
On Performance Deviation of Binary Search Tree Searches from the
Optimal Search Tree Search Structures

Ahmed Tarek

Abstract— Binary Search Trees are a frequently used data structure
for rapid access to the stored data. Data structures like arrays,
vectors and linked lists are limited by the trade-off between the
ability to perform a fast search and resize easily. They are an
alternative that is both dynamic in size and easily searchable. Due to
efficiency reason, complete and nearly complete binary search trees
are of particular significance. This paper addresses the performance
analysis and measurement, collectively known as the Performance
in binary search tree search applications. Performance measurement
is equally significant asides from the performance analysis to learn
more about the deviation from optimality. To estimate this deviation,
new performance criteria for the binary search trees are presented.
A multi-key search algorithm is proposed and the related analysis
followed. The algorithm is capable of searching for multiple key
elements in the same execution, sacrificing some optimality in the
timing consideration. This helps in pruning a subtree structure out of
a given binary search tree for further processing.

Keywords— Complete Binary Search Tree, Nearly Complete Bi-
nary Search Tree, Performance Criteria, Sparsity Factor, Density
Factor, Multi-Key Search, Search-tree Pruning.

I. I NTRODUCTION

Efficient access to the stored data is a mainstream reason for
the choice of a good data structure (DS). To provide efficient
access, the DS may need to store additional information known
as the overhead. Therefore, a major objective of a DS is
to keep the overhead minimum while allowing maximum
access to the stored data. This paper is concerned with the
analysis of binary search trees (BSTs) as data structures of
choice with several performance criteria. The deviation from
the optimality for using the BSTs are demonstrated using
performance measurement results.

BSTs and the related applications are studied extensively
in the literature. Among the most notable contributions, [1]
has studied the height, size performance of a class of BSTs
in dictionary application. In [2], an application of the BSTs
in Neural Networks is presented. This research paper deals
with the general performance in BST search applications. A
new algorithm in searching for multiple number of nodes in
the same execution is also proposed. The multiple key BST
search helps prune a subtree structure from an existing BST for
further processing. Performance measurement of the proposed
multi-key BST search algorithm is also presented.

The results in this paper are both theoretical and applied
in nature. The performance graphs are obtained using the
common high level language compilers running on multiple

Manuscript received September30, 2007; accepted February06, 2008;
revised April19, 2008. This work was supported by the California University
of Pennsylvania in Pennsylvania, USA.

Ahmed Tarek is associated with the Department of Math and Computer
Science at California University of Pennsylvania,250 University Avenue,
California, Pennsylvania15419, USA (phone: (724) 938-4127; fax: (724)
938-5972; e-mail: tarek@cup.edu)

platforms. A number of performance criteria are addressed.
Finally, future research directions are outlined.

The remainder of this paper is structured as follows. In Sec-
tion II, terms and notations used in this paper are introduced.
Some new concepts are also defined. SectionIII considers
performance of the BSTs using the criteria introduced in
section II. Section IV introduces the Multiple Key BST
Search algorithm. This section also incorporates the related
analysis. SectionV is based on the search-based performance
of the BSTs. SectionV I addresses the practical performance
issues. SectionV II outlines future research avenues.

II. T ERMINOLOGY AND NOTATIONS
Following notations are used all throughout this paper.
n: Total number of nodes.
Tr: A binary search tree, which is abbreviated as, BST.
l: Number of leaves.
ni: Internal (interior) node count.
ne: Number of external nodes.
h: Height of the BST.
Cni : Cost for a successful search in a BST.
Cne : Cost for an unsuccessful search.
I: Internal path length.
E: External path length.
sf : Sparsity factor.
df : Density Factor.
L: Loss in capacity factor.
Special terms and concepts are presented by combining mean-
ingful indices with the corresponding notation. Some useful
definitions are presented next.
Deviation in Height, hdev: The deviation in height,hdev is
the deviation of the actual height,h from the optimal possible
height,ho. This is expressed in % as follows:
hdev = h−ho

ho
×100%.

Sparsity Factor: Justifies the relative sparsity of an actual
BST in comparison to a full, and complete BST with the same
height, h. Mathematically, Sparsity Factor,sf = nmax−n

nmax ×
100%. Here,nmax = maximum possible number of records
that may be accommodated in a complete BST with the actual
height,h = (2(h+1)−1), andn = the actual number of records
currently present.
Density Factor: This determines the relative density of an
actual BST in comparison to a linear slim BST having the
same height,h. This is defined mathematically as,df =
n−nmin

nmin
× 100%. Here, nmin = the minimum number of

records in a slim BST with the actual height,h = (h + 1).

III. PERFORMANCE WITH THESPARSITY AND THE

DENSITY FACTORS

It is always desired that a constructed BST be as dense
as possible approaching the complete or the nearly complete

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

41 Manuscript received May 26, 2007: Revised received Aug. 23, 2007

BST structure, and as less sparse as is feasible. Following
result holds true in this context.

Theorem 1:The maximum height deviation from a linear
sparse BST to a nearly complete bushy BST havingn nodes is:
hdiffmax = (n−log2(n+1)), and the corresponding minimum
possible height deviation is:hdiffmin = (n−1)−log2n, and the
difference between these two extreme deviations is:log2(2−

2
(n+1)).
Proof: For a linear skinny tree, there will be exactly1 node
at each level. Since the node counting starts at the root record
with level 0, therefore,(hs + 1) = n. This provides,hs =
(n − 1). Suppose that there arek records at the last levelh.
In that event,(20 + 21 + . . . + 2h−1) + k = n, this means,
2h−1
(2−1) + k = n. Therefore,2h − 1 = (n− k), this provides,2h

= (n + 1− k). Hence,h = log2(n + 1− k). For the minimum
deviation in height, there is only1 record at levelh. Therefore,
k = 1, andhbmax = log2n. Hence,hdiffmin = (hs − hbmax)
= (n − 1) − log2n. For the maximum height deviation, there
are 2h records at levelh. Therefore,k = 2h, and2h = (n +
1− 2h), which provides,2h+1 = (n + 1). This yields, (h + 1)
= log2(n + 1), or h = log2(n + 1)− 1. Therefore,hdiffmax =
(hs−hbmin) = (n−1)−(log2(n+1)−1) = (n− log2(n+1)).
Therefore, finally,hdiffmax − hdiffmin = (n − log2(n + 1))
- ((n − 1) − log2n) = (n − n + 1 − log2(n + 1) + log2n) =
(log2(n)− log2(n + 1) + log22) = log2(2n)− log2(n + 1) =
log2

2n
n+1 = log2(2− 2

(n+1)). ut
The difference, (nmax - nmin) defines the maximum devia-

tion in the number of records with an actual height,h. Hence,
nmdev = nmax - nmin = (2(h+1)−1 - (h+1)) = (2(h+1)−h−2).

The deviation in height,hdev is defined as the deviation
of the actual height,h from the optimal height,ho. This is
expressed as % ofho. Mathematically:
hdev = h−ho

ho
×100%.

(a) (b)

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

B
S

T
 h

ei
gh

t,
h

number of nodes, n

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

B
S

T
 h

ei
gh

t,
h

number of nodes, n

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

di
ffe

re
nc

e
in

 a
ct

ua
l a

nd
 o

pt
im

al
 h

ei
gh

ts
, d

number of nodes, n

ha & ho ha - ho plot

Fig. 1. The actual and the optimal heights of the generated BSTs and their
differences are plotted against the number of records,n. (The lower curve in
Fig. (a) represents the optimal height).

The plot in Fig. 1(a) shows the height deviation of the
actually generated BST from the optimal one. For the cor-
responding optimal BSTs, the height does not change from
n = 600 to n = 1000. If hopt = 8, the maximum number of
records that it may contain is,28+1 − 1 = 511. Whereas, if
hopt = 9, the maximum number of records it may contain is
= 29+1 − 1 = 1, 023. Therefore, for any value ofn ranging
from 600 to 1, 000, the optimal height is9.

The sparsity factor is defined as,sf = nmax−n
nmax

× 100%.
Therefore,sf is required to be as small as possible. Since,

nmax will be fixed for a particular value ofh, the smaller the
value of (nmax−n), n will be closer tonmax, and the tree will
approach that of the optimal configuration. This means that the
sparsity will decrease. Though sparsity factorsf is suppose to
decrease with the increasing value ofn, but almost constantsf
is an indicator of the relatively steady BST structures. Constant
values ofsf indicate that the actual number of nodes,n is
relatively steady in comparison to the exponential growth of,
nmax = (2(h+1) − 1) with the changing values ofh.

The density factor,df = (n−nmin)
nmin

× 100%. For a constant
value of h, the higher the density factor,df , n will become
relatively larger and larger in comparison tonmin, and the
tree will grow relatively denser.

IV. M ULTI -KEY BST SEARCH ALGORITHM

Using Multi-key Search, it is possible to identify1 or more
subtrees in the original BST that starts at a particular record
and ends at another one. Since such subtrees are just parts of
the original BST, operations on these may be substantially
faster than originally constructing those subtrees from the
scratch. Using the proposed algorithm, it is possible at first to
identify the subtree structure, and then applying the memory
move operations, it is also possible to create a BST out of the
subtree for further consideration.

Algorithm find record
Purpose: This algorithm finds a record in the generated
BST.

Require: namesupplied and thisnode as inputs.
if namesupplied.compareTo(thisnode.name)== 0 then

return this node
else if namesupplied.compareTo(thisnode.name)< 0
then

if this node.getLeftChild() is not NULLthen
return find record (namesupplied,
this node.getLeftChild()) {recursive call to
find record}

else
return NULL

end if
else

if this node.getRightChild() is not NULLthen
return find record (namesupplied,
this node.getRightChild())

else
return NULL

end if
end if

The 2-key binary search tree search algorithm makes use of
the classical1-key version.

Algorithm find record 2key
Purpose: This algorithm performs2-key binary search tree
search.
The supplied parameters are: array names[], current node
verified thisnode.
find record2key finds out two matching nodes if available
for the array names[] and return those as array search2[].

Require: names[0].compareTo(names[1]) < 0

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

42

Ensure: an array of correct records or NULLs are returned
if names[1].compareTo(thisnode.name)< 0 then

if this node.getLeftChild() is not NULLthen
search2[0]⇐ find record (names[0],
this node.getLeftChild())
search2[1]⇐ find record (names[1],
this node.getLeftChild()){Make 2 calls to findrecord
on the left subtree}

else
search2[0]⇐ NULL
search2[1]⇐ NULL

end if
return search2[]

else if names[0].compareTo(thisnode.name)> 0 then
if this node.getRightChild() is not NULLthen

search2[0]⇐ find record (names[0],
this node.getRightChild())
search2[1]⇐ find record (names[1],
this node.getRightChild()){Make2 calls to findrecord
on the right subtree}

else
search2[0] ⇐ NULL
search2[1] ⇐ NULL

end if
return search2[]

else if names[0].compareTo(thisnode.name)< 0 and
names[1].compareTo(thisnode.name)> 0 then

if this node.getRightChild() is not NULL and
this node.getLeftChild() is not NULLthen

search2[0] ⇐ find record (names[0],
this node.getLeftChild())
search2[1] ⇐ find record (names[1],
this node.getRightChild()){Make2 calls to findrecord
on two subtrees}

else if this node.getRightChild() is not NULLthen
search2[0] ⇐ NULL
search2[1] ⇐ find record (names[1],
this node.getRightChild())

else if this node.getLeftChild() is not NULLthen
search2[0] ⇐ find record (names[0],
this node.getLeftChild())
search2[1] ⇐ NULL

else
search2[0] ⇐ NULL
search2[1] ⇐ NULL

end if
return search2[]

else if names[0].compareTo(thisnode.name)== 0 then
if this node.getRightChild() is not NULLthen

search2[0] ⇐ this node
search2[1] ⇐ find record (names[1],
this node.getRightChild())

else
search2[0] ⇐ this node
search2[1] ⇐ NULL

end if
return search2[]

else if names[1].compareTo(thisnode.name)== 0 then

if this node.getLeftChild() is not NULLthen
search2[1] ⇐ this node
search2[0] ⇐ find record (names[1],
this node.getLeftChild())

else
search2[1] ⇐ this node
search2[0] ⇐ NULL

end if
return search2[]

end if
return search2[]

A. Multi-key BST Search Analysis

For clarity, consider the2-key BST search in this analysis.
Suppose that the1-st key is located at heighth1 and at
k1 position counting from the left-most record at heighth1.
Similarly, suppose that the2nd key is at heighth2 and at
k2 position counting from the left-most record at heighth2.
Following are the possible scenarios with this2-key BST
Search.

• The 1st key is on the left subtree, and the2nd key is
on the right subtree of the root record. In this case, the
subtree starting atk1 and ending atk2 includes the root
node.

• Both k1 andk2 are on the left subtree. Then the subtree
starting atk1 and ending atk2 will not include the root,
and contains only a part of the left subtree.

• Both k1 andk2 are on the right subtree. Then the subtree
starting atk1 and ending atk2 will not include the root,
and contains a part of the right subtree.

• k1 is the root node andk2 is on right subtree. The subtree
spanning fromk1 to k2 includes a portion of the right
subtree including the root.

• k1 is on the left subtree andk2 is at the root. In this case,
the subtree fromk1 to k2 contains a portion of the left
subtree, which includes the root.

Following analysis is based on the assumption that the BST
is complete up to a height of maximum{h1, h2}. Suppose that
the height of the BST ish and the total number of records is
n. Therefore,h1 ≤ h, andh2 ≤ h. For the following analysis,
the left and the right subtrees counting from the root record
are considered as two separate subtrees, since all calculations
begin at the root and proceed either through the left subtree
or along the right subtree of the root.

• Supposeh1 < h2, and bothkey1 and key2 are on the
left subtree. Then forkey1, it is complete up to the level
(h1 − 1), and there arek1 records at levelh1 counting
from the left-most node at the same height. Similarly,
for key2, it is complete up to the level(h2 − 1), and
there arek2 records at levelh2 counting from the left-
most node. Since,h1 < h2, therefore, the total number
of nodes in betweenkey1 andkey2, which are on the left
subtree is,n12 = 1

2 (20 +21 + . . .+2h2−1)+k2− 1
2 (20 +

21 + . . . + 2h1−1)− k1 = 1
2 (2h1 + 2h1+1 + 2h1+2 + . . . +

2h2−1)+ (k2−k1) = (2h2−1− 1
2 − 2h1−1 + 1

2 +k2−k1)
= 2h1−1(2h2−h1 − 1) + (k2 − k1).

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

43

• Let h1 = h2, and both key1 and key2 are on the
left subtree. Since the assumption is that the keys are
organized in ascending order and therefore,k1 < k2.
Hence,n12 = (k2 − k1).

• Suppose thath1 < h2, andk1 is on the left subtree and
k2 is on the right subtree. In this case,n12 = 1

2 (20 +21 +
. . .+2h1−1 +k1) + 1

2 (20 +21 +22 + . . .+2h1 +2h1+1 +
. . .+2h2−1) + (k2− 1

2 ×2h2). Since the tree is complete
up to the level2h2 , therefore1

2 of the total nodes up to
the h2 level lies on the left subtree, and the rest1

2 are
on the right subtree, andk1 andk2 are counted starting
from the left-most node on the left subtree. Hence,n12

= 1
2 (2h1 − 1) + 1

2× (2h2 − 1) + k1 + k2 - 1
2× (2h2) =

(1
2 × 2h1 − 1 + k1 + k2) = (2h1−1 − 1 + k1 + k2).

• Suppose thath1 > h2, andk1 is on the left subtree and
k2 is on the right subtree. In this case,n12 = 1

2 (2h1−1) +
1
2× (2h2−1) + k1+k2 - 1

2× (2h2) = (1
2×2h1−1+k1+k2)

= (2h1−1 − 1 + k1 + k2).
• Suppose thath1 is equal toh2, and k1 is on the left

subtree, andk2 is on the right subtree. Here,n12 =
1
2 (2h1 − 1) + 1

2× (2h1 − 1) + k1 + k2 - 1
2× (2h1) =

(1
2 × 2h1 − 1 + k1 + k2) = (2h1−1 − 1 + k1 + k2).

• h1 < h2, and bothkey1 andkey2 are on the right subtree.
For key1, it is complete up to the level(h1 − 1), and
there arek1 records at levelh1 counting from the left.
Similarly, for key2, it is complete up to the level(h2−1),
and there arek2 records at levelh2 counting from the left.
Sinceh1 < h2, therefore, the total number of records in
betweenkey1 andkey2, which are on the right subtree is,
n12 = 1

2 (20 +21 + . . .+2h2−1)+(k2− 1
2 (2h2))− 1

2 (20 +
21 + . . . + 2h1−1)− (k1 − 1

2 (2h1)) = (2h2−1 − 1
2 + 1

2 −
2h1−1+2h2−1−2h1−1+k2−k1) = (2h2−2h1)+(k2−k1).

• h1 = h2, and bothkey1 andkey2 are on the right subtree.
Since the assumption is that the keys are organized in
ascending order, therefore,k1 < k2. Hence,n12 = k2 −
1
2 (2h1)− (k1 − 1

2 (2h1)) = k2 − k1.
• key1 is at the root andkey2 is on the right subtree. In

that event,key1 is at level0 and the only possible record.
Assumingkey2 is at levelh2, and the BST is complete up
to the levelh2, n12 = 1+ 1

2 (21+22+ . . .+2h2−1)+(k2−
1
2 (2h2))) (inclusive) =1 + 1

2 (2h2 − 1)− 1
2 + k2− 1

2 (2h2)
= k2.

• key1 is on the left subtree andkey2 is the root node. In
that event,key2 is at level0 and the only possible record.
Assumingkey1 is at levelh1, and the BST is complete
up to the levelh1, n12 = 1+ 1

2 (21+22+. . .+2h1−1)+k1

= 1 + k1 + 1
2 (2h1 − 1)− 1

2 = k1 + 2h1−1.

Following the analysis of2-key BST search, for the3-key
BST search, following are the possible scenario:

• The first2 keysk1 andk2 exist on the left subtree, and
the 3rd key,k3 exists on the right subtree. In that event,
the subtree starting atk1 and ending atk3 (inclusive)
includes the root node.

• The 1st key, k1 exists on the left subtree, and the2nd
and the3rd keys,k2 andk3, respectively, are on the right
subtree. In that case, the subtree starting atk1 and ending
at k2 (inclusive) includes the root, whereas the subtree

starting atk2 and ending atk3 includes only a part of
the right subtree.

• All 3 keys,k1, k2 and k3 exist on the right subtree. In
that event, the subtree starting atk1 and ending atk3

(inclusive) does not include the root.
• All 3 keysk1, k2 andk3 exist on the left subtree. In this

case also, the subtree starting atk1 and ending atk3 does
not include the root.

• k1 is on the left subtree,k2 is at the root andk3 is on
the right subtree. In this case, the subtree starting atk1

and ending atk3 includes the root (inclusive).
• k1 is at the root,k2 and k3 are on the right subtree. In

this case also, the subtree starting atk1 and ending at
k3 (inclusive) includes the root and a part of the right
subtree only.

• k1 andk2 are on the left subtree andk3 is at the root. In
that case, the subtree fromk1 to k3 (inclusive) includes
the root node.

B. Special Considerations

• 1st key is on the left subtree at levelh1 ≤ h, and the
2nd key is at levelh2 ≤ h on the right subtree counting
from the root node. In this case, the subtree starting at
k1 and ending atk2 includes the root. Ifk1 is the left-
most record andk2 is the right-most record, then the total
number of records starting atk1 and ending atk2, n12 =
1
2 (20+21+22+ . . .+2h1)+ 1

2 (20+21+22+ . . .+2h2) =
1
2× (2h1+1−1)

(2−1) + 1
2× (2h2+1−1)

2−1) = 1
2 (2h1+1−1)+ 1

2 (2h2+1−
1) = 1

2 (2h1+1 + 2h2+1 − 2) (since from the assumption,
all the levels up toh1 andh2 are complete on the left and
the right subtrees, respectively) =12 (2×2h1 +2×2h2−2)
= b2h1 +2h2−1c = Maximum number of records possible
betweenk1 andk2 (inclusive).

• If k1 is the right-most record on the left subtree at level
h1, and k2 is the left-most record on the right subtree
at level h2. Assuming that all levels up to (h1 − 1) are
complete on the left subtree, and all the levels up to (h2−
1) are complete on the right subtree as well. Thenn12 =
1
2 × (20 + 21 + 22 + . . . + 2h1−1) + 1) + 1

2 × (20 + 21 +
22 +23 + . . .+2h2−1)+1) = 1

2 × (2h1−1+1−1)
2−1 +1+ 1

2 ×
(2h2−1+1−1)

(2−1) + 1 = 1
2 × 2h1 − 1

2 + 1 + 1
2 × 2h2 − 1

2 + 1
= 2h1−1 + 2h2−1 + 1 = 1

2 (2h1 + 2h2 + 2) = Minimum
number of nodes (inclusive) possible betweenk1 andk2.

• Therefore, following relationship holds true fork1 in the
left subtree andk2 on the right one:b 1

2 (2h1 +2h2 +2)c ≤
n12 ≤ b(2h1 + 2h2 − 1)c. Hence,(n12max − n12min) =
(2h1 +2h2 − 1)− 1

2 (2h1 +2h2 +2) = 2h1−1 +2h2−1− 2.
• Let k1 is the left-most node at levelh1 in the left subtree

andk2 is the right-most node at levelh2 in the left subtree
as well. Assuming all the intermediate levels including
the levels ath1 and h2 are complete, the total number
of nodes (inclusive),n12 = 1

2 (2h1 + . . . + 2h2) = 1
2 (20 +

21 + . . . + 2h1−1 + 2h1 + . . . + 2h2) - 1
2 (1 + 21 + . . . +

2h1−1) = 1
2 ((2h2+1−1)

(2−1))− 1
2 ((2h1−1)

(2−1) = 2h2− 1
2−2h1−1+ 1

2

= (2h2 − 2h1−1), which gives us the expression for the
maximum number of records on the same subtree. Hence,

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

44

n12 ≤ (2h2 − 2h1−1).
• Let k1 be the right-most node at levelh1, andk2 is the

left-most node at levelh2 on the same subtree. Thenh1 <
h2. Hence, the minimum number of nodes in betweenk1

andk2 (inclusive) is =1+ 1
2 × (2h1+1 + . . .+2h2−1)+1

= 2 + 1
2 (20 + 21 + . . . + 2h1 + 2h1+1 + . . . + 2h2−1) -

1
2 (20+21+ . . .+2h1) = 2 + 1

2 (2h2−1+1−1
(2−1))− 1

2 ((2h1+1−1)
(2−1)

= 2 + 1
2 (2h2 − 1) − 1

2 (2h1+1 − 1) = (2 + 2h2−1 − 2h1).
Therefore,n12 ≥ (2 + 2h2−1 − 2h1).

• If both the keys are on the same subtree, then the
following relation holds true:(2 + 2h2−1 − 2h1) ≤
n12 ≤ (2h2 − 2h1−1). Hence, (n12max − n12min) =
(2h2 − 2h1−1)− (2+2h2−1− 2h1) = 2h2−1 +2h1−1− 2.

• If key1 is at the root, andkey2 is on the right subtree, then
k1 is at level0, and the only possible node. Assuming
k2 is at levelh2, there are2 instances possible. In one
instance,k2 is the right-most node of the right subtree at
levelh2. In that event,n12max = 1+ 1

2 (21+22+. . .+2h2)
(inclusive) =1− 1

2 + 1
2 (2h2+1 − 1) = 2h2 . On the other

hand, if k2 is the left-most node, and the only record
available at levelh2, n12min = 1 + 1

2 (21 + 22 + . . . +
2h2−1) + 1 = 2 + 1

2 (2h2 − 1)− 1
2 = 2− 1

2 − 1
2 + 2h2−1 =

1+2h2−1. With k1 at the root, andk2 on the right subtree,
following is the restriction:1+2h2−1 ≤ n12 ≤ 2h2 . Also,
(n12max − n12min) = (2h2 − 1− 2h2−1) = (2h2−1 − 1).

• If key1 is on the left subtree, andkey2 is at the root,
thenk2 is at level0, and the only possible node. Hence,
n12max = 1 + 1

2 (21 + 22 + . . . + 2h1) (inclusive) =1 +
1
2 (2h1+1 − 1)− 1

2 = 1 + 2h1 − 1
2 − 1

2 = 2h1 . Once again,
n12min = 1 + 1

2 (21 + 22 + . . . + 2h1−1) + 1 (inclusive) =
2 + 1

2 (2h1 − 1) − 1
2 = 1 + 2h1−1. Therefore,(n12max −

n12min) = 2h1 − 1 − 2h1−1 = 2 × 2h1−1 − 1 − 2h1−1 =
2h1−1 − 1.

• Next consider a very special case of pruning the right
subtree of the1st key and the left subtree of the2nd key
in the two key BST Search together with the other nodes
from key1 to key2. Further assume thatkey1 is on the
left subtree andkey2 is on the right subtree. Ifkey1 is
at level h1 and key2 is at level h2 with h1 ≤ h and
h2 ≤ h, whereh is height of the BST, then the number
of nodes in the right subtree of the1st key =20 + 21 +
. . . + 2(h−h1−1) = 2(h−h1−1+1)−1

2−1 = 2h−h1 . Similarly, the
total number of nodes in the left subtree of the2nd key
= 20 + 21 + . . . + 2(h−h2−1) = 2(h−h2−1+1)−1

2−1 = 2h−h2 .
These numbers may be computed by imagining a BST
subtree with root at the right child of the1st key and
another subtree having the root at the left child of the
2nd key. Off-course for this analysis to hold true, the
BST is required to be complete.
If h1 < h2, andk1 is on the left subtree andk2 is on the
right subtree,n12 = (2h1−1 − 1 + k1 + k2). Hence, total
number of nodes in the pruned subtree =n12 + 2h−h1 +
2h−h2 = (2h1−1 − 1 + k1 + k2) + 2h−h1 + 2h−h2

Similarly, if h1 > h2, total number of nodes in the pruned
subtree =(2h1−1 − 1 + k1 + k2) + 2h−h1 + 2h−h2 .
Also if h1 = h2, total number of nodes in the pruned
subtree =(2h1−1 − 1 + k1 + k2) + 2h−h1 + 2h−h2 .

V. M ULTI -KEY SEARCH PERFORMANCE

In this section, the results pertaining to multiple key-based
searches in BSTs are considered.

Theorem 2:The average cost of an unsuccessful search is
given by,Cne = 2loge(n + 1), and the average costCni for a
successful search is =2(logen -1).
Proof: Let En be the expected external path length, andIn

be the expected internal path length for a BST withn nodes.
Therefore, following recurrence relation holds true:
Eo = 0, En = (n + 1) + 1

n

∑n
i=1(Ei−1 + En−i). Here,

(n + 1) is to account for the root node cost for each external
node (there are (n + 1) of them). 1

n

∑n
i=1(Ei−1 + En−i)

accounts for the average external path length of the left and
the right subtrees over with an arbitraryith element at the
root. But

∑n
i=1 Ei−1 =

∑n
i=1 En−i). Hence, rewriting the

expression forEn, En = (n+1)+ 2
n

∑n−1
i=0 Ei. ThenEn−1 =

n+ 2
n−1

∑
i = 0n−2Ei, which provides:(n−1)En−1−n(n−

1) = 2
∑n−2

i=0 Ei. Now expanding the expression forEn,
En = (n + 1) + 2

nEn−1 + 2
n

∑n−2
i=0 Ei. From the previous

expression forEn−1, 2
∑n−2

i=0 Ei = En−1 − n. Hence,En =
(n+1)+ 2

nEn−1 + 1
n [(n−1)En−1−n(n−1)]. From this last

expression,En = 2 + (n+1)
n En−1. Expanding the recurrence

relationship forEn, En = 2+2 (n+1)
n + (n+1)

n × n
(n−1)En−2 =

2+2 (n+1)
n + (n+1)

(n−1)En−2 = 2+2 (n+1)
n + (n+1)

(n−1) + (n+1)
(n−2)En−3 =

2+2
∑n

i=1
(n+1)

i +(n+1)E0 = 2+2
∑(n+1)

i=1
(n+1)

i −2 (n+1)
(n+1)

= 2(n+1)
∑(n+1)

i=1
1
i (asE0 = 0) = 2(n+1)Hn+1. Here,Hn+1

is the (n + 1)th Harmonic Function. Using the properties of
Harmonic Functions,Hn+1 ≈ loge(n + 1) + γ, whereγ =
Euler’s constant≈ 0.5772. Hence,En ≈ 2(n + 1)(loge(n +
1)+γ). The average cost for an unsuccessful search is,En

(n+1)

= 2(loge(n + 1) + γ) ≈ 2loge(n + 1) (see [1]). The highest
order term in this expression is:2loge(n + 1). Therefore,
Cne ∈ logen. Again, En = In + 2n. This provides,In =
2(n+1)(loge(n+1)+γ)−2n. The average cost of a successful
search is,In

n ≈ 2(n+1)(loge(n+1)−2n
n ≈ 2(1+ 1

n)loge(n+1)−2
≈ (2loge(n + 1) + 2

n loge(n + 1) − 2). As n À 1, 2
n ≈ 0.

Hence,Cni
≈ 2loge(n+1)−2. The highest order term in this

expression is,2loge(n + 1). As n À 1, loge(n + 1) ≈ logen.
Finally, Cni ≈ 2(logen− 1). Hence,Cni ∈ logen also. ut

(a) (b)

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

no
. o

f c
om

pa
ris

on
s

no. of records, n

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

no
. o

f c
om

pa
ris

on
s

no. of records, n

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

di
ffe

re
nc

e
in

 n
o.

 o
f c

om
pa

ris
on

s,
 c

-d
iff

no. of records, n

S(n) & U (n) curves U(n)− S(n) plot

Fig. 2. Average number of comparisons for successful (S(n)) and unsuc-
cessful searches (U (n)) are plotted against the total number of records,n.
(The lower curve in Fig. (a) represents the curve for successful searches).

From the standard DS literature, average number of compar-
isons for a successful search,S(n) = d1.39log2ne. Average
number of comparisons for an unsuccessful search,U (n) =

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

45

d2.77log2ne ≈ 2 × S(n). Both S(n) and U(n) depends on
log2n. The minimum value ofn is, nmin = 10, and the
maximum value ofn is, nmax = 1, 000. For example, when
n = 10, S(n) = 4.62, andU(n) = 9.2 ≈ 2×S(n). Hence, the
curve for average unsuccessful search,U(n) follows almost
exact pattern to that of the successful search,S(n). Again, the
difference betweenU(n) andS(n) is, d(n) = U(n)−S(n) =
d2.77log2ne - d1.39log2ne = 1.38log2n ≈ S(n). Therefore,
the difference curve,d(n) in Fig. 2(b) has almost exactly the
same pattern as that ofS(n).

VI. PERFORMANCEISSUES INPRACTICE

Lemma 3:An m-key binary search tree search algorithm
may be applied to any BST containingn records, wheren >=
m.
Proof: A proof by contradiction is adopted. Suppose thatn <
m. Therefore, the total number of keys to search for in the BST
becomes greater than the number of records within the BST.
In the best possible case,n different keys may be identified at
the n record positions, leaving (m-n) keys undecided during
the computation, for which, no records to look for may be
available. This violates the objective of them-key BST search,
which is to identify the BST records corresponding to them-
keys within the BST. Hence,m 6> n, and at most,m = n.
ut

Theorem 4:An m-key BST search requires considering
(2m+1) different cases in identifying the records correspond-
ing to them keys inside the BST. Here,m ≥ 1.
Proof: Following is a proof by mathematical induction.
Base Case:For the base case,m=1. For P(1), it is the classical,
single key BST search. It considers3-different cases. These
are: (1) key element = root value, (2) key element> root
value, and (3) key element< root value. Hence, (2 × 1 +
1) = 3 different cases are being considered.
Induction: Suppose that thek-key search algorithm requires
considering (2k+1) different cases. Here,k ≥ 1. It is required
to show that: [P(1)

∧ ∀ P(k)]→ P(k+1), which is proving that
for (k+1) different keys, (2(k+1) + 1) = 2k+3 different cases
are required to be considered. For the (k +1)th key, two more
cases are required in addition to the (2k+1) cases for the first
k keys. For the sorted keys,(k + 1)th key is the largest and
the last key within the list. Therefore, it requires considering
only 2 additional cases. First of all, verifying whether the root
value is equal to the (k + 1)th key value. If so, the (k + 1)th
key is found at the root, and it is necessary to use thek-key
steps of the BST search to locate the firstk-keys. Secondly, it
is required to verify whether the(k + 1)th key is larger, and
thekth key is smaller than the root node. In that event, confine
search for the(k +1)th key to the right half of the BST using
a classical BST search, and use the steps of thek-key BST
search for the firstk keys. Rest of the cases are identical to
the k-key version except that it is required to consider (k+1)
keys instead ofk keys. Hence, altogether, for the (k+1) key
version, we require considering (2k + 1 + 2) = 2(k + 1) + 1
different cases.
Conclusion: The theorem is true form = 1. Assuming that
the theorem holds true form = k, it is proved that it also

holds true form = (k + 1) different keys. As it is true for
m = 1, it is also true form = 2. As it holds true form = 2,
it is also true form = 3, and so on. Hence, the theorem holds
true for anym with m ≥ 1. ut

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000

A
ve

ra
ge

 d
is

pl
ay

 ti
m

e,
 T

av
g

in
 s

ec
on

ds

No. of records, n

Fig. 3. Average time to display the sorted tree,T in seconds is plotted
against the number of records,n inside the tree with data acquired using the
Borland’s C++5.02 compiler.

Fig. 3 shows time, T required to display the nodes in ascending
order using in-order traversal of the BST, which is plotted
against the size,n. The curve is obtained using Borland’s C++
5.02 compiler. The total time,T required to display the nodes
contains two components. One is the fixed timing overhead,
To required by the program to run on a platform. The other
one is the total time,Td to display the BST entries. Therefore,
T = To + Td. Initially, from n = 10 to n = 100, the time
required to display the nodesTd is insignificant compared to
the timing overhead,To. Therefore,To dominates overTd, as
pronounced by the relatively flat nature of the curve within this
range. Forn = 100 to n = 1, 000, Td becomes relatively much
higher compared toTo, andTd dominates overTo. Therefore,
within this range, the total time consumed depends more on
Td than only onTo, which may be realized by the increasing
nature of the curve.
Fig. 4 shows the1-key, the2-key and the3-key BST inorder
traversal times plotted againstn for using the Java JDK
5.0 compiler running on Pentium4 machine. The total time
taken rapidly increases with the increasing number of keys
as the time to display the combinations is approximately in
the order of,O(nm). Here,n is the number of elements and
m is the number of keys. Asn À m, m remains relatively
constant with respect ton, and the curves display polynomial
characteristic as expected.

VII. C ONCLUSION

In this paper, some new results on BST performance,
and the deviation of the generated BST structures from the
corresponding optimal structures are also presented. To search
an array with speed, the array needs to be sorted. Inserting
new nodes in an ordered array is a pain. Again, inserting new
nodes in a linked list is easy; but searching for an existing
node in a linked list is difficult. BSTs are data structures that
combines the good properties of arrays and linked lists, but has

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

46

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

tim
e,

 T
 in

 s
ec

on
ds

 to
 s

ea
rc

h
&

 d
is

pl
ay

 a
ll

ke
y

co
m

bi
na

tio
ns

number of nodes, n

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

tim
e,

 T
 in

 s
ec

on
ds

 to
 s

ea
rc

h
&

 d
is

pl
ay

 a
ll

ke
y

co
m

bi
na

tio
ns

number of nodes, n

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

tim
e,

 T
 in

 s
ec

on
ds

 to
 s

ea
rc

h
&

 d
is

pl
ay

 a
ll

ke
y

co
m

bi
na

tio
ns

number of nodes, n

Fig. 4. Total timeTtotal to search and display all possible key combinations
for 1-key,2-key, and3-key BST searches are plotted against the total number
of nodes,n. Topmost curve is for the3-keys considered together. The middle
one is for possible2-key combinations, and the lower most curve is for the
casual1-key BST search. Sun Java’s JDK5 compiler was used in performance
measurement.

none of the bad parts. Hence, complete and nearly complete
BSTs draw special attention to the data structure researchers.

Efficiency of a BST application depends on the depth of
the tree,h. Therefore, a good number of the results are based
on the height,h-based performance of the BSTs. In the best
possible scenario, the optimal depth is,hbest = log2(n). If
the keys are added at random to a gradually growing BST
structure, it results in a BST with an average height,havg.
For an average BST,havg ≈ 1.39log2(n). Therefore,havg is
only about40% higher than the best possible.

In future, a dynamic programming model for generating
an optimal BST structure with the minimal internal and
the external path lengths will be developed, and the related
performance issues will be addressed.

REFERENCES

[1] Ahmed Tarek, Height Size Performance of Complete and Nearly
Complete Binary Search Trees in Dictionary Applications,WSEAS
Transactions on Computers,3 (7), 2008, pp.89-97, ISSN:1109-2750.

[2] P. Scarfe and E. Lindsay, Dynamic Memory Allocation for CMAC
using Binary Search Trees,Proceedings of the8th WSEAS International
Conference on Neural Networks, 2007, pp. 61-66.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 2, Volume 1, 2007

47

