D6 C6 
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Fig. 16: Congestion window verses elapsed time of   CUBIC 
TCP 
 
 
 

 
Fig. 17: Congestion window verses elapsed time of    
Compound TCP 
 
 
 
 
 

 
Fig. 18: Congestion window verses elapsed time of   TCP Vegas 
 
 
 

For all implementations of TCP, node 0 and node 1 
experience zero packet drop events. Figure 13 and figure 
14 show similar curves for TCP Reno and HighSpeed 
TCP respectively because High-speed TCP works in two 
different phases depending upon the network capacity 
available. For both TCP algorithms congestion windows 
of the majority of the TCP connections fail to grow to 
achieve network capacity. Scalable TCP as shown in 
figure 15, being the most aggressive high-speed TCP 
variant having throughput ratio of 60.9 with TCP Reno, 
resulted in maximum packet drop events and congestion 
window of maximum number of TCP connections in the 
simulation topology fail to grow above 100 packets. 
Figure 16 shows that the congestion window growth 
behavior of  CUBIC TCP is much better and smooth as 
compared to other loss-based TCP variants and there are 
less abruptly falling congestion windows and congestion 
window remains constant over the wide range of elapsed 
time. Compound TCP’s behavior is almost similar to 
HSTCP as shown in figure 17 .Finally, figure 18 shows 
that TCP Vegas is the smoothest of all TCP congestion 
control algorithms and majority of TCP connections 
grow to attain the available capacity. Thus TCP Vegas 
allocates a fair share of bandwidth to each connection 
and resulted in no packet drop event. Thus, it is favorable 
to transmit traffic flows with TCP Vegas support for such 
network environment.  
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