INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

Optimized Production-Ready Source Code Generation
Based on UML

Michal Bliznak, Tomas Dulik, Roman JaSek, and Pavel Varacha

Abstracts—Automated source code generation is often an integral
part of modern CASE tools. Unfortunately, the generated code usually
covers a basic application functionality/structure only. This paper shows
principles and algorithms used in open-source cross-platform CASE tool
called CodeDesigner RAD developed at Tomas Bata University suit-
able for production-ready source code generation of complete C/C++
or Python applications from formal visual description based on UML
diagrams. It shows how source state charts are preprocessed as well
principles used for generation of optimized source code from the pre-
processed diagrams.

Keywords—RAD, CASE, UML, source, code, generation, C/C++,
production-ready, cross-platform, optimization, preprocessing, Cod-
eDesigner

I. INTRODUCTION

OWADAYS, there exist many software development tools
N able to generate source code of basic application skeleton
from its formal description (typically described by using UML
diagrams). Unfortunately, in many cases these tools lack an abil-
ity to generate complete, production-ready source code defining
both the application structure and logic suitable for building with-
out need of any modifications done by a developer. This paper
shows principles and algorithms used in cross-platform develop-
ment tool called CodeDesigner RAD [2] aimed for production-
ready source code generation which allows users to generate
complete applications from their formal description.

Fig. 1: CodeDesigner RAD

Michal Bliziidk is with the Tomas Bata University, Faculty of Applied In-
formatics, Department of Informatics and Artificial Intelligence, Nad Stranemi
4511, 76005 Zlin, Czech Republic (corresponding author to provide phone:
00420-576035187; e-mail: bliznak @fai.utb.cz).

Tomas Dulik, Roman Jasek and Pavel Varacha are with the Tomas Bata Uni-
versity, Faculty of Applied Informatics, Department of Informatics and Artifi-
cial Intelligence, Nad Stranemi 4511, 76005 Zlin, Czech Republic (e-mails: du-
lik @fai.utb.cz, jasek @fai.utb.cz and varacha@fai.utb.cz).

CodeDesigner RAD application show in Fig. 1 has been devel-
oped by using well known cross-platform programming toolkit
called wxWidgets [8] together with its add-ons wxXmlSerializer
[3] and wxShapeFramework [4]. It provides very simple and in-
tuitive way how to graphically describe an application structure
and logic on MS Windows and Linux platforms. Moreover, it
offers also reverse source code engineering capabilities so user
can simply import existing C/C++ or Python source code into the
tool.

The algorithms and principles shown in this article mostly
don’t depend on specific programming language (except a few
specialized optimizations). This is important because formal ap-
plication description is language-independent in its nature. It will
be shown that presented principles can be used for generation
of complete applications written in C/C++, Python or another
object-oriented programming language.

II. CODE GENERATION IN DETAIL

The code generation process consists of four steps as shown in
Fig. 2. First of all a source diagram is preprocessed so its struc-
ture will change in order to be more suitable for further process-
ing by the code generator. Preprocessed diagram must be verified
to find possible inconsistencies in the diagram’s topology. If the
verification fails the code generation process is aborted. After
that, a set of optimization procedures leading to various simpli-
fications of the diagram’s structure can be performed on the ver-
ified diagram. The last step represents a final generation of a
source code from verified and optimized diagram. This task is
performed by a functional object called code generator.

Fig. 2: Code generation process

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

The code generator reads the structure of modified diagram
and writes source code fragments accordingly to the used code
generation algorithm to output source file(s). Code generation al-
gorithms can be filtered by output programming language since
some language don’t have to support all command statements
produced by the algorithm (e.g. switch command statement is
supported in C/C++ but not in Python). Generally, there are four
basic types of code fragments:

e functions declarations and definitions,
e variables declarations and assignments,
e conditional statements,

e user-defined source code of methods/functions and the con-
ditional statements.

Code generation algorithms use so called element processors
which provide symbolic code tokens for processed diagram el-
ements. These symbolic tokens are converted into textual code
fragments by language processors with syntax in accordance to
the used output programming language specification. Several
language processors can be used at the same time so we can get
set of source files in different programming languages during one
code generation process. The complete structure of source code
generator implemented in CodeDesigner RAD is shown in Fig 3.

Source diagram
Preprocessor
Verifier

Optimizer

Generator

Algorithms

T~

‘ Output source codeT

X

Element processors

’ Language processor

Fig. 3: Structure of code generator

A. Diagram preprocessing

Preprocessing of source diagrams implemented in Cod-
eDesigner RAD is used for deconvolution of hierarchical state
charts [5] into classic Mealy state machines [1] further processed
by state chart code generator.

The deconvolution process consists of four dependent steps:

1. conversion of entry/exit state actions into transition ac-
tions — the algorithm checks all states in the diagram
whether they include entry/exit actions and assign those ac-
tions to all non-state-loop (i.e. transitions starting and end-
ing in different states) incoming/outcoming transitions as
shown in Fig. 4.

‘ Initial 3
N

N
<< /[ethuonm >>

N{ial 2

\\\4 o
<< 10 >357 o bosite machine
entry / [entryAction()]
exit / [exitAction()]

\
<< shouldskg() >>

®

Final 2

<< /[doAction()] >>

simple state \)
\ y |
~/
<< shouldExit() / {exitAction()] >>
L))

Final 3

" \
<</ [Mon@'
~.

Fig. 4: Entry/exit actions conversion

2. re-connection of state outputs — the algorithm creates
copies of conditional transitions starting in parent hierarchi-
cal state and connects them to all (next level) child states.
The condition-less transitions starting in the parent hierar-
chical state will be connected to embedded final state. The
child states must be processed from the top level to the bot-
tom level so BFS algorithm [7] must be used for retrieving
of the child states. The simple illustration of this modifica-
tion is shown in Fig. 5.

Composite machine 2

entry /[]
exit/[]

<</[>>

Start

<<Event/[]>>

®©

Event occured

<< Event/[}>> << Event/[]>>

Event occured 2

Fig. 5: Re-connection of output transitions

3. re-connection of state inputs — the algorithm re-connects
all transitions starting in embedded initial states (i.e. ini-
tial states placed inside a hierarchical state) to their parent
hierarchical state.

Composite machine 3 2
&

Inner32

N
P

<< /0%

Final 42

Fig. 6: Re-connection of input transitions

4. state actions sorting — state actions assigned to transitions
must by sorted in such way that EXIT actions must be at the
top of the list followed by ENTRY actions.

B. Verification

Verifications done after the source diagram preprocessing en-
sure that there are no inconsistencies and other issues in the dia-
gram structure so it can be successfully processed by next parts of
code generator. The verification process of state charts consists
of the following independent tests runnable in any order:

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

e check initial states — the algorithm tries to find whether
there exist exactly one initial state in the diagram/parent hi-
erarchical state

o check history states — check history states so:

— history state must have a parent hierarchical state

— there can be only one incoming transition in the history
state which must be conditionless and must start in its
parent or initial state

— there can be only one outcoming transition in the his-
tory state which must be conditionless

o check final states — the algorithm tries to find whether there
exist at least one final state in the diagram

e check unconnected states — the algorithm checks whether
the diagram is fully connected

e check transitions — check transition paths between states
s0:

— there are no transitions with duplicated guard condi-
tion per a state

— there are no transitions with duplicated priority level
per a state

— there is just one conditionless transitions per a state

e check input actions — check whether a state chart with de-
fined input actions has activated code generation algorithm
supporting the input actions!

C. Optimization

Optimization algorithms provided by state chart generator im-
plemented in CodeDesigner RAD are aimed to reduction of used
states and to simplifications of the diagram topology. Moreover,
they allow code generator to produce source code easily readable
by humans.

The diagram optimization process consists of three dependent
steps which can be performed in several iterations until further
optimization is required and a defined maximum iteration count
is not reached as shown in Algorithm 1. The "hardcoded" maxi-
mum iteration count is used due to a possibility of main optimiza-
tion loop to converge into infinite loop under certain conditions.

The optimization tasks are following:

1. merge of direct diagram branches — the algorithm tries to
find direct condition-less branches inside the optimized dia-
gram composed of several transitions and states and merge
them into one condition-less transition with an action com-
bined from all actions used in the branch as shown in Fig.
7. The optimization reduces overall number of the diagram
states.

"The input action is an action/function invoked at every iteration of a main
loop implementing the state chart behavior so it can be used for reading of input
symbols as discussed in Chapter III.B. Each state chart can has got one input
action defined.

Initial 7

Simple state 2

<< /IAQ), B(}, €(), DO >>

<< /[€01>>

()] >>

Simple state 4

Fig. 7: Optimize direct branches

Final 5

Final 7

2. merge of parallel transitions — the algorithm tries to merge
several parallel transitions with identical starting and end-
ing states guarded by identical conditions into one transi-
tion with combined conditional statement as shown in Fig.
8. The optimization reduces number of transitions in the
diagram.

Initial 9

<< ifA() / [doAction()] >>
<< ifAorB() / [doAction()] >>

<< ifB() / [doAction()] >>

Final 8 Final 9

Fig. 8: Optimize parallel transitions

3. inversion of conditions — the algorithm optimizes sub-
diagrams composed of two transitions with identical starting
state where the first transition contains a condition and has
no actions while the second one contains action(s) and has
no condition assigned so just one transition with inverted
condition and defined action(s) is created as shown in Fig.
9. The algorithm optimizes program flow and makes the
generated source code "prettier”.

Initial 10
Initial 11

<< Copdition() / [] >> << notCondition() / [doAction()] >>

<< [[doAction()] >>

Final 10

Final 11

Fig. 9: Invert conditions

The main optimization loop is shown in Algorithm 1. Note that
flag again used for determination whether further optimization
is required is built as a logical sum of return values provided
by the subsequent optimization tasks returning true if the task
performed any change on the diagram topology.

III. GENERATORS, ALGORITHMS AND ELEMENT

PROCESSORS

In general, any automated source code generator can produce
just generic source code covering basic application structure and

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

Algorithm 1 Optimize state chart

1+ 1

repeat
again < false
again| = mergeDirect Branches()
again| = mergeParallelTransitions()
again| = invertConditions()
1 1+1

until : < MAXITER and again is true

logic, in other words the application skeleton. There are always
minimal code fragments called code snippets that must be writ-
ten by the programmer manually. These code snippets often im-
plement platform/language specific operations which cannot be
generated automatically like input/output operations, arithmetic
calculations, etc. Therefore, CASE tools aimed for production-
ready source code generation must allow users to manually de-
fine the code snippets and use them in the code generation pro-
cess. This approach allows code generation of production-ready
source code which can be built into full-featured executable.

Since every diagram type describes the application internals in
a completely different way then specific code generators must be
available for each diagram. Of course, there can exist more than
one code generator suitable for one diagram type and the user can
choose the one which fills all his needs.

Another aspect of source code generation process is usage of
various code generation algorithms suitable for specific diagram
types, output programming language and coding style. For ex-
ample, CodeDesigner RAD provides three different code gener-
ation algorithms for state charts which are filtered by output pro-
gramming language: Loop-Case, Else-If for C/C++ and Python
and Go-To for C/C++ only, since Python programming language
doesn’t support direct jumps. The output of these algorithms dif-
fers not only in used command statements but also in the extent
of produced source code. The differences between the algorithms
is discussed in Chapter IIL.B.

Code generation algorithms implemented in CodeDesigner
RAD aggregates set of so called element processors responsible
for production of source code fragments based on processed di-
agram element. Generally, the element processors can be shared
between several code generation algorithms or several diagram
elements if they produce the same source code.

The next chapters deal with specific aspects of code genera-
tors/algorithms available in CodeDesigner RAD.

A. Class Diagram Code Generator

The class diagram is the main building block of object oriented
modeling. It is used both for general conceptual modeling of the
systematics of the application, and for detailed modeling trans-
lating the models into programming code. The classes in a class
diagram represent both the main objects and or interactions in
the application and the objects to be programmed. In the class
diagram these classes are represented with boxes which contain
three parts [1]:

o the upper part of holds the name of the class

o the middle part contains the attributes of the class

e the bottom part gives the methods or operations the class
can take or undertake

In the system design of a system, a number of classes are iden-
tified and grouped together in a class diagram which helps to de-
termine the static relations between those objects. With detailed
modeling, the classes of the conceptual design are often split into
a number of subclasses. In order to further describe the behavior
of systems, these class diagrams can be complemented by state
charts as shown in Chapter IIL.B.

In addition to the classic classes the class diagram can contain
also elements representing class templates and enumerations as
shown in Fig. 10.

Template
Class template

Class << enumeration >>

Enumeration

+ attribute : int + attribute : int
enuml

enum2

+ method() : void + method() : void

Fig. 10: Basic class diagram elements

The relations between class objects in the class diagram called
associations and aggregations are defined in [1]. The most com-
mon are:

e inheritance/interface association — defines inheritance re-
lation between classes and interfaces

¢ uni-directional/bi-directional association — represents the
static relationship shared among the objects of two classes

e aggregation/composition aggregation — association that
represents a part-whole or part-of relationship

e template binding — used for specialization definition of
template classes

e include association — used for inclusion of a class into an-
other (parent) class which behaves as a namespace

The following paragraphs show how various class diagram ele-
ments are processed by the class diagram generator implemented
in CodeDesigner RAD.

Class element Fig. 11 shows basic class element with follow-
ing members defined: public attributel, protected attribute2,
public methodl, private method2, public constructor and public
destructor.

SimpleClass

+ attributel : int
attribute2 : int

+ SimpleClass() : constructor
+ SimpleClass() : destructor
+ method() : void

- method2() : void

Fig. 11: Basic class element

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

Listing 1: C++ class declaration/definition

class SimpleClass {
public:
int attributel ;

SimpleClass () ;
~SimpleClass () ;
void method () ;

protected :
int attribute?2;

private:
void method2 () ;

)i

SimpleClass :: SimpleClass () {
}

SimpleClass ::~SimpleClass () {
}

void SimpleClass :: method () {
}

void SimpleClass :: method2 () {
}

Interface InheritedClass

+ method() : void abstract + method() : void virtual

+ InheritedClass() : destructor virtual

BaseClass

+ method() : void virtual

Fig. 12: Class inheritance

Listing 3: C++ class inheritance

Listing 2: Python class definition

class SimpleClass:
public data members:
attributel

protected data members:
__attribute?2

public function members:
def __init__(self):
""" Constructor """
pass

def __del__(
""" Destructor

self):

noon

pass

def method(
pass

self):

private function members:
def __method2(self):
pass

class Interface {
public:
virtual void method() = O0;

}s

class BaseClass
public:
virtual void method () ;

public Interface {

}s

class InheritedClass
public:
virtual void method () ;
virtual ~InheritedClass ();

public BaseClass {

}s

void BaseClass :: method () {
}

void InheritedClass

}

::method () {

InheritedClass ::~InheritedClass () {
}

Listing 4: Python class inheritance

Class inheritance Fig. 12 shows an interface (abstract class),
a base class implementing the interface and a class inheriting
the base class. Also virfual functions and destructor are illus-
trated there.

class Interface:
public function members:
def method(self):
pass

class BaseClass(Interface):
public function members:
def method(self):
pass

class InheritedClass(BaseClass):
public function members:

def method(self):
pass

def __del__(self):
pass

Class inclusion Fig. 13 shows inclusion of classes defined via
include association. Note that enumeration elements can be in-
cluded into parent classes in the same way. This operation en-

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

sures that included elements will be accessible under namespace
defined by it parent element name.

ParentClass ChildClass

<< includes >>

Fig. 13: Class inclusion

Listing 5: C++ class inclusion

class ParentClass {
public:
class

}s

ChildClass {

}s

Enumeration element Enumeration shown in Fig. 15 is gen-
erated in different ways for C/C++ and Python languages. C/C++
language processor uses standard enum keyword for the code
generation but standard class is used instead for Python source
code generation since the Python language doesn’t provide re-
served keyword for the enumerations.

<< enumeration >>

Enum
item0 = 10
iteml
item2

Fig. 15: Enumeration

Listing 8: C/C++ enumeration

Listing 6: Python class inclusion

class ParentClass:
class ChildClass:
pass

pass

enum Enum {
item0 = 10,
iteml ,
item?2

}s

Listing 9: Python enumeration

Class template binding Fig. 14 shows class template binded
to specialized class. CodeDesigner RAD support class templates
code generation for C++ language only because Python language
doesn’t use class templates.

Math
FloatMath

<< bind >>

+sum(a:T,b:T):T <float>

Fig. 14: Class template

Listing 7: C++ class template

class Enum:

item0 = 10,
iteml = 11,
item2 = 12

template <typename T>
class Math {
public:
T sum(T a, T b);
}s

class FloatMath
}s

public Math<float> {

template <typename T>
T Math<T>::sum(T a, T b) {
return a + b;

}

template class Math<float >;

B. State Chart Code Generator

UML state chart is a significantly enhanced realization of the
mathematical concept of a finite automaton [6] in Computer Sci-
ence applications as expressed in the Unified Modeling Language
notation [1].

The concepts behind this are about organizing the way a de-
vice, computer program, or other (often technical) process works
such that an entity or each of its sub-entities are always in ex-
actly one of a number of possible states and where there are
well-defined conditional fransitions between these states. UML
state machine, known also as UML state chart, is an object-based
variant of Harel state chart [5] adapted and extended by UML.
UML state machines overcome the main limitations of tradi-
tional finite-state machines while retaining their main benefits.
UML state charts introduce the new concepts of hierarchically
nested states and orthogonal regions, while extending the notion
of actions. UML state machines have the characteristics of both
Mealy machines and Moore machines [6] defined in (1). They
support actions that depend on both the state of the system and
the triggering event, as in Mealy machines (2), as well as entry
and exit actions, which are associated with states rather than tran-
sitions, as in Moore machines (3).

Both Mealy and Moore machines are a 6-tuple,

(Sa 50725A7T7 G) (1)

, consisting of the following:

e afinite set of states (5)

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

e a start state (also called initial state) s; where sg € S
e a finite set called the input alphabet (X)
e a finite set called the output alphabet (A)

e a transition function (7" : S x ¥ — S) mapping pairs of a
state and an input symbol to the corresponding next state.

An output function of Mealy machine is defined as follows

(G:S8xX—=A) 2)
It maps pairs of a state and an input symbol to the correspond-
ing output symbol. In contrast to the Mealy machine a Moore
machine’s output function

(G:5 = A) 3)
maps each state to the output alphabet.

Graphical representation of Mealy and Moore state charts vi-
sualized by using UML state chart notation illustrates Fig. 16.
Note that Mealy state chart requires fewer states than the Moore
state chart because all triggered actions are assigned directly to
the transitions while the Moore state chart needs two extra states
for writing the output by using their entry actions.

Begin Mealy

Begin Moore

<<ifg()/[1>>

<<ifA() / [dgAO] >> <<ifg0/l1>>
Moore state 2

entry / [doB()]
exit/[]

Moore state 1
entry / [doA()]
exit/[]

<<ifB() /[d6B()] >>

End Mealy End Moore

Fig. 16: Mealy vs Moore state charts

From the code generation point of view the symbols of both
the input alphabet Y. and the output alphabet A can be mapped to
user-defined code snippets mentioned above. User-defined con-
ditional statements or functions returning boolean/numerical val-
ues can be regarded as symbols of > while the user-defined ac-
tions (i.e. source code fragments or other methods) can be re-
garded as symbols of A.

A projection of state chart describing an application logic into
a source code is influenced by used code generation algorithm.
There exist number of the algorithms which differ in used com-
mand statements, coding style and extent of produced source
code. Some of them produce state tables hard to read by humans
but saving the disk space while the other ones write sequence
of conditional statements and composed commands which take
much more spaces but can be easily read or modified by the pro-
grammer.

CodeDesigner RAD supports three code generation algorithms
provided by state chart code generator:

e Loop-case algorithm

e Else-If algorithm

e Go-To algorithm

All of them are optimized for production of easily readable and
modifiable source code. For better understanding lets compare an
output of the algorithms processing state chart shown in Fig. 17.

/ Hello y

entry / [sayHello()]
exit / [askFOrENTER()]

Initial

Wait for ENTER key

entry /[]
exit /[]

/ [readKey(

Fig. 17: State Chart

The Listing 10 reveals an output produced by Loop-case algo-
rithm. This algorithm is suitable for programming languages sup-
porting switch command statement like C/C++ and JAVA. Unfor-
tunately, it cannot be used in conjunction with Python language
due to missing switch command statement.

Loop-case algorithm produces highly structured source code
easily readable and maintainable by humans. Another advan-
tage is that switch-case command sequence allows to optimize
number of iterations of main application loop implementing the
state chart behavior. It is possible by omitting of break command
statements used for separation of the switch cases like shown in
Listing 10 where the break command is missing between states
ID_INITIAL, ID_HELLO and ID_WAIT_FOR_ENTER_KEY.

Listing 10: Loop-Case algorithm output

STATE T Hello_World()
{

STATE_T state = ID_INITIAL;
for(;;) {
switch(state) {

case ID_INITIAL: {
sayHello () ;
state = ID_HELLO;
}
case ID_HELLO: {
askForENTER () ;
state = ID_WAIT_FOR_ENTER_KEY ;
}
case ID_WAIT_FOR_ENTER_KEY: {
if(! (isEnter())) {

readKey () ;
}
else {
state = ID_FINAL;
}
break ;

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

case ID_FINAL: {
return ID_FINAL;
}

}

return ID_FINAL;

Else-If algorithm’s output based on the same input diagram is
shown in Listing 11. The main difference is that is uses simple
if-else if-else command sequence instead of switch-case. This ap-
proach solves the problem of missing swifch command in some
programming languages but prevents better program flow opti-
mization like done in Loop-case algorithm because just one state
can be entered per one main state chart loop iteration.

Listing 11: Else-If algorithm output

STATE_T Hello_World() {
STATE_T state = ID_INITIAL;

for(;;) {
if (state==ID_INITIAL) {
sayHello () ;
state = ID_HELLO;
}
else if(state==ID_HELLO) {
askForENTER () ;
state = ID_WAIT_FOR_ENTER_KEY ;
}
else if(state==ID_WAIT_FOR_ENTER_KEY) {
if(! (isEnter())) {
readKey () ;
}
else {
state =

}

ID_FINAL;

}
else if(state==ID_FINAL) {
return ID_FINAL;

Both the Loop-case and Else-If algorithms produce quite large
source code. This drawback solves the last mentioned algorithm
called Go-To whose output is shown in Listing 12. As can be
seen the Go-To algorithm produces the smallest extent of source
code and the program flow is the most natural. In some cases it is
able to generate source code similar to the one written manually
by a human programmer. Unfortunately, it uses "evil" gofo com-
mand statement which causes the source code to be un-structured
little bit.

Listing 12: Go-To algorithm output

CodeDesigner RAD allows each diagram to be processed by a
different code generation algorithm so it is completely up to the
user which one he will use for specific diagram.

C. Simple State Charts

Lets observe how simple state chart elements can be mapped
to C/C++ source code by using different algorithms. Both Loop-
case and Go-To algorithms will be discussed in the following
examples for better understanding of their main differences.

Consider one initial pseudo state as a source of two transi-
tions leading to two different final pseudo states as shown in Fig.
18. One of the transitions is guarded by a conditional statement
encapsulated inside a function returning boolean value in accor-
dance to the evaluated logical expression. Both of the transitions
have action code assigned.

Initial 12

doB()] >>
<< ifA() /

Final 12 Final 13

Fig. 18: Simple state chart

In this case the input alphabet as defined in (1) contains two
symbols ¥ = {if A, e} where € is empty string and the output al-
phabet contains symbols A = {doA, doB}. If the state machine
reads the symbol {if A} then it writes the output symbol {doA}
and it transits to the final state "Final 12". If the state machine
reads {€}, i.e. there is no conditional statement guarding the tran-
sition then the state machine writes symbol {doB} and transits
to the final state "Final 13".

Output of the Loop-case algorithm implementing the state
chart show in Fig. 18 if as follows:

Listing 13: Loop-case implementation of Fig. 18

STATE_T Hello_World()
{
sayHello () ;

askForENTER () ;

ID_WAIT_FOR_ENTER_KEY_L:
if(! (isEnter()))
{
readKey () ;
goto ID_WAIT_FOR_ENTER_KEY_L;

STATE_T Simple_State_Chart()

{

STATE_T state = ID_INITIAL_12;

for(;;) {
switch(state) {
case ID_INITIAL_12: {
it ifA()) |
doA ()
state = ID_FINAL_12;
}
else {
doB () ;
state = ID_FINAL_13;
}
break ;
1

case ID_FINAL_12: {

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

return ID_FINAL_12;
}
case ID_FINAL_13: {
return ID_FINAL_13;

}

Output of the Go-To algorithm implementing the same state
chart is as follows:

Listing 14: Go-To implementation of Fig. 18

STATE_T Simple_State_Chart()
{
if (ifAQ)) {
doA () ;
goto ID_FINAL_12_L;
}
else {
doB () ;
}

return ID_FINAL_13;

ID_FINAL_12_L:
return ID_FINAL_12;

Note the number / placed in front of the Event flag guarding a
transition leading to "Event occurred 3" final state. This notation
means that the transition trigger has the highest priority (a range
<1, 255> can be used where 1 is the highest priority and 255 is
the lowest, default priority) so the conditional statement will be
tested preferentially as can be seen in Listing 15.

During the state chart preprocessing discussed in Chapter A.
the initial state "In" is merged with the parent state "Compo-
sition state" and two outcomming transitions pointing to final
states "Event occurred 3" and "Exit 3" are re-connected to all
remaining nested states so the transition guarded by Event flag
is re-connected to both "Nested" and "Nested 2" states and the
condition-less transition leading to "Exit 3" final state is re-
connected to nested final state called "Out".

The modifications performed on the parent "Composition
state" ensures that Event flag is tested in all standard nested states.
C/C++ source code generated from the diagram covering its func-
tionality is as follows:

Listing 15: Loop-case implementation of Fig. 19

D. Hierarchical State Charts

Hierarchical state charts [5] allow definition of complex ap-
plication behavior in a simple way with reduced number of used
states than would standard state charts require. As mentioned
above the UML state charts are based on the hierarchical state
charts so the notation is nearly the same.

There are two main additions to the standard state charts de-
fined in hierarchical ones and supported by CodeDesigner RAD:

e nested/composition states
e history pseudo states

At the first lets examine how nested states are mapped into
generated source code. Consider hierarchical state chart as
shown in Fig. 19.

Composition state

Start 3

entry /[]
’\D exit/[]

<< [[] >>

<< 1 Event/[] >>

Event occured 3 Exit 3

Fig. 19: Hierarchical state chart

STATE_T State_Chart_2()
{

STATE_T state = ID_START_3;
for(;;) {
switch(state) {

case ID_START_3: {
state = ID_COMPOSITION_STATE;

}
case ID_COMPOSITION_STATE: {

if (ifA()) {
doA () ;
state = ID_NESTED;
}
break ;

}
case ID_NESTED: ({

if (Event) {

state = ID_EVENT_OCCURED_3;
}
else if(ifB()) {
doB () ;
state = ID_NESTED_2;
}
break ;

}
case ID_NESTED_2: {

if (Event) {

state = ID_EVENT_OCCURED_3;
}
else {
state = ID_OUT;
}
break ;

}

case ID_OUT: {
state = ID_EXIT_3;

}

case ID_EXIT_3: {
return ID_EXIT_3;

}

case ID_EVENT_OCCURED_3: {
return ID_EVENT_OCCURED_3;

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013
}

Go-To algorithm’s output implementing the same state chart is
following:

Listing 16: Go-To implementation of Fig. 19

after the state is entered again like shown in Fig. 20. A source
code implementing the state chart in C/C++ by using Loop-case
algorithm can be following:

Listing 17: Loop-case implementation of Fig. 20

STATE_T State_Chart_2()
{
ID_COMPOSITION_STATE_L:
if (ifA()) {
doA () ;
goto ID_NESTED_L;

}
goto ID_COMPOSITION_STATE_L;

ID_NESTED_L:
if (Event) {

goto ID_EVENT_OCCURED_3_L;
}

else if(ifB()) {
doB () ;
goto ID_NESTED_2_L;
}

goto ID_NESTED_L;

ID_NESTED_2_L:
if (Event) {

goto ID_EVENT_OCCURED_3_L;
}

return ID_EXIT 3;

ID_EVENT_OCCURED_3_L:
return ID_EVENT OCCURED 3;

The history pseudo state can be used in conjunction with
nested states as illustrated in Fig. 20.

Composition state 2

Start 4

entry /[]
.\D exit / []

<< ifA() / [doA()] >>

History

<< 1l:Event/[]>>

Process event
= entry /]
exit / [doAction()]

Fig. 20: Hierarchical state chart with history

History state behaves like a composition state local memory
where information about currently processed state is kept. The
information is used later for restoration of run point at which the
composition state was leaved (in a case the Event has occurred)

10

STATE_T State_Chart_3()

{
STATE_T state = ID_START_4;
STATE_T history = ID_NESTED_3;

for(;;) {
switch(state) {
case ID_START_4: {
if(ifAQO) {
doA ()
state = ID_COMPOSITION_STATE_2;
}
break ;
1
case ID_COMPOSITION_STATE_2: {
state = ID_HISTORY;
1

case ID_HISTORY:
/+* call entry actions
states x/
switch(history)
{
}

state =
break;

of possible target

history ;

case ID_NESTED_3: {
if (Event) {
history = ID_NESTED_3;

state = ID_PROCESS_EVENT;
}
else if(ifB()) {
doB () ;
state = ID_NESTED 4;
}
break ;

}
case ID_NESTED 4: {
if (Event) {
history = ID_NESTED_4;

state = ID_PROCESS_EVENT;
}
else {
state = ID_OUT_2;
}
break ;
}
case ID_OUT_2: {
history = ID_OUT_2;
state = ID_EXIT_4;

}
case ID_EXIT 4: {

return ID_EXIT_ 4;
}
case ID_PROCESS_EVENT: {
doAction () ;
state = ID_COMPOSITION_STATE_2;
break ;
}

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

Go-To algorithm’s output implementing the same state chart is

following:

Listing 18: Go-To implementation of Fig. 20

STATE_T State_Chart_3()

{

STATE_T history = ID_NESTED_3;
ID_START_4_L:
if(ifAQ)) {

doA () 3

goto ID_COMPOSITION_STATE_2_L;

}
goto ID_START 4_L;

ID_COMPOSITION_STATE_2_L:

ID_HISTORY_L:

if (history ID_NESTED_3) {
goto ID_NESTED_3_L;

}

else if(history == ID_NESTED 4) {
goto ID_NESTED_4_L;

}

ID_NESTED_3_L:

if (Event) {
history = ID_NESTED_3;
goto ID_PROCESS_EVENT_L;

1

else if(
doB () ;
goto ID_NESTED_4_L;

}
goto ID_NESTED_3_L;

ifB()) {

ID_NESTED_4_L:
if (Event) {
history = ID_NESTED_4;
goto ID_PROCESS_EVENT_L;
}

return ID_EXIT_4;

ID_PROCESS_EVENT_L:
doAction () ;
goto ID_COMPOSITION_STATE_2_L;

rithm suppresses C compiler warnings, etc. Now, lets observe
how specific optimizing and preprocessing algorithms influences
properties of output source code.

At the first, inversion of conditional statements discussed in

Chapter I1.C. will be examined. Lets consider a simple state chart
like in Fig. 21.

Initial 13

<< Conditign() / []1 >>

Final 14 Final 15
Fig. 21: Condition inversion

Source code generated by Go-To algorithm without optimized

inversion of conditional statements can be seen in Listing 19.

Listing 19: Go-To algorithm without conditions inversion

STATE_T Inversion()

{

if (Condition()) {
goto ID_FINAL_14_L;
}
else {
doAction () ;

}

return ID_FINAL_15;

ID_FINAL_14_L:
return ID_FINAL_14;

In this case the compound command enclosed by curly braces

after positive condition test contains just one jump to relevant
final state while the compound command invoked after the else
keyword contains an action which will be called in the case the
tested condition is not met. Lets compare the source with content
of Listing 20 where the same input state chart is processed by
using Go-To algorithm with optimized inversion on conditions.

Listing 20: Go-To algorithm with conditions inversion

levels.

IV. SOURCE CODE OPTIMIZATIONS

Generated source code can be optimized at several different
Optimizations performed on processed diagrams dis-

cussed in Chapter II.C. lead to production of optimized source
codes with reduced extent or better readability due to better
source diagram’s topology. Also some kind of low-level op-
timizations can be performed on the code: omitting of useless
command statements as discussed in Chapter III.B. leads to bet-
ter program flow, omitting of unused code labels in Go-To algo-

11

STATE_T Inversion()

{

if (! (Condition())) {
doAction () ;
goto ID_FINAL_I15_L;

}

return ID_FINAL_14;

ID_FINAL_15_L:
return ID_FINAL_15;

As can be seen from the listing the inversion of generated con-

ditions allows the algorithm to merge both contents of compound

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 1, Volume 7, 2013

commands shown in Listing 19 so the whole else section of if
clause can be omitted.

Another source code optimization which can be illustrated on
the Fig. 21 is suppression of unused gofo labels. Both List-
ings 19 and 20 show source code where the optimization is used.
Now lets compare the Listing 20 with following one where the
suppression of unused goro labels is not active.

Listing 21: Go-To algorithm without suppression of unused la-
bels

STATE_T Inversion()
{
ID_INITIAL_13_L:
if (! (Condition())) {
doAction () ;
goto ID_FINAL_15_L;
}

ID_FINAL_14_L:
return ID_FINAL_14;

ID_FINAL_15_L:
return ID_FINAL_15;

Note that in this code the labels ID_INITIAL_13 L and
ID_FINAL_I14_L without referencing goto jumps are generated
which has two drawbacks: the extent of the source code in-
creases and it can also produce warnings from a C/C++ compiler
which can lead to complete fail of the build process if a compiler
flag making the compiler treat warnings as errors is used (e.g.
-pedantic-errors build flag in gcc/MinGW compilers).

V. CONCLUSION

As shown in the paper, fully functional, production-ready
source code can be generated by using nowadays modern CASE
tools like CodeDesigner RAD. Moreover, the generated code can
be optimized by using several preprocessing and optimizing algo-
rithms so it has a form and structure near the source code written
by human programmers. The paper also revealed how specific
code generation algorithms influence overall properties of gener-
ated source code.

Acknowledgements: The research was supported by the Euro-
pean Regional Development Fund under the project CEBIA-Tech
No. CZ.1.05/2.1.00/03.0089.acm

REFERENCES

[1] UML 2.2 infrastructure. http://www.omg.org/spec/UML/2.2/
Infrastructure/PDF/, 2011.

[2] Michal Bliznak. CodeDesigner
http://codedesigner.org/, 2011.

RAD homepage.

[3] Michal Bliziidk, Tomdas Dulik, and Vladimir VaSek. A per-
sistent Cross-Platform class objects container for c++ and
wxWidgets. WSEAS TRANSACTIONS on COMPUTERS
Volume 8, 2009, 8(1), January 2009.

12

[4] Michal Blizidk, Tomd$ Dulik, and Vladimir Vasek.
wxShapeFramework: an easy way for diagrams manipula-
tion in c++ applications. WSEAS TRANSACTIONS on COM-
PUTERS Volume 9, 2010, 9(1), January 2010.

David Harel. Statecharts: A visual formalism for complex
sysytems. Science of Computer Programming, 8(3):231—
274, June 1987.

[6] John Hopcroft and Jeffrey Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley Pub-

lishing Company, 1979.

[7] Donald E. Knuth. The Art of Computer Programming Vol 1.
Boston: Addison-Wesley, 3rd edition, 1997.

[8] Julian Smart, Kevin Hock, and Stefan Csomor. Cross-
Platform GUI Programming with wxWidgets. Prentice Hall,
August 2005.

