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On Performance Deviation of Binary Search Tree Searches from the
Optimal Search Tree Search Structures

Ahmed Tarek

Abstract—Binary Search Trees are a frequently used data structytatforms. A number of performance criteria are addressed.
for rapid access to the stored data. Data structures like arragnally, future research directions are outlined.
vectors and linked lists are limited by the trade-off between the The remainder of this paper is structured as follows. In Sec-

ability to perform a fast search and resize easily. They are an . . . .
alternative that is both dynamic in size and easily searchable. Due?if?)n 11, terms and notations used in this paper are introduced.

efficiency reason, compiete and nearly complete binary search r&@Mne new concepts are also defined. Secfibh considers
are of particular significance. This paper addresses the performapesformance of the BSTs using the criteria introduced in

analysis and measurement, collectively known as the Performanrgsection 77. Section IV introduces the Multiple Key BST

in binary search tree search applications. Performance measurengdirch algorithm. This section also incorporates the related
is equally significant asides from the performance analysis to learn

more about the deviation from optimality. To estimate this deviatio&nalygs' SeCtIOIVIIS based on the search-b{?lsed performance
new performance criteria for the binary search trees are presenf@fithe BSTs. Sectiov'] addresses the practical performance
A multi-key search algorithm is proposed and the related analy$gsues. Sectio¥' /1 outlines future research avenues.
followed. The algorithm is capable of searching for multiple key
elements in the same execution, sacrificing some optimality in the ) [l. TERMINOLOGY AND NOTATIONS
timing consideration. This helps in pruning a subtree structure out bpllowing notations are used all throughout this paper.
a given binary search tree for further processing. n: Total number of nodes.
Keywords— Complete Binary Search Tree, Nearly Complete BiZr: A binary search tree, which is abbreviated as, BST.
nary Search Tree, Performance Criteria, Sparsity Factor, DendityNumber of leaves.
Factor, Multi-Key Search, Search-tree Pruning. n;: Internal (interior) node count.
n.. Number of external nodes.
h: Height of the BST.

Efficient access to the stored data is a mainstream reason ‘:_ Cost 1;0r a successful sfe?rch mha BST.
the choice of a good data structure (DS). To provide efficie fller;tgrcr);tl o;tﬁnleunnstl;ccess ul search.
access, the DS may need to store additional information known E F hi 9 h
as the overhead. Therefore, a major objective of a DS 7§ Xtemf"‘ path length.
to keep the overhead minimum while allowing maximuni’ Sparglty factor.
access to the stored data. This paper is concerned withr%_e Density Factor.
analysis of binary search trees (BSTs) as data structures_of

L oss in capacity factor.
choice with several performance criteria. The deviation fror%peClal terms and concepts are presented by combining mean-
the optimality for using the BSTs are demonstrated usin

gful indices with the corresponding notation. Some useful
performance measurement results.

finitions are presented next.
BSTs and the related applications are studied extensivéji/

I. INTRODUCTION

Deviation in Height, /4, The deviation in heightf;e., is
in the literature. Among the most notable contributions, [ eidhetv;LaUc_)rnh;f Itsh (Z)? Crtélsslgf 'ﬂ”ﬁ/’frgj ff)Tliv(\)/g't imal possible
has studied the height, size performance of a class of B hsg _' @ % 100% P ° '
in dictionary application. In [2], an application of the BSTSSM ity p

in Neural Networks is presented. This research paper de arsity Factor: Justifies the relative sparsity of an actual

with the general performance in BST search applications.% T in comparison to  full, and complete BST with the same

new algorithm in searching for multiple number of nodes g—’elght, h. Mathematically, Sparsity Factosf = ass x

the same execution is also proposed. The multiple key B 90%' Here, nyq; = maximum possible number of records
prop ' pie key at may be accommodated in a complete BST with the actual
search helps prune a subtree structure from an existing BST jor. — (o(h+1) _
. height,h = (2 —1), andn = the actual number of records

further processing. Performance measurement of the propose |
multi-key BST search algorithm is also presented currenty present. . : . .

Th Its in thi both th iical ) q I.D nsity Factor: This determines the relative density of an
: € resutts in this paper are bo eoretical and appligfly a1 BST in comparison to a linear slim BST having the
in nature. The performance graphs are obtained using

. . . 4 e height,h. This is defined mathematically agf =
common high level language compilers running on multiple—,, ;. % 100%. Here m. . = the minimum number of
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BST structure, and as less sparse as is feasible. Following,, will be fixed for a particular value of, the smaller the
result holds true in this context. value of @, —n), n Will be closer ton,,,..., and the tree will
Theorem 1:The maximum height deviation from a linearapproach that of the optimal configuration. This means that the
sparse BST to a nearly complete bushy BST havimpdes is: sparsity will decrease. Though sparsity facigris suppose to
haif foae = (n—loga(n+1)), and the corresponding minimumdecrease with the increasing valuenpfout almost constantf
possible height deviation i&q;y,.,., = (n—1)—logan, and the is an indicator of the relatively steady BST structures. Constant
difference between these two extreme deviationgoig; (2 — values ofsf indicate that the actual number of nodesjs
(n—il)). relatively steady in comparison to the exponential growth of,
Proof: For a linear skinny tree, there will be exactiynode 7mqe = (2("T1) — 1) with the changing values of.
at each level. Since the node counting starts at the root record he density factordf = (";"7’"“) x 100%. For a constant
with level 0, therefore,(hs; + 1) = n. This provides,h;, = value of h, the higher the density factodf, n will become
(n — 1). Suppose that there aferecords at the last levél. relatively larger and larger in comparison g,;,, and the
In that event,(2° + 2! + ... + 2"~1) + k& = n, this means, tree will grow relatively denser.
(2;:11) +k = n. Therefore 2" — 1 = (n — k), this provides2"
= (n+1—k). Hence,h = loga(n+ 1 — k). For the minimum IV. MULTI-KEY BST SEARCH ALGORITHM
deviation in height, there is onliyrecord at leveh. Therefore, Using Multi-key Search, it is possible to identifyor more
k=1, andhy,,, = logan. Hence,haify,.., = (hs —hy,..) subtrees in the original BST that starts at a particular record
= (n — 1) — logan. For the maximum height deviation, thereyng ends at another one. Since such subtrees are just parts of
are 2" records at leveh. Therefore k = 2’L', and 2" = (n+ the original BST, operations on these may be substantially
1 —2"), which provides2"*! = (n +1). This yields, & +1) faster than originally constructing those subtrees from the
= loga(n+1), or h = logz(n+1) — 1. Thereforehaisy,... = scratch. Using the proposed algorithm, it is possible at first to
(hs—hs,,;,) = (n=1)=(loga(n+1)—1) = (n—logz(n+1)). identify the subtree structure, and then applying the memory
Therefore, finally.haisf,... = hdiffni, = (0 —1log2(n+1))  move operations, it is also possible to create a BST out of the
- ((n = 1) —logan) = (n —n+1—loga(n+1) +logan) = sybtree for further consideration.

(l092g2) —loga(n + 1) + loga2) = loga(2n) — loga(n + 1) = Algorithm find _record

— 2
logariy = 10g2(2 — iqy)- _ _ _ Purpose: This algorithm finds a record in the generated
The difference, %42 - min) defines the maximum devia- BST

tion in the number of records with an actual heightHence,
Nmdev = Mmaz = Mmin = (2(h+1)_]— - (h+1)) = (2(h+1)_h_2)'

The deviation in heighthg., is defined as the deviation
of the actual heighth from the optimal heightp,. This is
expressed as % df,. Mathematically:

Require: namesupplied and thismode as inputs.
if namesupplied.compareTo(thisode.name}= 0 then
return this.node
else if namesupplied.compareTo(thisode.name)< 0

et then
haev = "5 x100%. if this.node.getLeftChild() is not NULLthen
return find_record (namssupplied,
(a) (b) this_.node.getLeftChild())  {recursive  call to
) ) find_record
) else
return NULL
Y, end if
L v else
T N Susy T R R E if this_node.getRightChild() is not NULIthen
return find_record (namesupplied,
ha & ho ha - ho plot this_.node.getRightChild())
else
Fig. 1. The actual and the optimal heights of the generated BSTs and their return NULL
differences are plotted aga_inst the_ number of recatd¢The lower curve in end if
Fig. (a) represents the optimal height). end if

The plot in Fig.1(a) shows the height deviation of theThe 2-key binary search tree search algorithm makes use of
actually generated BST from the optimal one. For the cdihe classicall-key version.
responding optimal BSTs, the height does not change fromAlgorithm find _record_2key
n = 600 to n = 1000. If Ay = 8, the maximum number of  Purpose: This algorithm perform2-key binary search tree
records that it may contain i3+! — 1 = 511. Whereas, if  search.
hopt = 9, the maximum number of records it may contain is The supplied parameters are: array names][], current node
= 29+1 _ 1 =1,023. Therefore, for any value of ranging  verified thisnode.
from 600 to 1,000, the optimal height i$. find_record2key finds out two matching nodes if available
The sparsity factor is defined asf = ™mee—" x 100%. for the array names[] and return those as array sefrch
Therefore,sf is required to be as small aémﬁossible. Sinc®equire: named)].compareTo(names]) < 0
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Ensure: an array of correct records or NULLs are returned
if names[].compareTo(thismode.namek 0 then
if this.node.getLeftChild() is not NULLthen

searcR[0]«< find_record (names$],
this.node.getLeftChild())
search[1]«< find_record (nameg],

this_.node.getLeftChild(){Make 2 calls to findrecord
on the left subtrep

else
searcB[0]«<= NULL
search[1]< NULL

end if

return search[]

else if named)].compareTo(thismode.name)> 0 then
if this_.node.getRightChild() is not NULIthen

searchR[0]«< find_record (names$],
this_node.getRightChild())
search[1]«< find_record (nameg],

this_node.getRightChild()]Make2 calls to findrecord
on the right subtree
else
searcR[0] < NULL
search[1] <« NULL
end if
return searcB][]
else if named)].compareTo(thimode.name)< 0 and
names|].compareTo(thisiode.name)> 0 then

if this.node.getRightChild() is not NULL and
this.node.getLeftChild() is not NULLthen

searcB[0] = find_record (nameg],
this_node.getLeftChild())

search[1] = find_record (namedq],

this_.node.getRightChild()}Make2 calls to findrecord
on two subtrees

else if this.node.getRightChild() is not NULIthen
searcR[0] <= NULL
search[1] = find_record
this_node.getRightChild())

else ifthis.node.getLeftChild() is not NULLthen
searcB[0] = find_record (nameg],
this_node.getLeftChild())
searcB[1] < NULL

(nameg]],
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if this_.node.getLeftChild() is not NULLthen
searcB[1] « this.node

searcB[0] = find_record (nameg],
this_node.getLeftChild())
else

searchR[1] « this_node
searcR[0] < NULL
end if
return searcB][]
end if
return search[]

A. Multi-key BST Search Analysis

For clarity, consider th@-key BST search in this analysis.
Suppose that thd-st key is located at height; and at
k1 position counting from the left-most record at height
Similarly, suppose that theénd key is at heighth, and at
ko position counting from the left-most record at height
Following are the possible scenarios with thiskey BST
Search.

o The 1st key is on the left subtree, and tRed key is

on the right subtree of the root record. In this case, the

subtree starting at; and ending ak- includes the root

node.

o Both k; and ks are on the left subtree. Then the subtree
starting atk; and ending ak, will not include the root,
and contains only a part of the left subtree.

« Both k; andk, are on the right subtree. Then the subtree
starting atk; and ending ak, will not include the root,
and contains a part of the right subtree.

« ky is the root node anél, is on right subtree. The subtree

spanning fromk; to ko includes a portion of the right

subtree including the root.

ky is on the left subtree ankl, is at the root. In this case,

the subtree fromk; to ko contains a portion of the left

subtree, which includes the root.

Following analysis is based on the assumption that the BST
is complete up to a height of maximyr, ho}. Suppose that
the height of the BST i and the total number of records is
n. Thereforeh, < h, andhs < h. For the following analysis,

the left and the right subtrees counting from the root record
are considered as two separate subtrees, since all calculations
begin at the root and proceed either through the left subtree

else
searcR[0] < NULL
searcB[1] < NULL

end if
return searcB][]
else if named)].compareTo(thiswode.name)}== 0 then
if this_node.getRightChild() is not NULIthen
searcR[0] < this_node

searcB[1] = find_record (namegq],
this_node.getRightChild())
else

searchB[0] < this_node
searchB[1] < NULL
end if
return search[]
else if names[].compareTo(thisode.name}x= 0 then
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or along the right subtree of the root.

e Supposeh; < hsg, and bothkey; and key, are on the
left subtree. Then fokey, it is complete up to the level
(hy — 1), and there aré:; records at leveh; counting
from the left-most node at the same height. Similarly,
for keys, it is complete up to the levelhs — 1), and
there areks records at levehy counting from the left-
most node. Sinceh; < ho, therefore, the total number
of nodes in betweehey, andkey,, which are on the left
subtree ispip = (20420 .. 2" ) 4k — (20 +
2L 42mhy kg = L2 oMt o2y
2027 (ke — k1) = (2027 = 5 =2 4 S ke — k)
= 2h=1(2hz=hr 1) 4 (ky — k).
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ho, and both key; and key, are on the

left subtree. Since the assumption is that the keys are

organized in ascending order and therefdre, < ks.
Hence,nis = (kQ — kl)

Suppose thah; < hy, andk; is on the left subtree and
k2 is on the right subtree. In this case,; = (2°+2' +
c 2Tl k) + 220420 422 2P 2ty
.4 2R 1) + (ky — 1 x 2"2). Since the tree is complete
up to the level2"2, therefore of the total nodes up to
the hy level lies on the left subtree, and the rd;siare
on the right subtree, ankl, and k5 are counted starting
from the left-most node on the left subtree. Heneg,
=1@2Mm —1) +Ix 2" - 1) + Ky + ke - Ax (202) =
(% X 2h1 71+k1+k2) = (2h171 71+k1+k2)
Suppose thak; > ho, andk; is on the left subtree and
k2 is on the right subtree. In this casg, = $(2" —1) +
Fx (2" —1) + ky+kg - $x (2M2) = (3 x2M —1+ky+ks)

= (2"t — 14k + ko).

Suppose thah, is equal tohs, and k; is on the left
subtree, andk, is on the right subtree. Herey o =
22— 1) + Ix (2" = 1) + Ry + ky - Ax (2M) =
(3 x2M =14k + ko) = (M7 =1+ kg + ko).

h1 < hs, and bothkey; andkeys are on the right subtree.
For key, it is complete up to the levelh; — 1), and
there arek; records at leveh; counting from the left.
Similarly, for keys, it is complete up to the levéh, —1),
and there aré, records at leveh, counting from the left.
Sinceh; < ho, therefore, the total number of records in
betweenkey,; andkeys, which are on the right subtree is,
iy = (20421 . 2k 4 (ky — (22)) — 3(20+

2 p 2Ty (- L(2M)) = (2Rt - L+ L -
2=l ohe=1_ohi—=l 4k, )= (2h2 —2h) 4 (ky—F;).

hy = hs, and bothkey; andkeys are on the right subtree.
Since the assumption is that the keys are organized in
ascending order, thereforg; < ko. Hence,nio = ko —
3(2M) = (k1 = 3(2")) = k2 — k1.

key; is at the root andcey, is on the right subtree. In
that eventkey; is at level0 and the only possible record.
Assumingkeys is at levelhsy, and the BST is complete up
to the levelhy, nip = 1+ 2 (21 +22 4. 42" 1) 4 (ko —
%(thz))) (inclusive) =1+ £ (2h2 — 1) — L + &y — 1(2"2)

= k.

key, is on the left subtree ankley, is the root node. In
that eventkeys is at level0 and the only possible record.
Assumingkey; is at levelh,, and the BST is complete
up to the levehy, nyp = 1+ 3 (284224 421+
=l+k+i@2M 1) -1 =k +2m-L

Following the analysis of-key BST search, for th8-key

BST search, following are the possible scenario:

o The first2 keysk; and k, exist on the left subtree, and
the 3rd key, k3 exists on the right subtree. In that event,
the subtree starting at; and ending atks (inclusive)
includes the root node.

The 1st key, k; exists on the left subtree, and tRad
and the3rd keys, k2 andks, respectively, are on the right
subtree. In that case, the subtree starting, atnd ending

at ko (inclusive) includes the root, whereas the subtree
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starting atk, and ending ats includes only a part of
the right subtree.

All 3 keys, k1, ko and ks exist on the right subtree. In
that event, the subtree starting /at and ending atks
(inclusive) does not include the root.

All 3 keysky, ko andks exist on the left subtree. In this
case also, the subtree startingcatand ending ak; does
not include the root.

k1 is on the left subtreek, is at the root andcs is on
the right subtree. In this case, the subtree starting; at
and ending at; includes the root (inclusive).

kq is at the root,ks and k3 are on the right subtree. In
this case also, the subtree startingkatand ending at
ks (inclusive) includes the root and a part of the right
subtree only.

k1 andk, are on the left subtree arig is at the root. In
that case, the subtree frolm to k3 (inclusive) includes
the root node.

B. Special Considerations

1st key is on the left subtree at level, < h, and the
2nd key is at levelhs < h on the right subtree counting
from the root node. In this case, the subtree starting at
k1 and ending at, includes the root. Ifk; is the left-
most record and; is the right-most record, then the total
number of records starting & and ending aks, nys =
(204204224 4 2M )4 2204204224 4 2h2) =

%X (271;1)+%X (thtll_l)) - %(2h1+1_1)+%(2h2+1_

1) = $(2m*1 4 2h2F1 — 2) (since from the assumption,
all the levels up tdv; andh, are complete on the left and
the right subtrees, respectively)$2 x 21 +2 x 22 —2)

= |2M +2"2 —1] = Maximum number of records possible
betweenk; andk, (inclusive).

If k1 is the right-most record on the left subtree at level
hy, and ko is the left-most record on the right subtree
at level ho. Assuming that all levels up toh{ — 1) are
complete on the left subtree, and all the levels uphto{

1) are complete on the right subtree as well. Then =
Ix (2042t 224 42Tl 4 )+ x (20420 4
D E b ) SVECIANAES S I

2—1

e e Rt R R AR Rl

= 2=l okl 1 = (2 4 202 4 2) = Minimum
number of nodes (inclusive) possible betwégrand k.
Therefore, following relationship holds true féy in the
left subtree and:; on the right onef £ (2" 422 4-2)| <
nig < L(th + 2ha _ 1)J Hel"lce,(nlgmmC — Tllgmm) =
(2ht 42h2 — 1) — 1(2M 4 2h2 4 2) = 2hi=1 4 pha=l 9,
Let k; is the left-most node at leveél; in the left subtree
andks is the right-most node at levél, in the left subtree
as well. Assuming all the intermediate levels including
the levels ath; and h, are complete, the total number
of nodes (inclusive)n, = 2(2M +... +22) = 1 (20 +
b4 2t gl ok L(12t 4+

hi—1y = 1@ D\ 1,@"M-1D) _ghy 1 _ohi—-1, 1
MY = 3 (F ey ) s Gy =2 -2 T g

2
= (22 — 2m—1) which gives us the expression for the
maximum number of records on the same subtree. Hence,
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nig < (202 —2Mm—1), V. MULTI-KEY SEARCH PERFORMANCE

Let k; be the right-most node at levél, andk, is the In this section, the results pertaining to multiple key-based
left-most node at level, on the same subtree. Thén < searches in BSTs are considered.

hs. Hence, the minimum number of nodes in betwéegn  Theorem 2:The average cost of an unsuccessful search is
andk, (inclusive) is =1+ 1 x (2m+1 .. +2k2=1) 41 given by,C,,, = 2log.(n+ 1), and the average coét,, for a
=2+ $(20 28 4 g2 o4 4 9heml) o successful search is 2{logen -1).

12042 4. 42y =2+ %(2’%(;1_*11)—1)_%((2’1(12*_11;1) Proof: Let E,, be the expected external path length, dpd
Z9 4 %(2;12 1) - %(2h1+1 — 1) = (24 2m1 = 2k, be the expected .|nternal path Iength.for a BST withodes.
Therefore,ns > (2 + 2h2—1 — 2i), Therefore, following recurrence relation holds true:

- _ 1y . .
If both the keys are on the same subtree, then the = OZ B, = (n+1) + 35 (Eie1 + Eyy). Here,
following relation holds true:(2 + 2h2=1 — 2h1) (n + 1) is to account for the root node cost for each external

ns < (272 — 2M-1). Hence, (n1s,. .. — n1s,...) — node (there aren(+ 1) of them). L 3" (B, + E,_;)

(272 —9h—1y _ (24 2ha=1 _gh1) = gha=1 | 9m =1 o accognts for the average gxternal pgthllength of the left and
If key, is at the root, andey- is on the right subtree, thenthe right S“E”ees over W',Eh an arbitraith eIemeqt_ at the

k, is at level0, and the only possible node. Assuming®0t BUt> i EBio1r = 350, E”2—i)'n'j1ence’ rewriting the

ko is at level ho, there are2 instances possible. In oneeXpr%SS'On.forEn'_fn =(n+1)+7 2520 Ei. ThenE, , =
instance k- is the right-most node of the right subtree att 71 leon E;, which provides{(n—1)Ey, 1 —n(n—

level hsy. In that eventyn g, -

o= 1+%(21+22+...+2h2) 1) = 23 ., E;. Now expanding the expression fdt,,
(inclusive) =1 — 1 + L(2h2+1 —1)"= 22 On the other B, = (n +1) + 2B, + 2,% "2 E;. From the previous
hand, if k, is the left-most node, and the only recordxpression fork,,_;, 22?;0 E;,=FE,_; —n. Hence,E,, =
available at levels, nia,,, = 1+ 32" +22+ ...+ (n+1)+2E, 1+ +[(n—1)E,_1 —n(n—1)]. From this last
2 )4 1=24 402 —1)—1 =23 -1 +2""1 = expressionk, =2+ " E, | Expanding the recurrence
1+2h2f1._With k1 at the root, ahno?cg1 on the righ}} subtree, relationship forE,, E,, = 2+2(”:1) + ("Zl) X G Ens =
ollowing s the restitions 2 | <y <21 s, Wl ]

If key, is on the left subtree, andley, is at the root, 242> i, ) 4 (n+1) By = 2+2 (" Y (2t *25213
thenk, is at level0, and the only possible node. Hences 2(n+1) ng{l) 1 (asEy=0)=2(n+1)H, 1. Here,H,, 44
ni2,.. = 1+ 52" +22 4+ ...+ 2M) (inclusive) =1 + is the ( + 1)th Harmonic Function. Using the properties of
f(2mtl—1)—1=1+2m —1_1=29Mm Once again, Harmonic FunctionsH,, ;1 ~ log.(n + 1) + v, wherey =
N1z, =14+ 52 +22+ ... +2Mm~1) + 1 (inclusive) = Euler's constante 0.5772. Hence,E,, ~ 2(n + 1)(loge(n +

24 3(2M —1) — § = 1421 Therefore,(nia,,,, — 1)+7). The average cost for an unsuccessful searcis;
nis,,) =2 —1—-2m"t=9xom-1t 1 _om-l= - 2(loge(n + 1) + ) = 2loge(n + 1) (see [1]). The highest
2h—1 1, order term in this expression ilog.(n + 1). Therefore,

Next consider a very special case of pruning the riglit, < log.n. Again, E,, = I,, + 2n. This provides,I,, =
subtree of thest key and the left subtree of tad key 2(n+1)(log.(n+1)++)—2n. The average cost of a successful
in the two key BST Search together with the other nodegarch is!= ~ 2(n+1>(l09;(”+1>*2” ~ 2(14 L)log.(n+1) -2
from key, to keys. Further assume thdtey, is on the =~ (2/0g.(n + 1) + 2loge(n +1) —2). Asn > 1, 2 ~ 0.
left subtree andey, is on the right subtree. lkey, is  Hence,C,,, ~ 2log.(n+1)—2. The highest order term in this
at level h; and keys is at level hy with hy < h and  expression is2log.(n + 1). As n>> 1, loge(n + 1) = log.n.

ha < h, whereh is height of the BST, then the numberFinally, C,,, ~ 2(log.n — 1). Hence,C,, € log.n also. O

of nodes in the right subtree of tHet key =2° + 2! +

h—h1—141 . .

ey 2 20 D) — b=k Similarly, the  (a) (b)
total number of nodes in the left subtree of thred key ‘
=90 49l 4 4 oh—he—1) = % = 9h—ha )
These numbers may be computed by imagining a BST |,

subtree with root at the right child of thest key and //ﬁ
another subtree having the root at the left child of the .

2nd key. Off-course for this analysis to hold true, the
BST is required to be complete.

If h1 < ho, andk; is on the left subtree ankh, is on the S(n) & U(n) curves U(n) — S(n) plot

right subtreey o = (271 — 1+ k; + k2). Hence, total

number of nodes in the pruned subtre@s + 2"~ + Fig. 2. Average number of comparisons for success$igh)) and unsuc-
oh—ha = (2h1—1 — 14k + k2> + 9h—h1 4 9h—hs cessful searchesU_((n)) are plotted against the total number of records,
Similarly, if h, > ho, total number of nodes in the pruneO(The lower curve in Fig. (a) represents the curve for successful searches).
subtree (2171 — 1 4 ky + ko) + 20771 4 2h=hz,

Also if hy = ho, total number of nodes in the prune
subtree =(2/171 — 1 4+ kg + ko) + 201 4 2h—h2,

=

GFrom the standard DS literature, average number of compar-
isons for a successful searchi(n) = [1.39logan]. Average
number of comparisons for an unsuccessful seaktn,) =
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[2.7Tlogan]| ~ 2 x S(n). Both S(n) andU(n) depends on holds true form = (k + 1) different keys. As it is true for
logan. The minimum value ofn is, n,,;, = 10, and the m =1, it is also true form = 2. As it holds true form = 2,
maximum value ofn is, n.,.. = 1,000. For example, when it is also true form = 3, and so on. Hence, the theorem holds
n =10, S(n) =4.62, andU(n) = 9.2 ~ 2 x S(n). Hence, the true for anym with m > 1. O
curve for average unsuccessful seartlin) follows almost
exact pattern to that of the successful seaffn,). Again, the
difference betweel/ (n) andS(n) is, d(n) = U(n) — S(n) =
[2.77logan] - [1.39l0gan] = 1.38logan ~ S(n). Therefore,
the difference curved(n) in Fig. 2(b) has almost exactly the
same pattern as that &f(n).

3

VI. PERFORMANCEISSUES INPRACTICE

Lemma 3:An m-key binary search tree search algorithm
may be applied to any BST containingrecords, where, >=
m.

Proof: A proof by contradiction is adopted. Suppose that , ‘ ‘ ‘ ‘
m. Therefore, the total number of keys to search for in the BST ° 00 O o ot recorts 500 1000
becomes greater than the number of records within the BST.

In the best pos.'3|_b!e cas;e,dnfferent keys may be .'dent'fleq at Fig. 3. Average time to display the sorted tré@,in seconds is plotted

the n record positions, leavingn{-n) keys undecided during against the number of records,inside the tree with data acquired using the
the computation, for which, no records to look for may bBorland’s C++5.02 compiler.

available. This violates the objective of thekey BST search,

which is to identify the BST records corresponding to the Fig. 3 shows time, T required to display the nodes in ascending
keys within the BST. Hencep ¥ n, and at mostyn = n. order using in-order traversal of the BST, which is plotted
0 against the size;. The curve is obtained using Borland’s C++

Theorem 4:An m-key BST search requires considering-02 compiler. The total time]" required to display the nodes
(2m+1) different cases in identifying the records correspon@ontains two components. One is the fixed timing overhead,
ing to them keys inside the BST. Herep > 1. T, required by the program to run on a platform. The other
Proof: Following is a proof by mathematical induction. ~ ©One is the total time[}; to display the BST entries. Therefore,
Base CaseFor the base casey=1. For P(), itis the classical, I = To + Ta. Initially, from » = 10 to n = 100, the time
single key BST search. It considessdifferent cases. Theserequired to display the nodek; is insignificant compared to
are: (1) key.element = root value,2) key.element> root the timing overhead/,. Therefore,7,, dominates ovefly, as
value, and §) key.element< root value. Hence,2(x 1 + Pronounced by the relatively flat nature of the curve within this
1) = 3 different cases are being considered. range. Fom = 100 ton = 1,000, Td_ becomes relatively much
Induction: Suppose that thé-key search algorithm requireshigher compared t@,, and7; dominates ovef ;.. Therefore,
considering ¢k + 1) different cases. Herd, > 1. It is required within this range, the Fotal time conSL_Jmed depen_ds more on
to show that: [P{) A ¥V P(t)]— P(k+1), which is proving that T, than only onT,, which may be realized by the increasing
for (k+1) different keys, 2(k-+1) + 1) = 2k+3 different cases nature of the curve. _
are required to be considered. For tter(1)th key, two more Fig- 4 shows thel-key, the2-key and the3-key BST inorder
cases are required in addition to thé ¢ 1) cases for the first fraversal times plotted against for using the Java JDK
k keys. For the sorted keysk + 1)th key is the largest and 5.0 compl!er running on P_ent|um _machm_e. The total time
the last key within the list. Therefore, it requires considerin@gken rapidly increases with the increasing number of keys
only 2 additional cases. First of all, verifying whether the rod®S the time to display the combinations is approximately in
value is equal to thek(+ 1)th key value. If so, thek(-+ 1)th the_ order of,O(n™). Here,n is the number of_element_s and
key is found at the root, and it is necessary to usektey 7 IS the ngmber of keys. As > m, m remains relat|vely
steps of the BST search to locate the firsteys. Secondly, it constant with respect to, and the curves display polynomial
is required to verify whether thé: + 1)th key is larger, and characteristic as expected.
the kth key is smaller than the root node. In that event, confine
search for thék + 1)th key to the right half of the BST using VII. CONCLUSION
a classical BST search, and use the steps ofithey BST In this paper, some new results on BST performance,
search for the first keys. Rest of the cases are identical tand the deviation of the generated BST structures from the
the k-key version except that it is required to considefY) corresponding optimal structures are also presented. To search
keys instead ok keys. Hence, altogether, for thé+1) key an array with speed, the array needs to be sorted. Inserting
version, we require considerin@{+ 1 + 2) = 2(k + 1) + 1 new nodes in an ordered array is a pain. Again, inserting new
different cases. nodes in a linked list is easy; but searching for an existing
Conclusion: The theorem is true fom = 1. Assuming that node in a linked list is difficult. BSTs are data structures that
the theorem holds true fam = k, it is proved that it also combines the good properties of arrays and linked lists, but has

Average display time, Tavg in seconds
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Fig. 4. Total timeTy,;,; to search and display all possible key combinations
for 1-key, 2-key, and3-key BST searches are plotted against the total number
of nodes,n. Topmost curve is for th8-keys considered together. The middle
one is for possible-key combinations, and the lower most curve is for the
casuall-key BST search. Sun Java’s JDcompiler was used in performance
measurement.

none of the bad parts. Hence, complete and nearly complete

BSTs draw special attention to the data structure researchers.

Efficiency of a BST application depends on the depth of
the tree,h. Therefore, a good number of the results are based
on the heighth-based performance of the BSTs. In the best
possible scenario, the optimal depth ig..: = loga(n). If
the keys are added at random to a gradually growing BST
structure, it results in a BST with an average height,,.

For an average BST,.,, ~ 1.39l0g2(n). Thereforehq,g is
only about40% higher than the best possible.

In future, a dynamic programming model for generating
an optimal BST structure with the minimal internal and
the external path lengths will be developed, and the related
performance issues will be addressed.
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