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Abstract—Genes carry the instructions for making proteins that 
are found in a cell as a specific sequence of nucleotides that are 
found in DNA molecules. But, the regions of these genes that code 
for proteins may occupy only a small region of the sequence. 
Identifying the coding regions play a vital role in understanding 
these genes. In this paper we have explored an    artificial immune 
system can be used to strengthen and identify the protein coding 
regions in genomic DNA system in changing environments. It has 
been developed using a slight variant of genetic algorithm. Good 
classifier can be produced especially when the number of the 
antigens is increased. However, an increase in the range of the 
antigens had somehow affected the fitness of the immune system. 
Experimental results confirm the scalability of the proposed AIS 
FMACA based classifier to handle large volume of datasets 
irrespective of the number of classes, tuples and attributes. We note 
an increase in accuracy of more than 5.2%, over any existing 
standard algorithms for addressing this problem. This was the first 
algorithm to identify protein coding regions in mixed and non 
overlapping exon-inton boundary DNA sequences also. 

 
Keywords—Cellular Automata (CA), unsupervised learning 
Classifier, Genetic Algorithm (MGA), Artificial immune system, 
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I. INTRODUCTION 
 

ANY of the challenges in biology are now challenges in 
computing. Bioinformatics, the application of 

computational techniques to analyze the information 
associated with bimolecules on a large scale, has now firmly 
established itself as a discipline in molecular biology. 
Bioinformatics is a management information system for 
molecular biology. Bioinformatics encompasses everything 
from data storage and retrieval to the identification and 
presentation of features within data, such as finding genes 
within DNA sequence, identification and presentation of    
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features within data, such as finding genes within DNA 
sequence, finding similarities between sequences, structural 
predictions. Analyzing the coding regions is not the scope of 
the project. 
 
        For better understanding of the specified objectives, we 
presented CA, FCA, AIS fundamentals in Section II and 
Section III .Section IV presents the design of AIS FMACA 
based pattern classifier [3], [7] as well as rule formation and 
chromosome representation. In Section V, we address the 
problem of protein coding region identification [11], [12] in 
DNA sequences. In order to validate the design of proposed 
model, experimental results are also reported in this section. 
 

II. CELLULAR AUTOMATA (CA) AND FUZZY 
CELLULAR AUTOMATA (FCA) 

 
     A CA [4], [5], [6], consists of a number of cells 
organized in the form of a lattice. It evolves in discrete space and 
time. The next state of a cell depends on its own state and the 
states of its neighboring cells. In a 3-neighborhood dependency, 
the next state qi (t + 1) of a cell is assumed to be dependent only 
on itself and on its two neighbors (left and right), and is denoted 
as  
         qi(t + 1) = f (qi−1(t), qi(t), qi+1(t))   -----E(1) 
 
where qi (t) represents the state of the ith cell at tth instant of time, f 
is the next state function and referred to as the rule of the 
automata. The decimal equivalent of the next state function, as 
introduced by Wolfram, is the rule number of the CA cell 
[9],[10],[11]. In a 2-state 3-neighborhood CA, there are total 256 
distinct next state functions.  
 
A. FCA Fundamentals 

 
    FCA [2], [6] is a linear array of cells which evolves 
in time. Each cell of the array assumes a state qi, a rational 
value in the interval [0, 1] (fuzzy states) and changes its state 
according to a local evolution function on its own state and the 
states of its two neighbors.  The degree to which a cell is in 
fuzzy states 1 and 0 can be calculated with the membership 
functions. This gives more accuracy in finding the coding 
regions.In a FCA, the conventional Boolean functions are 
AND , OR, NOT.      
 

M 
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B. Dependency Matrix for FCA 
 

   Rules defined in equations 1, 2 should be represented as a 
local transition function of FCA cell. That rules are converted 
into matrix form for easier representation of chromosomes 
[16].                      
                                              

            
 
 

                           
Example 1: A 4-cell null boundary hybrid FCA with the 
following rule  
< 238, 254, 238, 252 > (that is, < (qi+qi+1), (qi−1+qi+qi+1), 
(qi + qi+1), (qi−1 + qi) >) applied from left to right, may be 
characterized by the following dependency matrix 
 

       While moving from one state to other, the dependency 
matrix indicates on which neighboring cells the state should 
depend. So cell 254 depends on its state, left neighbor, and 
right neighbor fig (1). Now we represented the transition 
function in the form of matrix. In the case of complement 
[5[,[6],[8],FMACA we use another vector for representation of 
chromosome. 
 

 
 
 

 
C.  Transition from one state to other 
 

   Once we formulated the transition function, we can move 
form one state to other. For the example 1 if initial state is P 
(0) = (0.80, 0.20, 0.20, 0.00) then the next states will be  
 
P (1) = (1.00 1.00, 0.20, 0.20), 
P (2) = (1.00 1.00, 0.40, 0.40), 
P (3) = (1.00 1.00, 0.80, 0.80), 
P (4) = (1.00 1.00, 1.00, 1.00). 
 
FMACA Based Pattern Classifier 
 

An n-cell FMACA with k-attractor basins can be viewed as a 
natural classifier. It classifies a given set of patterns into k 
distinct classes, each class containing the set of states in the 
attractor basin. 
 
 

 
 
 
Fig. 2 FMACA based classification strategy with 5 attractor 
basins classifying the elements 
into two classes.  
 
Note: (i)  An attractor basin covers the elements belonging to 
one class only. 
         (ii)  Each attractor points to the memory location that 
stores the class information. 
 
 
 
 
 
Suppose, we want to design a FMACA based pattern 
classifier to classify a training set S = {S1, S2, · · · , SK} into 
K number of classes. First, a FMACA with k (k ≥ K) number 
of attractor basins is generated. The training set S gets 
distributed into k attractor basins (nodes). Let, ´ S be the set 
of elements in an attractor basin. If ´ S belongs to only one 
class, then label that attractor basin as that class. Otherwise, 
this process is repeated recursively for each attractor basin 
(node) until all the patterns in each attractor basin belong to 
only one class. 
 
 
 

III. ARTIFICIAL IMMUNE SYSTEMS 
  
 Artificial immune systems are motivated by the 
theory of immunology. The biological immune system 
functions to protect the body against pathogens or antigens 
that could potentially cause harm. It works by producing 
antibodies that identify, bind to, and finally eliminate the 
pathogens. Even though the number of antigens is far larger 
than the number of antibodies, the biological immune system 
has evolved to allow it to deal with the antigens. The 
immune system will learn the criteria of the antigens so that 
in future it can react both to those antigens it has 
encountered before as well as to entirely new ones. In 2002, 

              Table 1 FA Rules 

Fig. 1 Matrix Representation 
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de Castro and Timmis [17], suggested that “for a system to 
be characterized as an artificial immune system, it has to 
embody at least a basic model of an immune component (e.g. 
cell, molecule, organ), it has to have been designed using the 
ideas from theoretical and/or experimental immunology. 
 
 The human body is protected against foreign 
invaders by a multilayered system[15],[16]. The immune 
system is composed of physical barriers such as the skin and 
respiratory system, physiological barriers such as destructive 
enzymes and stomach acids and the actual immune system, 
which has two complementary parts, the innate and adaptive 
immune systems. The innate immune system is an 
unchanging mechanism that detects and destroys certain 
invading organisms, whilst the adaptive[17],[18] (or 
acquired) immune system responds to previously unknown 
foreign cells and builds a response that can remain in the 
body over a long period of time. Of most interest to us is the 
adaptive immune system, which is composed of a number of 
different agents performing different functions at a number 
of different locations in the body. The precise interaction of 
these agents is still a topic for debate13, 16. Two of the most 
important cells in this process are two types of white blood 
cells, called T-cells and B-cells. Both of these originate in 
the bone marrow (hence the ‘B’), but T-cells pass on to the 
thymus to mature (hence the ’T’), before they circulate the 
body in the blood and lymphatic vessels. 
 
 T-cells come in three types; T-helper cells which 
are essential to the activation of Bcells, Killer T-cells which 
bind to foreign invaders and inject poisonous chemicals into 
them causing their destruction, and suppressor T-cells which 
inhibit the action of other immune cells thus preventing 
allergic reactions and autoimmune diseases. B-cells are 
responsible for the production and secretion of antibodies, 
which are specific proteins that bind to the antigen. Each B-
cell can only produce one particular antibody. The antigen is 
found on the surface of the invading organism and the 
binding of an antibody to the antigen is a signal to destroy 
the invading cell. As can be gleaned from the brief 
explanations above, there is more than one mechanism at 
work in the human immune system8,12,13,16. However let 
us now concentrate on the essential process exploited in 
most AIS: The matching between antigen and antibody 
which subsequently leads to increased concentrations 
(proliferation) of more closely matched antibodies. In 
particular, the negative selection mechanism and the ‘clonal 
selection’ and ‘somatic hyper mutation’ theories are 
primarily used in AIS models.  
 
 
A. The human immune system 
 
 The human immune system is a complex system of cells, 
molecules and organs that represent an identification mechanism 
capable of perceiving and combating dysfunction from our own 
cells and the action of exogenous infectious microorganisms. The 
human immune system protects our bodies from infectious agents 
such as viruses, bacteria., fungi and other parasites. Any molecule 

that can be recognized by the adaptive immune system is known as 
an antigen(Ag).The basic component of the immune system is the 
lymphocytes or the white blood cells. Lymphocytes exist in two 
forms, B cells and T cells. These two types of cells are rather 
similar, but differ with relation to how they recognize antigens and 
by their  functional roles, B-cells are capable of recognizing 
antigens free in solution, while T cells require antigens to be 
presented by  other accessory cells. Each of this has distinct 
chemical structures and produces many Y shaped antibodies form 
its surfaces to kill the antigens.  
 

 
 
                             Fig. 3 Immune System 
 
 Fig 2 shows a depiction of the immune response 
when antigens invade the body. B-cells that are able to bind 
to  antigen become stimulated by Helper T-cells (not 
shown). Then they begin the repeated process of cell 
division (or mitosis). This leads to the development of clone 
cells with the same or slightly mutated genetic makeup. B-
cells with the  same genetic makeup will have identical 
receptors. However some B-cells will become mutated, and 
thus have slightly modified receptors. This results in the 
creation of a new B-cell that might have an increased affinity 
for the antigen. This phenomenon is called clonal selection 
because it is the antigen that essentially selects which B-cells 
are to be cloned [6]. This will eventually lead to the 
production of plasma cells and memory cells. Plasma cells 
mass produce and secrete soluble B-cell receptors that are 
now called antibodies. These antibodies bind to other 
antigen to neutralize and mark them for destruction by other 
cells. Some memory cells can survive for long periods of 
time by themselves, while other memory cells form a 
network of similar cells to maintain a stable population. This 
helps to keep the immune system from extinguishing itself 
once the antigen has been completely removed. 
 
B. Fuzzy logic with Artificial Immune System  
 
 This work focuses on one kind of AIS in-spired by 
the clonal selection principle of the biological immune 
system. In essence, when an immune system detector (a 
lymphocyte) has a high affinity (a high degree of matching) 
with an antigen (invader microorganism), this recognition 
stimulates the proliferation and differentiation of cells that 
produce antibodies. This process, called clonal expansion 
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(because new cells are produced by cloning and mutating 
existing cells), produces a large population of antibodies 
targeted for that antigen.  
 
 This clonal expansion leads to the destruction or 
neutralization of the antigen and to the retention of some 
cells in the immunological “memory”, so that the immune 
system can act more quickly the next time the same antigen 
is found in the body. This process is a form of natural 
selection. The better a clone recognizes an anti-gen, the more 
it tends to proliferate. This process is also adaptive, because 
the clones undergo mutation. Since the reproduction rate is 
very high, the frequency of mutation is also very high. This 
mechanism is called somatic mutation or hyper mutation. 
Jointly with the selective process, somatic mutation 
improves the clones’ ability in recognizing the antigen (since 
the best mutations lead to a higher proliferation of the 
corresponding clones), producing clones with greater affinity 
for that particular anti-gen. Fuzzy systems use symbols  
called linguistic terms  that have a well-defined se-mantics 
and are represented by membership functions of fuzzy sets. 
This allows the numerical processing of those symbols or 
concepts.  Fuzzy systems are very effective in 
expressing the natural ambiguity and subjectivity of human 
reasoning. Membership functions determine to which degree 
a given object belongs to a fuzzy set. In a fuzzy system this 
degree of membership varies from 0 to 1. Membership 
functions can take different forms, varying from the simplest 
ones (triangular functions) to more complex functions 
(parameterized by the user). n a classification problem with 
n attributes, fuzzy rules can be written as:, where is an n-
dimensional pattern vector, (i=1,…,n) is the i-th attribute’s 
linguistic value (e.g. small or large), C is the class predicted 
by the rule, and N is the number of fuzzy if-then rules.  In 
addition, it has been suggested that an AIS based on the 
clonal selection principle, called CLONALG, can be used 
for classification in the context of pattern recognition [6], 
although originally proposed for other tasks.  
 However, unlike the AIS algorithm proposed in this 
paper, neither AIRS nor CLONALG discovers 
comprehensible IF-THEN rules. Hence, neither of those two 
algorithms addresses the data mining goal of discovering 
comprehensible, interpret able knowledge (see Introduction). 
Also, they do not discover fuzzy knowledge, unlike the 
algorithm proposed in this paper. An AIS for discovering IF-
THEN rules is proposed in [9]. Unlike the algorithm 
proposed in this paper, that work is based on ex-tending the 
negative selection algorithm with a genetic algorithm. We 
have avoided the use of the negative selection algorithm 
because this kind of AIS method has some conceptual 
problems in the context of the classification task, as 
discussed in [10]. Also, again that work does not discover 
fuzzy rules. Fuzzy AIS is proposed in, however, that work 
addresses the task of clustering, which is very different from 
the task of classification addressed in this paper. To the best 
of our knowledge, the algorithm proposed in this paper is the 
first AIS for discovering fuzzy classification rules based on 
the clonal selection principle. 

 
 After discussing the clonal selection principle and 
the affinity maturation process, the development of the 
clonal selection algorithm (CSA) is straightforward. The 
main immune aspects taken into account were: maintenance 
of  the memory cells functionally disconnected from the 
repertoire, selection and cloning of the most stimulated  
cells, death of non-stimulated cells, affinity maturation and 
re-selection of the clones with higher affinity, generation and 
maintenance of diversity, hyper mutation proportional to the 
cell affinity. 
 
C. The Proposed Algorithm 
 
 

 
 
 
 
The algorithm works as in Figure 3 (after each six steps we 
have one cell generation): 
(1) Generate a set (P) of candidate solutions, composed of 
the subset of memory cells (M) added to the  remaining (Pr) 
population (P = Pr + M);  
(2) Determine (Select) the n best individuals of the 
population (Pn), based on an affinity measure; 
(3) Reproduce (Clone) these n best individuals of the 
population, giving rise to a temporary population of 
clones (C). The clone size is an increasing function of the 
affinity with the antigen; 
(4) Submit the population of clones to a hypermutation 
scheme, where the hypermutation is proportional to 
the affinity of the antibody with the antigen. A maturated 
antibody population is generated (C*); 

      Fig. 4 Proposed Algorithm 
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(5) Re-select the improved individuals from C* to compose 
the memory set M. Some members of P can be replaced by 
other improved members of C*; 
(6) Replace d antibodies by novel ones (diversity  
introduction). The lower affinity cells have higher 
probabilities of being replaced. 
 

IV. AIS FMACA BASED TREE-STRUCTURED 
CLASSIFIER 

 
  Like decision tree classifiers, FMACA based tree structured 
classifier uses the distinct k-means algorithm recursively 
partitions the training set to get nodes (output of proposed 
algorithm 3.3) belonging to a single class. Each node 
(attractor basin) of the tree is either a leaf indicating a class; 
or a decision (intermediate) node which specifies a test on a 
single AIS FMACA. 
   Suppose, we want to design a AIS FMACA based pattern 
classifier to classify a training set S = {S1, S2, · , SK} into K 
classes. First, a AIS FMACA with k-attractor basins is 
generated. The training set S is then distributed into k 
attractor basins (nodes). Let, S’ be the set of elements in an 
attractor basin. If S’ belongs to only one class, then label that 
attractor basin for that class. Otherwise, this process is 
repeated recursively for each attractor basin (node) until all 
the examples in each attractor basin belong to one class. Tree 
construction is reported in [7]. The above discussions have 
been formalized in the following algorithm. We are using 
genetic algorithm classify the training set. 
 
 
Algorithm 1: AIS FMACA Tree Building (using proposed 
algorithm 3.3 ) 
 
 Input   :      Training set S = {S1, S2, · ·, SK} with antigen 
 Output:      FMACA Tree. 
 
Partition(S, K) 
Step 1: Generate a AIS FMACA with k number of attractor 
basins. 
Step 2: Distribute S into k attractor basins (nodes). 
Step 3: Evaluate the distribution of examples in each 
attractor basin (node). 
Step 4: If all the examples (S’) of an attractor basin (node) 
belong to only one class, then label the attractor basin (leaf 
node) for that class. 
Step 5: If examples (S’) of an attractor basin belong to K’ 
number of classes, then Partition (S’, K’). 
Step 6: Stop. 
 
 

V. IDENTIFICATION OF PROTEIN CODING REGION 
IN DNA SEQUENCE 

 
 
    In this section we concentrate on application of AIS 
FMACA to protein coding region identification. The idea of 
new method is to use the existing work of AIS FMACA 

based tree structure classifier. Lot of research has been done 
for finding protein statistically. By using the standard codon 
frequencies, [13] we can identify whether the sequence 
contain protein coding regions or not. 
 
Example 3: 
Consider the sequence AGGACC,  
Since Codons will be in the form of triplets we split the input into 
three base sequences 
 
So P(S) = F (AGG) ·F (ACC) = 0.22 * 0.38= 0.0836 using 
tables from, [11], [12]. 
In general, Let F0(c) be the frequency of codon c in a non-
coding sequence. 
P0 (C) =F0 (c1) F0 (c2)…F0 (cm) 
Assuming the random model of non-coding DNA, F0(c) = 
1/64= 0.0156 for all codons, P0 (S) = 0.0156 · 0.0156 = 
0.000244. The log-likelihood (LP) ratio for S is   LP(S) = 
log (0.000836/0.000244) = log (3.43) = 0.53.If LP(S) > 0, S 
is coding. 
 
  Like wise we can use Bayesian classifier to calculate the 
probability of finding the protein coding regions with 
accuracy up to 49. With our approach the average accuracy 
achieved is 75%. 
 
A. Data and Method 
 
    The data used for this study are the human DNA data 
collected by Fickett and Tung. All the sequences are taken 
from GenBank in May 1992. Fickett and Tung have 
provided the 21 different coding measures that they surveyed 
and compared.  
 
   The benchmark human data include three different 
datasets. For the first dataset, non-overlapping human DNA 
sequences of length 54 have been extracted from all human 
sequences, with shorter pieces at the ends discarded.  
 
   Every sequence is labeled according to whether it is 
entirely coding, entirely non-coding, or mixed, and the 
mixed sequences (i.e., overlapping the exon-intron 
boundaries) are also included. 
 
     The dataset also includes the reverse complement of 
every sequence. This means that one-half of the data is 
guaranteed to be from the non-sense strand of the DNA. 
 

       In the next section we will give the experimental results for 
finding this coding region for all sequence lengths. It was 
compared with AIS FMACA and the accuracy reported was 
2.2% more than that of standard ways of finding protein coding 
region. 
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VI. EXPERIMENTAL RESULTS 
 
A. AIS MACA rule space in successive generations 
 
The motion of CA rule space in successive generations is 
characterized by evaluating the entropy and mutual 
information of CA rule vectors of a population. The rule 
vectors for study are sampled out at a gap of 5 generations. 
The top most fit rule vectors of the selected population is 
subjected to closer scrutiny. 
 
 The entropy and mutual information of the CA in 
successive generations of GA are reported in Fig 5,6 ,7,8 for 
four different CA size (n= 10, 15, 20, 30). For each of the 
cases, the values of entropy and mutual information reach 
their steady state once the AIS FMACA for a given pattern 
set gets evolved. For understanding the motion, the initial 
population (IP) is randomly generated. All these figures 
points to the fact that as the CA evolve towards the desired 
goal of maximum pattern recognizing capability, the entropy 
values fluctuate in the intermediate generations, but saturate 
to a particular value (close to the critical value 0·84 [245]) 
when fit rule is obtained. Simultaneously, the values of 
mutual information fluctuate at the intermediate points prior 
to reaching maximum value that remains stable in 
subsequent generations. All these figures indicate that the 
CA move from chaotic region to the edge of chaos to 
perform complex computation associated with pattern 
recognition. 
 
  

 
 
Fig. 5 Entropy & Mutation information for n=10 

 
 
 
Fig. 6 Entropy & Mutation information for n=15 
 

 
Fig. 7 Entropy & Mutation information for n=20 
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Fig 8:  Entropy & Mutation information for n=30 
 
 
B. Accuracy Calculations 
 
The below tables show the predictive accuracy of different 
algorithms on both coding and non-coding DNA sequences.  
 
   In this section we present the results on using AIS 
FMACA for Fickett and Tung’s dataset. Values are given for 
the percentage accuracy on test set coding sequences and the 
percentage accuracy on test set non coding sequences 
 

 
Table 2: Predictive Accuracy for length 54 human DNA 

Sequence 
 

Algorithm Coding Non Coding 
Dicodon Usage 61% 57% 
Bayesian  51% 46% 
CA 78% 72% 
Sup FMACA 79% 72.5% 
AIS FMACA 81% 73.5 

 
 

Table 3: Predictive Accuracy for length 108 human DNA sequence 
 

Algorithm Coding Non Coding 
Dicodon Usage 58% 50% 
Bayesian  45% 36% 
CA 74% 69% 
Sup FMACA 75% 69% 
AIS FMACA 77% 74.5 

 
 

Table 4: Predictive Accuracy for length 252  human DNA 

sequence 

Algorithm Coding Non Coding 
Dicodon Usage 65% 54% 
Bayesian  50% 44% 
CA 71% 70% 
Sup FMACA 71% 71% 
AIS FMACA 72% 71.5 

 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The graph 1 compares the accuracy of finding the 
protein coding regions with existing standard algorithms like 
Bayesian, Data Base Search, Splicing Algorithm, Sup 

 Graph 1 Percentage Accuracy for 54, 108, 252 
Length DNA sequence  

Graph 2 Percentage Accuracy NPCRIT VS AIS FMACA 

 Fig. 9 AIS FMACA Interface  
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FMACA, and AIS FMACA. We can observe the accuracy 
increased considerably. The graph 2 compares the best 
protein coding region identification   algorithm NPCRIT 
[19] with AIS FMACA. Both the graphs shows accuracy of 
AIS FMACA is comparable with any standard algorithm.  
AIS FMACA can be used to identify protein coding regions 
among all DNA sequence lengths.  

 
AIS FMACA overcomes all the disadvantages of 

previous standard algorithms like fixing the position of the 
gene and static order of the DNA sequence. The average 
accuracy reported is 76.6%. It also finds the protein coding 
regions in mixed and non overlapping exon-inton boundary 
DNA sequences with average accuracy 74.5. 

 
Fig 9 shows the AIS FMACA Tool Interface; with 

witch we can find the class of a given DNA sequence. 
 

VII. CONCLUSION 
 

 This paper presents the application of AIS 
MAFCA based supervised pattern classifier to solve the 
problem of protein coding region identification in DNA 
sequences. It also finds the protein coding regions in mixed 
and non overlapping exon-inton boundary DNA sequences 
with considerable accuracy. Aside from developing a good 
classifier for this particular problem, the proposed model 
may be very much useful to solve many other bioinformatics 
problems like protein structure prediction, RNA structure 
prediction, promoter region identification, etc.  
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