
Performance Analysis of TCP Congestion
Control Algorithms

Habibullah Jamal, Kiran Sultan

Abstract— The demand for fast transfer of large volumes of
data, and the deployment of the network infrastructures is ever
increasing. However, the dominant transport protocol of today,
TCP, does not meet this demand because it favors reliability
over timeliness and fails to fully utilize the network capacity
due to limitations of its conservative congestion control
algorithm. The slow response of TCP in fast long distance
networks leaves sizeable unused bandwidth in such networks.
A large variety of TCP variants have been proposed to improve
the connection’s throughput by adopting more aggressive
congestion control algorithms. Some of the flavors of TCP
congestion control are loss-based, high-speed TCP congestion
control algorithms that uses packet losses as an indication of
congestion; delay-based TCP congestion control that
emphasizes packet delay rather than packet loss as a signal to
determine the rate at which to send packets. Some efforts
combine the features of loss-based and delay-based algorithms
to achieve fair bandwidth allocation and fairness among flows.
A comparative analysis between different flavors of TCP
congestion control namely Standard TCP congestion control
(TCP Reno), loss-based TCP congestion control (HighSpeed
TCP, Scalable TCP, CUBIC TCP), delay-based TCP
congestion control (TCP Vegas) and mixed loss-delay based
TCP congestion control (Compound TCP) is presented here in
terns of congestion window verses elapsed time after the
connection is established.

Key words - Congestion control, High-speed networks, TCP.

I. INTRODUCTION

Moving bulk data quickly over high-speed data network
is a requirement for many applications. These
applications require high-bandwidth links between
network nodes. To maintain the stability of Internet all
applications should be subjected to congestion control.
TCP [9] is well-developed, extensively used and widely
available Internet transport protocol. TCP is fast,
efficient and responsive to network congestion
conditions but one objection to using TCP congestion
control is that TCP’s AIMD congestion back-off
algorithm [1] is too abrupt in decreasing the window
size, thus it hurts the data rate.

Habibullah Jamal, Professor, Department of Electrical
Engineering, University of Engineering and Technology Taxila,
Pakistan and also the Vice Chancellor of the university. Phone:
92-51-9047401, Fax: 92-51-9047420; E-mail:
drhjamal@uettaxila.edu.pk.
Kiran Sultan, Assistant Professor, Air University, Islamabad,
Pakistan. E-mail: kiransultan@mail.au.edu.pk

Standard TCP constraints the congestion window that
can be achieved in realistic environments. In the past few
years, we have witnessed a surge of TCP variants that
address the under-utilization problem most notably due
to the slow growth of TCP congestion window that
makes TCP unfavorable for high BDP networks. The rest
of the paper is organized as follows: Related works,
including TCP modifications and new protocols are
reviewed in section 2. Standard TCP congestion control
algorithm is described in section 3. Three prominent
window-based high-speed TCP congestion control
algorithms that use packet-loss as an implicit indication
of congestion are described in section 4. TCP Vegas, a
delay-based TCP congestion control is explained in
section 5. Compound TCP approach is described in
section 6. The comparative analysis of these algorithms
in terms of congestion window growth function verses
elapsed time for different scenarios of two network
topologies is presented in section 7. Finally, this work is
concluded in section 8.

II. BACKGROUND AND RELATED WORK
The standard TCP congestion control algorithm which
we refer to as TCP Reno [1] was developed in 1988. [4],
[5], [6], [7], [8], [10], and [15] explain several
enhancements in TCP Reno. Few modifications
addressing the conservative approach of TCP to update
its congestion window under congestion condition are:

i. Loss-based TCP congestion control: HSTCP
[11], BIC-TCP [12], STCP [13], CUBIC-TCP
[16], HTCP [17] etc.

ii. Delay-based congestion control: TCP-Vegas
[22], Fast-TCP [3], TCP-LP [18] etc.

iii. Mixed loss-delay based TCP congestion
control: Compound TCP [19], TCP Africa [20]
etc.

iv. Explicit congestion Notification: XCP[21] etc

Most of these protocols deal with modifying the window
growth function of TCP in a more scalable fashion.
Tomoya et. al. [2] proposed a TCP-friendly congestion
control that realizes efficient data transmission in high-
speed networks, fairness with TCP Reno and fair
bandwidth allocation among flows with different RTTs.
A scheme that determines the size of congestion window
each time a new acknowledgment is received instead of
employing slow start/congestion avoidance approach is
proposed in [14].

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

30

III. TCP Reno
TCP Reno implements the TCP’s AIMD mechanism of
increasing the congestion window W by one segment per
round-trip time for each received ACK and halving the
congestion window for each loss event per round-trip
time. TCP Reno controls the congestion window as
follows:

 Increase:
1W= W +
W

 (1)

 Decrease:
1W= W- W
2

 (2)

When the link bandwidth does not change, TCP Reno
periodically repeats the window increase and decrease.
TCP Reno’s congestion window in terms of packet loss
rate (p) is defined as:

 reno 0.5

1.22W =
p

 (3)

As shown in equation (3), TCP Reno places a serious
constraint on the congestion window that can be
achieved by TCP in realistic environments. For example,
for a TCP Reno connection with 1500-byte packets and
100ms RTT, achieving a steady-state throughput of
1Gbps would require an average congestion window of
8300 segments, and an average packet loss rate of 2 ×
10−8. This requirement is unrealistic in current networks.
The congestion window takes more than 4000 RTT to
recover after a loss event which prevents efficient use of
the link bandwidth. TCP requires extremely small packet
loss rate to sustain a large window which is not possible
in real life networks.

IV. HIGH-SPEED TCP VARIANTS
Although TCP performs very well in low to middle speed
networks (Kbps to several Mbps), it has very poor
performance in high (tens of Mbps to Gbps) to very high
(Gbps to Tbps) speed networks, as TCP is very
inefficient in utilizing the high-speed network bandwidth.

HighSpeed TCP
HighSpeed TCP (HSTCP) [11] is a modification to
TCP’s congestion control mechanism for use with TCP
connections with large congestion windows. HighSpeed
TCP’s modified response function only takes effect with
higher congestion windows, it does not modify TCP
behavior in environments with heavy congestion, and
therefore does not introduce any new dangers of
congestion collapse. HSTCP uses three parameters, WL,
WH, and PH. To ensure TCP compatibility, HSTCP uses
the same response function as TCP Reno when the
current congestion window is WL at most, and uses the
HSTCP response function when the current congestion
window is greater than WL. HSTCP ensures that the

response function follows a straight line on a log-log
scale as does the response function for Standard TCP, for
low to moderate congestion. When the value of the
average congestion window is greater than WL, the
response function is as follows:

 W = S
L

L

p () W
P

 (4)

where,

 H L

H L

(logW - logW)S=
(log P - log P)

 (5)

HSTCP keeps average congestion window WH and WL,
when packet loss rates are PH and PL, respectively.
Recommended parameters are: WL = 38, WH = 83000
and PH = 10−7. This loss rate sets an achievable target for
high-speed environments, while still allowing acceptable
fairness for the HighSpeed response function when
competing with Standard TCP in environments with
packet drop rates of 10-4 or 10-5. PL = 10−3 is computed
by using equation (3), when WL = 38. Thus, the HSTCP
response function is computed as follows:

 highspeed 0.835

0.12W =
p

 (6)

It is clear from equation (6) that HSTCP is more
aggressive than TCP Reno and a HighSpeed TCP
connection would receive ten times the bandwidth of a
standard TCP in an environment with packet drop rate of
10-6, which is unfair.

Scalable TCP
Scalable TCP [13] is designed to be incrementally
deployable and behaves identically to traditional TCP
stacks when small windows are sufficient. Scalable TCP
(STCP) and HighSpeed TCP were originally designed for
high-speed backbone links, and they appear to be the
major candidates for replacing in the next generation
Internet the current congestion control mechanism
implemented by standard TCP. STCP is a simple sender
side modification to TCP congestion control, and it
employs Multiplicative Increase Multiplicative Decrease
(MIMD) technique. Using Scalable TCP, better
utilization of a network link with the high bandwidth-
delay product can be achieved. If STCP is mixed with
regular TCP then STCP dominates the bandwidth for
sufficiently large bandwidth-delay product region. This
shows unfriendliness towards standard TCP. Scalable
TCP changes the algorithm to update TCP's congestion
window to the following:

 Increase: W = W + 0.01W (7)
 Decrease: W = W - 0.125W (8)

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

31

STCP response function is computed as follows:

 scalable
0.0745W =

p
 (9)

The recovery time after packet loss is 13.42RTT, i.e.
proportional to the RTT and independent of congestion
window size. An STCP connection can recover even a
large congestion window in a short time and so that it
makes efficient use of the bandwidth in high-speed
networks. Suppose a TCP connection has a 1500 byte
MTU and a round trip time of 200ms, then for 10Gbps
network, congestion window recovery time after packet
loss for STCP is 2.7 sec whereas that for Standard TCP is
approximately 4hrs 43mins.

CUBIC TCP
CUBIC TCP[16] is an enhanced version of Binary
Increase Congestion Control shortly BIC[12]. It
simplifies the BIC window control function and
improves its TCP- friendliness and RTT fairness as BIC’s
growth function is too aggressive for TCP especially
under short RTT or low speed networks. As the name of
the protocol represents, the window growth function of
CUBIC is a cubic function in terms of the elapsed time
since the last loss event, whose shape is very similar to
the growth function of BIC. CUBIC function provides
good scalability and stability. The protocol keeps the
window growth rate independent of RTT, which keeps
the protocol TCP friendly under short and long RTTs.
The congestion epoch period of CUBIC is determined by
the packet loss rate alone. As TCP’s throughput is
defined by the packet loss rate as well as RTT, the
throughput of CUBIC is defined only by the packet loss
rate. Thus, when the loss rate is high and/or RTT is short,
CUBIC can operate in a TCP mode. The congestion
window of CUBIC is determined by the following
function:

 3
cubic maxW = C (t-K) + W (10)

where, C is the scaling factor, t is the elapsed time from
the last window reduction, Wmax is the window size just
before the last window reduction, and K = (Wmaxβ/C) 1/3,
where β is a constant multiplicative decrease factor
applied for window reduction at the time of loss event
(i.e., the window reduces to βWmax at the time of the last
reduction). To achieve reasonable TCP friendliness,
fairness, scalability and convergence speed, we set C to
0.4, β to 0.2, and Smax (window increment) to 160. The
entire window growth function of CUBIC is described by
just one function, it dose not need different phases of
window control as in BIC, thus simplifying the
complexity of BIC.

V. DELAY-BASED CONGESTION CONTROL
Delay-based TCP congestion control algorithms like TCP
Vegas attempt to utilize the congestion information
contained in packet round-trip time (RTT) samples.

TCP Vegas
TCP Vegas is a TCP congestion control algorithm that
emphasizes packet delay, rather than packet loss, as a
signal to determine the rate at which to send packets.
TCP Vegas detects congestion based on increasing Round
Trip Time (RTT) values of the packets in the connection
unlike TCP Reno which detect congestion only after it
has actually happened via packet drops. The algorithm
depends heavily on accurate calculation of the Base RTT
value. BaseRTT is set to be the minimum of all measured
RTTs; it is commonly the RTT of the first segment sent
by the connection.

If the connection is not overflown by the traffic, the
expected throughput is given by:

WindowSizeExpected Throughput =
BaseRTT

 (11)

where WindowSize is the size of the current congestion
window

Then current actual sending rate is calculated once per
round trip time as:

WActual throughput =

RTT
 (12)

The congestion window is adjusted depending upon the
difference between expected and actual sending rates.

 Difference = (expected - actual) baseRTT (13)

Also two thresholds a and b are defined such that, a < b
and a > b correspond to having too little and too much
extra traffic in the network, respectively. When
Difference < a, TCP Vegas increases the congestion
window linearly during the next RTT, and when
Difference > b, TCP Vegas decrease the congestion
window linearly during the next RTT. The congestion
window is left unchanged when a < Difference < b.

VI. MIXED LOSS-DELAY BASED TCP
CONGESTION CONTROL

Loss-based high speed algorithms are aggressive to
satisfy bandwidth requirement but this aggressiveness
causes TCP unfairness and RTT unfairness. Delay-based
approaches provide RTT fairness but it is difficult to
meet TCP fairness. Thus there is another approach that is
a synergy of delay-based and loss-based approaches that
addresses the problems in the two approaches.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

32

Compound TCP
Compound TCP [23] integrates a scalable delay-based
component into the standard TCP congestion avoidance
algorithm. This scalable delay-based component has a
fast window increase function when the network is
under-utilised and reduces the sending rate when a
congestion event is sensed. To implement Compound
TCP maintains the following state variables; cwnd
(congestion window), dwnd (delay window), awnd
(receiver advertised window).TCP sending window is
calculated as follows:

inW = min (cwnd+dwnd, awnd) (14)

cwnd is updated in the same way as controlled by
standard TCP. Here in this case, on arrival of an ACK,
cwnd is modified as:

1cwnd = cwnd +

(cwnd + dwnd)
 (15)

Delay-based component is derived from TCP Vegas as
explained in the above sub section.

VII. PERFORMANCE EVALUATION
We assessed performance in terms of congestion window
verses elapsed time. We used Network Simulator version
2 (ns-2) for simulations of three loss-based, high-speed
TCP variants HighSpeed TCP, Scalable TCP, and
CUBIC TCP; delay-based TCP congestion control
namely TCP Vegas; and mixed loss-delay based TCP
Congestion control namely Compound TCP in
comparison with TCP Reno using their default
parameters for all experiments. The key difference
among various high-speed TCP implementations lies in
their congestion window growth behavior in response to
a congestion event. Experimentation is done on two
different topologies. BDP is set to 30,000. All
simulations were run long enough to ensure that the
system had consistent behavior. Figure 1 and figure 7
show simulation topologies 1 and 2 respectively. The
type of data traffic is FTP for both scenarios.

Simulation Topology 1

For simulation topology 1, equal number of data sending
nodes is connected to each main node labeled as 0, 1, 2
and 3. All main nodes have direct connections with one
another in our topology. Flow of data between i number
of nodes (where i = 1, 2, 3, 4, 5) connected to each main
node (0, 1, 2, 3) is as follows:

Fig. 1: Simulation Topology 1

Case a:

• Ai is a source node for Bi, Ci, and Di.
• Bi is a source node for Ai, Ci, and Di.
• Ci is a source node for Ai, Bi, and Di.
• Di is a source node for Ai, Bi, and Ci.

Performance of all the above mentioned algorithms was
individually tested for TCP connections explained in case
a for figure 1.

Fig. 2: Congestion window verses elapsed time of TCP Reno

Fig.3: Congestion window verses elapsed time of HighSpeed
TCP

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

33

Fig. 4: Congestion window verses elapsed time of Scalable
TCP

Fig. 5: Congestion window verses elapsed time of CUBIC TCP

Fig. 6: Congestion window verses elapsed time of TCP Vegas

Fig.7: Congestion window versus elapsed time of Compound
TCP

Figures 2-7 show the results of ‘case a’ of simulation
topology 1. It can be seen that all flavors of TCP
congestion control give same response because equal
number of sink nodes are connected to each source node.
Thus, no serious congestion event resulting in packet
drops occurs at any backbone link even though aggregate
side bandwidth of the links with each main node exceeds
that of the main links.

Case b:

Case b analyzes simulation topology 1 in four different
ways. Four different scenarios with their simulation
results is shown below.

Scenario I:

• All TCP connections with i=1 have HighSpeed
TCP support.

• All TCP connections with i=2 have TCP Reno
support.

• All TCP connections with i=3 have Scalable
TCP support.

• All TCP connections with i=4 have CUBIC TCP
support.

Fig. 8: Combined performance evaluation of TCP Reno,
HighSpeed TCP, Scalable TCP and CUBIC TCP

Figure 8 shows there is no serious congestion collapse
when each network node receives data traffic from

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

34

source nodes with different loss-based algorithms.
However, TCP Reno suffers with packet drop events
because of aggressive window growth behavior of other
three algorithms.

 Scenario II:

• All TCP connections with i=1 have HighSpeed
TCP support.

• All TCP connections with i=2 have TCP Reno
support.

• All TCP connections with i=3 have TCP Vegas
support.

• All TCP connections with i=4 have Compound
TCP support.

Fig. 9: Combined performance evaluation of TCP Reno,
HighSpeed TCP, TCP Vegas and Compound TCP

The simulation results for this network flow show unfair
bandwidth allocation to TCP Reno depicted in figure 9
also. HighSpeed TCP connection works in TCP mode in
the start of the connection, TCP Vegas calculates
BaseRTT in the start of the connection and calculates
expected throughput and based on the difference between
actual and expected throughput goes on increasing or
decreasing the congestion window, so at the start of the
connection TCP Vegas also does not take an aggressive
start. Compound TCP also waits and increases window as
explained in equation 14 and 15. When no congestion
event occurs and network under-utilization is noticed, i.e.
for HighSpeed TCP, cwnd = WL; difference < a for TCP
Vegas; Compound TCP as explained above in section V,
all the algorithms increase their congestion windows and
as connection for the backbone links increases, packet
drop event occurs resulting in retransmissions forcing the
algorithms to reduce their congestion windows.

Scenario III:

• All TCP connections with i=1 have TCP Vegas
support.

• All TCP connections with i=2 have TCP Reno
support.

• All TCP connections with i=3 have Compound
TCP support.

• All TCP connections with i=4 have CUBIC TCP

support.

Fig. 10: Combined performance evaluation of TCP Reno, TCP
Vegas, Compound TCP and CUBIC TCP

This scenario as shown in figure 10 results in serious
congestion events and retransmissions and slow cwnd
increase behavior. The cwnd growth is very slow as
compared to previous two scenarios because four
different TCP variants based on loss-based, delay-based,
mixed loss-delay based algorithms are competing for fair
allocation of bandwidth.

Scenario IV:

• All TCP connections with i=1 have HighSpeed
TCP support.

• All TCP connections with i=2 have TCP Vegas
support.

• All TCP connections with i=3 have Scalable
TCP support.

• All TCP connections with i=4 have Cubic TCP
support.

Fig. 11: Combined performance evaluation of TCP Vegas,
HighSpeed TCP, Scalable TCP and CUBIC TCP

Figure 11 depicts serious congestion events for scenario
IV like scenario III because high-speed loss-based and
delay-based TCP algorithms are competing with each
other for bandwidth allocation.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

35

Four scenarios of ‘case b’ show that scenario I has
optimum results among all other scenarios. Thus, it is the
most favorable that TCP algorithms belonging to similar
class either loss-based or delay-based should compete
with each other. Serious problems and slow responses
result when loss-based and delay-based algorithms
compete with each other.

Simulation Topology 2

Fig. 12: Simulation Topology 2

Flow of data from sender hosts to receiver hosts is
explained for simulation topology 2 in table 1.

Table 1: Data flow between TCP source and sink nodes

Fig. 13: Congestion window verses elapsed time of TCP Reno

Fig. 14: Congestion window verses elapsed time of HighSpeed
TCP

Fig. 15: Congestion window verses elapsed time of
Scalable TCP

Sources Sinks
A1 B1, C1, D1
A2 B1, B2, C2, D1, D2
A3 B3, C3, D3
A4 C4, D4
A5 C5, D5
A6 C6, D6
A7 D7
A8 D8
B1 A1, A4, A7, C1, C4, D1, D4, D7
B2 A2, A5, A8, C2, C5, D1, D2, D5, D8
B3 A3, A6, C3, C6, D6
C1 B1, D1, D7
C2 B1, B2, D2, D8
C3 B3, D3
C4 D4
C5 D5
C6 D6
D1 C1, B1
D2 B1, B2, C2
D3 B3, C3
D4 C4
D5 C5
D6 C6

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

36

Fig. 16: Congestion window verses elapsed time of CUBIC
TCP

Fig. 17: Congestion window verses elapsed time of
Compound TCP

Fig. 18: Congestion window verses elapsed time of TCP Vegas

For all implementations of TCP, node 0 and node 1
experience zero packet drop events. Figure 13 and figure
14 show similar curves for TCP Reno and HighSpeed
TCP respectively because High-speed TCP works in two
different phases depending upon the network capacity
available. For both TCP algorithms congestion windows
of the majority of the TCP connections fail to grow to
achieve network capacity. Scalable TCP as shown in
figure 15, being the most aggressive high-speed TCP
variant having throughput ratio of 60.9 with TCP Reno,
resulted in maximum packet drop events and congestion
window of maximum number of TCP connections in the
simulation topology fail to grow above 100 packets.
Figure 16 shows that the congestion window growth
behavior of CUBIC TCP is much better and smooth as
compared to other loss-based TCP variants and there are
less abruptly falling congestion windows and congestion
window remains constant over the wide range of elapsed
time. Compound TCP’s behavior is almost similar to
HSTCP as shown in figure 17 .Finally, figure 18 shows
that TCP Vegas is the smoothest of all TCP congestion
control algorithms and majority of TCP connections
grow to attain the available capacity. Thus TCP Vegas
allocates a fair share of bandwidth to each connection
and resulted in no packet drop event. Thus, it is favorable
to transmit traffic flows with TCP Vegas support for such
network environment.

REFERENCES
[1]. V. Jacobson, “Congestion avoidance and control,”

the ACM SIGCOMM’88
[2]. Tomoya Hatano, Hiroshi Shigeno and Ken-ichi Okada,

“TCP friendly congestion control for highSpeed
network”, IEEE, 2007.

[3]. David X. Wei, Cheng Jin, Steven H. Low, and Sanjay
Hedge, “Fast TCP: Motivation, Architecture,
Algorithms, Performance”, IEEE/ACM transactions on
networking, 2006

[4]. W. Stevens, “TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms”,
RFC2001, Jan. 1997

[5]. M. Allman, V. Paxson, and W. Stevens, “TCP
Congestion Control”, RFC 2581, Apr. 1999

[6]. S. Floyd and T. Henderson, “The NewReno modification
to TCP’s fast recovery algorithm”, RFC 2582, Apr.
1999.

[7]. V. Jacobson, R. Braden, and D. Borman, “TCP
extensions for high performance,” RFC 1323, May 1992

[8]. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow,
“TCP selective acknowledgment options,” RFC 2018,
Oct. 1996.

[9]. Jon Postel, “Transmission Control Protocol,” September
1981, RFC 793

[10]. Allman, M., Balakrishnan, H. and S. Floyd, “Enhancing
TCP’s Loss Recovery using Limited Transmit:, RFC
3042, January 2001

[11]. S. Floyd: “HighSpeed TCP for Large Congestion
Windows”, RFC 3649, December 2003

[12]. Lisong Xu, Khaled Harfoush, and Injong Rhee: “Binary
Increase Congestion Control for Fast, Long Distance
Networks”, 2003

[13]. Tom Kelly: “Scalable TCP: Improving performance in
high-speed wide area networks”; ACM SIGCOMM

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

37

Computer Communication review, April 2003.
[14]. Hamed Vahdet Nejad, Mohammad Hossien Yaghmaee,

Hamid Tabatabaee, “Fuzzy TCP: Optimizing TCP
Congestion Control”, IEEE, 2006

[15]. M. Allman, S. Floyd, C.Partridge, “Increasing TCP’s
initial window”, September 1998

[16]. Injong Rhee, and Lisong Xu: “CUBIC: A New TCP-
Friendly High-Speed TCP Variant”, Sangtae Ha, Injong
Rhee, Lisong Xu.

[17]. D. Leith, and R. Shorten: “H-TCP: TCP Congestion
Control for High Bandwidth-Delay Product Paths”, June
20, 2005

[18]. Aleksandar Kuzmananovic and Edward W. Knightly,
“TCP-LP: a distributed Algorithm for low priority data
transfer”, IEEE 2003

[19]. Kun Tan Jingmin Song, Qian zhang, Murari Sridharan,
“A Compound TCP Approach For High-Speed and Long
Distance Networks”.

[20]. R. King, R. Baraniuk and R. riedi, “TCP-Africa: An
Adaptive and Fair Rapid Increase Rule for Scalable
TCP”, In Proc Infocom 2005

[21]. Dina Kitabi, M. Handley, and C.Rohrs, “Internet
Congestion Control for High Bandwidth-Delay Product
Networks”. ACM SIGCOMM 2002, August, 2002

[22]. Brakmo LS, Peterson LL, “TCP Vegas: end to end
congestion avoidance on a global internet”. IEEE
Journal on Selected Areas in Communications 1995

[23]. Kun Tan, Jingmin Song, Qian Zhang, Murari Sridharan,
”A Compound TCP Approach for High-speed and Long
Distance Netowrks”

Habibullah Jamal did his B.Sc.
Electrical Engineering from University
of Engineering and Technology, Lahore,
Pakistan in 1974. He earned his MSc
and PhD degrees both in Electrical
Engineering from University of
Toronto, Canada, in 1979 and 1982
respectively. Dr Jamal has served

academia throughout his professional career. He is recipient of
Performance Excellence in Engineering Award from the
Institution of Engineers, Pakistan on the ‘Engineers Day’ May
29, 2007, 9th Pakistan Education Forum, National Education
Award – 2003 and National Book Council of Pakistan Award
1991. His research interests include digital Design, Analog and
Digital Signal Processing, and Communications. He is a
Fellow/Senior Member of many professional bodies including
IEEE.

Kiran Sultan earned her B.Sc. and MSc. degrees both in
Electrical Engineering from University of Engineering and
Technology, Taxila, Pakistan in 2003 and 2008 respectively.
Currently she is Assistant Professor, Department of Electrical
Engineering, Air University, Islamabad, Pakistan. Her research
interest includes Computer Communication Networks.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

38

	cc-26
	I. INTRODUCTION
	II. G.729B VAD Standard
	III. Parameters used for minimization
	A. TE-LPC
	B. Low Pass Filtering
	A. GAET
	B. LSPE

	IV. Modifying g.729b vad
	V. parameters used for comparison
	VI. Results
	VII. Conclusion

	cc-27

