
 

 

  
Abstract—Machine Vision for industrial applications requires 

simple-to-use and robust solutions. Usually industrial machine vision 
solutions are reduced to a simple 2D application, for which algorithm 
robustness has already been fully demonstrated, and where a key part 
of all those visual inspection systems is the efficient illumination 
control systems that ensure the repeatability of captured image 
intensity. Nevertheless these projects sometimes require the 3D 
information for applications such as pick and place robotics, and this 
field of applications is not yet covered by most of the commercial 
industrial vision brands. We present in this paper a new fast, precise 
and robust 3D localization method based on object edge. This 
process offers an infinite number of possible cases of industrial 
applications when 3D localization is required, but could also be 
employed for classification since 3D localized object conserves its 
almost whole extracted edge. For example, in case of the food 
industry, fruits are selected depending on their size and could require 
a 3D localization process because of the random distribution on a 
conveyor belt. The presented industrial machine vision system is 
easy and fast to implement. As detailed in the final part of this paper, 
the computed statistics demonstrate the robustness and precision of 
this system, which results an inexpensive solution for industrial 
applications.  
 

Keywords—3D edge localization, 3D edge classification, 
Industrial Machine Vision.  

I. INTRODUCTION 
URING the last few decades, Machine Vision has 
progressively increased its quantity of industrial 

applications, by generalizing simpler previous solutions and 
developing new tools specially designed for the industrial 
market. Indeed, complex algorithms have demonstrated their 
robustness and emerged from the research field thanks to 
computer processor speed improvements. The beginning of 
such application was based on simple grayscale images 
treatments like binarized images being compared for defect 
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detection, and generally involved an analog camera, a frame 
grabber and a computer for its implementation. Nowadays, 
“smart cameras” include all of those devices and communicate 
information directly with a Programmable Logic Controller 
(PLC) or a robot through discrete output and/or a serial port. 
Industrial applications, with such hardware improvements are 
also much more powerful than the previously sited ones. 
Industrial machine vision processes are not only efficient 
enough to robustly check the printing, the measurements, and 
any other inspection or quality control parameters of a very 
fast production line, but also some higher level processes like 
pick and place robotic arm assistance. This last application is 
usually also easily solved with a simple 2D camera system. 
Nevertheless it could require 3D localization when the 
presentation of multiple objects is randomly distributed. For 
such 3D information extraction, most of the current literature, 
such as [1] and [2], converges on the use of a stereoscopic 
camera systems for a suitable solution. Precision improvement 
by using multiple cameras [3] or process acceleration methods 
have also been introduced. Processing time acceleration is 
usually associated with a precision loss as in [4] where the 
term “3D reconstruction” is actually called “3D perception”. 
In order to achieve a global 3D reconstruction of a scene, it is 
also possible to compute the disparity map of stereoscopic 
images [5] that offer a fast global scene understanding but still 
return a poor localization precision for industrial applications. 
Others studies improve the global execution speed by 
centering on the matching of line segments to partially 
accelerate the stereoscopic point-correspondences task [6], or 
present 3D reconstruction based on a multiple perspectives 
view where direct correspondences are arranged [7]. Precision 
in 3D reconstruction is also intensively studied and usually 
focus the topic improvement on stereoscopic points 
correspondences [8] [9] where most of error are introduced. 
Epipolar geometry for direct point correspondence is also 
refined in [10], of course considerably increasing the global 
processing time. Finally, in the industrial field of applications 
such a stereoscopic system for fast and precise localization 
could be very useful when 3D localization is required. The 
precise and fast compromise is robustly achieved by the 
stereoscopic system developed in this work. 
Many techniques can be employed for 3D localization. 
Epipolar geometry, as previously sited, is commonly used for 
precise stereoscopic image point correspondence that finally 
ensures a precise 3D reconstruction of the simultaneously 
observed point and is mandatory when stereoscopic scenes 
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present strong disparity between two points of view as in [11]. 
This process basically requires a point-extracting step in one 
of the stereoscopic images, and a fine texture correspondence 
along the computed epipolar line in the other image. Thus, one 
point observed simultaneously in two images can be localized 
precisely in 3D. This process for one-point localization is very 
fast but usually it is interesting to reconstruct the whole shape 
of an object using edge extraction with a Canny filter to allow 
its recognition or classification. In this case, time processing 
can increase drastically and make the treatment not viable in 
real time. The combination of localization and classification 
treatment has already been introduced in some studies [12]. 
Even if in the cited case it is done by 2D treatment completed 
by a 3D geometrical interpretation, this final classification, or 
identification is commonly needed in vision artificial process 
once an object localized. In the cited case, the topic is the 
access control of vehicles, where a detected even must be 
localized precisely to be geometrically interpreted as a known 
vehicle by its extremities points. This method could be 
perfectly generalized by our work since the localization offer 
a cloud of 3D points that would robustly allow its 
identification among a list of candidates. 
In this paper we present a fast algorithm to process the shape 
3D localization of an object in a previously defined industrial 
context. We will depict in the first section the context and the 
designed industrial artificial vision system. The second section 
is dedicated to explaining the treatment and program 
parameters. Finally, the last section shows the results 
obtained, where we observe the 3D edge reconstruction of an 
object and compare the precision obtained with the simple 
center-of-mass 3D object localization. As it is done in [13], 
we present an evaluation of accuracy and repeatability of 3D 
measurement in industrial situation. 
Finally, results presented in some images clearly demonstrate 
the possible use of this treatment for an additional 
classification step.  

II. INDUSTRIAL CONTEXT AND VISION SYSTEM DESCRIPTIONS  
Industrial contexts are usually much more favorable 

compared to most artificial vision contexts. Indeed, outdoor 
scenes can switch from bright to almost dark conditions due to 
partly cloudy weather that can saturate the imaging sensor. In 
a fixed position camera, the background scene can also change 
quickly because of external conditions such as wind, rain, etc.  
Finally a lot of other parameters would be affected by 
uncontrolled events. Thus, in order to ensure the robustness of 
the system, we first have to control the global illumination of 
the system. Basically, in the indoor situation, it is important to 
conserve a constant global intensity of light. Such problems of 
illumination are usually solved by isolating the area of 
observation and the whole visual inspection system. The main 
illumination device we use to precisely get the shape of the 
observed object is a backlight system. These systems are 
composed of a board of equally distributed LEDs placed in 
front of a light diffusing material. This way, the cameras are 

not saturated by the illumination system and will observe a 
precise, sharpened and contrasted edge of any object 
obscuring the sensor when passing between the cameras and 
the backlight system. 

The stereoscopic camera system is composed of two 
1280x1024 CMOS cameras, and, to correspond with the 
objects’ range of size in this study (see figure 1), each camera 
was equipped with a 6 millimeter focal distance lens to allow 
a wide field of view. The calibration is performed using a 
typical chessboard pattern and the intrinsic and extrinsic 
camera parameters are obtained as depicted in [14] and [15], 
so the stereoscopic system is ready to correct the lens 
distortions and compute triangulation for 3D reconstruction. 

The list of objects we used for this study is shown in figure 
1. A trophy cup, a paddle, a dark glass bottle, and a pneumatic 
piston appear respectively in (a), (b), (c), and (d) of figure 1 at 
a similar resizing scale factor. 

        

 
(a) 

 
(b) 
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(d) 

Fig. 1: Object used for this study observed at a similar resizing scale 
factor. (a) a trophy cup. (b) a paddle. (c) a dark glass bottle. (d) a 

pneumatic piston. 
 
The way we ultimately proceed is to place these objects on 

a conveyor belt until they are detected by the cameras and 
then treated as described in section 3. In figure 2, we present a 
3D scheme of the system. 
 

 
Fig. 2: Scheme of the complete system design. 

III. OPERATIONAL PRINCIPLES 
The system implementation is quite direct and fast. The 

stereoscopic system, once calibrated using the calibration 
method depicted in [14] and [15], is placed in front of a 
backlight. Lens focal distance and backlight dimensions are 
defined by the range of objects’ sizes with which the system 
has to operate. The region of interest (ROI) for each camera is 
defined by the user directly on the PC screen and the process 
is launched. 

The process starts by capturing the first image as the 
reference image and waiting until an object is detected by 
background subtraction when it generates a sharpened shadow 
by passing in front of the backlight. The binarization of the 
images is direct and precise due to the high contrast, and 
depending on the possible illumination variations the 
threshold can be a constant value or an adaptive value 
computed by algorithms such as Isodata or Kapur threshold 
[16] [17]. The object detection and image segmentation for 
foreground for both up and down cameras is shown in figure 3 
referring to the situation presented in figure 2. Images (a) y (b) 
in figure 3 correspond respectively to the up (reference) and 
down simultaneously captured images. Images (c) and (d) in 
figure 3 present the foreground extraction result from the 
images (a) and (b) of figure 3 respectively. 
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(a)           (b) 

   
(c)           (d) 

Fig. 3: Detail of the Image Treatment for fast 3D localization. (a) and 
(b) corresponds respectively to the up (reference) and down 

simultaneously captured images. (c) and (d) present the foreground 
extraction result from the images (a) and (b). 

 
Then the edge of the object in the images is processed by a 

Canny filter followed by dilatation effect. Those steps are 
shown in figure 4, offering a continuous vision of the global 
image treatment succession. Images (a) y (b) in figure 4 
present the edge extraction result using a Canny filter from the 
images (c) and (d) of figure 3 respectively. Images (c) and (d) 
in figure 4 present the edge dilatation result from the images 
(a) and (b) of figure 4 respectively. 

 

   
(a)           (b) 

   
(c)           (d) 

Fig. 4: Detail of the Image Treatment for fast 3D localization. (a) and 
(b) present the edge extraction result using a Canny filter from the 
images (c) and (d) of figure 3 respectively. (c) and (d) present the 

edge dilatation result from the images (a) and (b) respectively. 
 

This dilatation is useful to proceed with the next correlation 
step, which finds the best matching between both shapes. But 
once positions are encountered in the stereoscopic images, 
dilatation is even more useful to fuse the two dilated shapes in 
a unique correspondences image and apply the distance 
transform to just conserve the “stereoscopic” skeleton of the 
shape. Actually this skeleton is obtained by applying a local 
maximum filter on the distance transformed image. The 
resulting skeleton obtained in case of the presented situation 
in figure 2 is shown in figure 5. 

 

 
Fig. 5: Stereoscopic skeleton obtained in case of the presented 

situation in figure 2. 
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We then consider this skeleton as the stereoscopic point 
correspondences along the edge in both images, and localize it 
in 3D. This method is explicitly depicted in the chart in figure 
6. 

 
Fig. 6: Chart of the fast 3D localization method. 

 

IV. RESULTS AND CONCLUSION 
To observe the error produced by a simple center-of-mass 

3D localization, we also compute this stereoscopic point on 
the object once binarized. The images in figure 7 show the 3D 
representation of the results obtained for each object on the 
list presented in section 2. The group of black points is 
extracted from the stereoscopic edges, and the small green 
sphere represents the center-of-mass 3D localization.  

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 7: Positioning error of the center of mass, compared with the 
edge localization of the different objects. 

 
We checked the distances between the reference camera 

and object, and our first conclusion is that there is fairly good 
system precision for 3D shape localization. We also note in 
those four 3D representations that the center-of-mass is 
strongly separated from the localized edge, which indicates a 
quite strong positioning error of the first one. Indeed, due to 
object segmentation imprecision and the stereoscopic images 
differences caused by the different angles of view, the 3D 
localization of the center-of-mass is quite imprecise, at least at 
short distances. In addition, we repeated the method a few 
times in the same object position and noted how this center-
of-mass can strongly shift due to precision error in each 
stereoscopic image. On the other hand, the use of the whole 
shape for 3D localization ensures the repeatability of the 
measurement. The images in figure 8 show this center of mass 
imprecision with the same object: a trophy cup. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8: Positioning error of the center of mass, compared with the 
edge object localization. 

 
It is interesting for some industrial applications to note that 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 2, Volume 3, 2009

50



 

 

the object is still easily recognizable and thus can offer 
information on a particular point that is still identifiable and 
associable to a part of the real object. 

In order to evaluate the positioning error, repeatability and 
to compare edge base 3D localization with center-of-mass 3D 
localization, we placed the object, a trophy cup, at a fixed 
distance from the upper (reference) camera. Actually, the 
distance between the object and the upper camera along the Z 
axe is fixed to 1 meter, and we smoothly shifted the position 
of the trophy cup along the Y axe to observe the measurement 
error in the whole image. We processed almost 50 times the 
fast 3D localization and it comparative center of mass 3D 
localization.  

In figure 9, we observe the edge based 3D localization 
result in yellow color. The result situates the object at about 
97 centimeters from the upper camera which is a fairly good 
precision. 

 
Fig. 9: Positioning error of the center of mass, compared with the 

edge object localization. 
 
In figure 9, we also can observe a blue dot that marks the 

center of mass of the yellow cloud of points, and a red dot that 
marks the 3D localized center of mass, originally extracted 
from stereoscopic images. 

From those almost 50 measurements, we compare those red 
and blue dots and computed some statistical information we 
observe in figure 10. 

 

 
Fig. 10: Positioning error of the center-of-mass (red line) compared 
with the edge based 3D localization center-of-mass (blue line). The 
yellow line present some positioning variation along the Y axes to 

cover the whole image. The magenta dash dot line present the 
standard deviation centered on average value of red line. The cyan 

dash dot line present the standard deviation centered on average 
value of blue line. 

 
The standard deviation in case of the fast edge based 3D 

measurement is represented in figure 10 by a cyan dash dot 
line and it value is equal to 0,2126 centimeters. The average 
computed distance of the trophy cup from upper (reference) 
camera among the Z axe is equal to 97,21 centimeters. 

The standard deviation in case of the fast center of mass 
based 3D measurement comparing method is represented in 
figure 10 by a magenta dash dot line and it value is equal to 
1,2275 centimeters. The average computed distance of the 
trophy cup from upper (reference) camera among the Z axe is 
equal to 123,24 centimeters. 

Those numerical result definitively present the robustness 
of this fast 3D localization method for industrial application. 
The additional advantage of this result is that we still can 
recognize and so could easily classify the 3D localized object 
in a multiple object application case. 
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