
 

 

  
Abstract —  This paper deals with the control problem of a class 

of tentacle arms [7], [14], [15]. A tentacle robot produces changes of 
configuration using a continuous backbone made of sections which 
bend. The lack of discrete joints is a serious and difficult issue in the 
determination of the robot’s shape. A tentacle arm has a variable 
length and theoretically it can achieve any position and orientation in 
3D space. In order to get a better control in the constraint operator 
space, it is possible to increase the length of the tentacle [1]. A 
tentacle arm prototype was designed and the practical realization is 
now running. 
 

Keywords — tentacle robot, motion control, modelling.  

I. INTRODUCTION 
Starting with 2008, the research group designed a new 
experimental platform for hyper redundant robots1. This new 
robot is actuated by stepper motors. The rotation of these 
motors rotates the cables which, by correlated screwing and 
unscrewing of their ends, determine their shortening or 
prolonging, and by consequence, the tentacle curvature. In the 
actual stage the manipulator is formed of three segments. For 
this presentation we consider that all segments are cylindrical. 
A new prototype based on truncated cone segments was 
designed and implemented. The backbone of the tentacle is an 
elastic cable made out of steel, which sustains the entire 
structure and allows the bending. Depending on which cable 
shortens or prolongs, the tentacle bends in different planes, 
each one making different angles (rotations) respective to the 
initial coordinate frame attached to the manipulator segment – 
i.e. allowing the movement in 3D.  

 Due to the mechanical design, it can be assumed that the 
individual cable torsion, respectively entire manipulator 
torsion can be neglected. The structure control will not be an 
open loop one, but a structure based on the information given 
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by a robotic vision system which is able to offer the real 3D 
positions and orientations of the tentacle segments.  

The tentacular arm is designed to be actuated by 3-phase 
stepper motors. The interfaces are pulse direction based 
without rotation monitoring. Set-point position of the stepper 
motor is preset as a pulse signal by a controller via signal 
interface. A pulse corresponds to one step of the motor. An 
electronic relay contact reports operating readiness. Three 
stepper motors are used for each segment of the tentacle.  

4-Axis Stepper Motion Controller boards are used. It is a 
pulse train motion controller, which provides T/S curve 
control, on-the-fly speed change, non-symmetric acceleration 
and deceleration profile control, and simultaneous start/stop 
functions. This controller also offers card index settings for 
multiple cards in one IPC system. The boards offer powerful 
speed change functions that can be executed while the axis is 
moving. After motion begins, the target speed can be changed 
as needed according to the application. By using either a 
software function or external input signal, the controller can 
perform simultaneously starts and stops on multiple axes in a 
one-card configuration, or multiple axes in a multiple-card 
application (our case). 
 A tentacle arm prototype was designed and implemented. It 
is a cable-based mechanism having, in the first 
implementation, three segments (CAD images during the 
simulation in Fig. 1a and model implementation in Fig. 1b). 

3D Kinematics of a Tentacle Robot 
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University of Craiova, Romania 

Fig. 1. A tentacle arm 
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Fig. 3 The description of a 3D 

II.  GENERIC MODEL OF TENTACLE ARM 

A. Problem formulation 
 
In order to control a hyper-redundant robot we have to 

develop a method to compute the positions for each one of his 
segments [2]. [3]. By consequence, given a desired curvature 
S*(x, tf) as sequence of semi circles, identify how to move the 
structure, to obtain s(x, t) such that  

 
),(),(lim *

ftt txStxs
f

=→              (1) 

 
where x is the column vector of the shape description and tf is 
the final time (see Fig. 2). 

 

B. Tentacle shape description 
 

To describe the tentacle’s shape we will consider two 
angles (α, θ) for each segment, where θ is the rotation angle 
around Z-axis and α is the rotation angle around the Y-axis 
(see Fig. 2). To describe the movement we can use the roto-
translation matrix considering  θ = 2β as shown in Fig. 3. 

The generic matrix in 2D that expresses the coordinate of 
the next segment related to the previous reference system can 
be written as follow: 
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In 3D space we cannot write immediately the dependence 

that exists between two segments. This relation can be 
obtained through the pre-multiplication of generic roto-
translation matrix. One of the possible combinations to 
express the coordinate of the next segment related to the frame 
coordinate of the previous segment is the following: 
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where )( ii

zR θ  and )( ii
yR α  are the fundamental roto-

translation matrix having 4x4 elements in 3-D space, and 
Try(V) is a 4x4 elements matrix of pure translation in 3-D 
space and where Vi is the vector describing the translation 
between two segments expressed in coordinate of i-th 
reference system. 

The main problem remains to obtain an imposed shape for 
the tentacle arm. In order to control the robot, we need to 
obtain the relation between the position of the wires and the 
position of the segment [8], [11]. 

III. CURVATURE OF ONE SEGMENT OF CILINDRICAL ROBOT 

A. Direct kinematic of the wires 
In the current stage of our research, a decoupled approach is 

used for the robot control scheme. Thus the three segments are 
controlled separately, without considering the interaction 
between them. Considering the segments of the tentacle 
separately, then (α, θ)i is the asigned coordinate of i-th 
segment. Having as purpose to command the robot to reach 
the position (α, θ)i, the following relation is useful: 
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Fig. 2 The description of the desired shape 
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where R represents the curvature’s radius of the central bone 
and CBL  is a constant, equal to the length of the central bone. 

Once we have θ  and α together as parameters of the 
desired shape, and after we obtained R, we can compute the 
corresponding lengths of the wires. Depending on the types of 
wires and on the structure of the tentacle, we must choose the 
way to compute the length of each wire.  

For the hard wire, made from the same material as the 
central bone, and by consequence having the same elasticity, 
referring to Fig. 4, we can write: 
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For the soft wires, we can write: 
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where Lwn is the length of the n-th wire and Ri is the radius of 
the curvature of the real i-th wire.  
 
Farther it can be written: 
 

)cos()( nn RRR α⋅Δ−=               (7) 
 
where ΔR is constant equal to the distance between the center 
and the wires and αn is: 
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Obviously the equations (5) and (6), become the same for 

∞→i . 
In order to reach the desired shape in a finite time tf, we 

should choose the appropriate law for the time variation of the 
displacements and speed for the three wires, going from the 
home position to the final position.  

For each instant, the wires must be moved in order to avoid 
elongation or compression of it self.  

 
The reference systems for each segment are oriented with 

the X-axes passing through the first wire. That means that the 
angles considered between the wires and the desired directions 
are as in the equation (8). 

We can obtain the correlation between these angles and the 
bending direction of the segment. E.g. if the direction is 
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Fig. 4 Different types of wires. 
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= , that means we intend to bend the tentacle in the 

direction of the second wire with the imposed value of 
θ  degrees. In this case, if we will move the second wire of 
ΔLw2, we should move the first and third wires with ΔLw2/2 
and with the apropiate speed in order to maintain this relation 
during the movement. 

Once we know the angle α, we can obtain the value 
( )ii osRR αc⋅Δ=Δ , defining the displacements of the wires. 

The algorithm that we are using, assigns the speed of the 
wires proportional to ΔRi in order to go from the home 
position (θ=0, α=0) to the position (α, θ)i with a constant 
speed of the motors. 

In fact, given the final time tf and the starting time ti, after 
we obtained the displacement of the wires we impose the 
speed in order to reach the desired position in (tf-ti) seconds. 

So the speed is: 
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B. Reverse kinematic of the wire 
 
Our structure does not have encoders. Counting the impulses 
given to the motors, we can evaluate the lengths [Lw1, Lw2, 
Lw3,]. We use these values in order to obtain (α ,θ)i. The 
algorithm’s steps are the following. 

 For the n-th rigid wire: 
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Considering the equation (8) and (10), evaluating these for 
all the wires we can obtain: 
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Considering again the equation (10) for the first and second 

wires, we can write: 
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Replacing the (8) we obtain θ in function of α: 
 

( ) ( )αα
θ

sin3cos3
2 21

−
−

⋅
Δ

=
LwLw

R
           (13) 

And considering the eq. (10) for the third wire:
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Finally the α angle can be obtained using the function 

atan2. 
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where atan2 is an extension of arctan(y/x) on more quadrant 
having the following form: 
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IV. CURVATURE OF ONE SEGMENT OF TRONCONICAL ROBOT 

The same methodology of the section III can be applied for a 
tronconical robot. The following paragraphs will show how 
the equations change. 

A. Direct kinematic of the wires 
The geometry of one segment for the 2D case is described in 
Fig. 6. The curvature’s angle θ of the segment is considered as 
the input parameter, while the lengths L1 and L2 of the 
control wires are the outputs. 

 
Fig. 6. The geometry of one segment. 

 

The radius R of the segment curvature is obtained using 
equation (17): 
                                     

θ
HR =                   (17) 

where H is the height of the segment. The following lengths 
are obtained from Fig. 5, based on the segment curvature: 
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where D1 and D2 are the diameters of the segment end discs. 
Based on the Carnot theorem, the lengths A1 and A2 are then 
obtained: 
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The control wires curvature radius R1 and R2 are given by 
the relations (20): 
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Finally, the lengths of the control wires are obtained as in 
(21): 
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For the 3D case, a virtual wire is considered, which gives 
the α direction of the curvature. Considering one virtual wire 
in the direction of the desired curvature having length 
calculated as follows. Firstly the following lengths are 
computed: 
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where αn is according to Fig. 5: 

                                  
⎪
⎩

⎪
⎨

⎧

−°=
−°=

−=

αα
αα

αα

240
120

3

2

1
                     (23) 

Based on (19) and (20) the curvature radiuses R1, R2 and 
R3 of the three control wires are then obtained. Finally the 
lengths of the control wires are computed with (24): 
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Apart from the system presented we can obtain two useful 
relations: 
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The second equation of (25), can be utilized to estimate the 
virtual compression or the extension of the central bone. We 
call that virtual compression because before we compress the 
central bone, the robot will twist to find the shape to guaranty 
the wrong length of the wires. 

V. ACTUATE THE TENTACLE ARM 

A. Hardware architecture 
The experimental mechanical structure consists in a three 

tentacle segment, resulting in a total length of more than one 
meter. Each segment’s shape is controlled via three cables, 
actuated by three stepper motors, resulting in a 2 degree of 
freedom per element: 2 rotations around OX and OZ axis. The 
stepper motors are Berger Lahr, capable of 5000 steps per 
rotation. The rotation movement is converted in the translation 
needed for varying the length of the cables, by a roto-
translation mechanism. The screw step is 1.25 mm, resulting 
in a 0,00025 mm displacement for each step made by motor. 
The step motors are computer controlled, and the controllers 
Berger Lahr SD3 generate the command. 

B. Software architecture 
The robot’s control system consists in one computer 

running Windows XP and the Berger Lahr controllers 
interfaced by 3 modules Ad-link PCI8144. The main elements 
forming the software control architecture are the Visual C++ 
programming environment and the command functions 
included in the .DLL libraries provided by AD-Link. A 
program was developed in order to generate the displacement 
commands; this program computes the cable length variation 
in order to obtain a desired curvature and orientation, 
determines the equivalent number of motor steps, and 
transmits the command to the controllers, using the functions 
provided by Berger Lahr DLL’s. This command scheme is 
represented in Fig. 6. 

C. Moving the robot with constant angular speed 
The problem. Once we know α, in order to obtain a 

constant speed 
•

θ , we can impose: 
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Considering α fixed, the time dependence of θ and R, can 
be written:  
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So, imposing Lwn(t) constant also θ(t) will be constant. 

Now considering θ fixed, we want to obtain a constant 

angular speed 
•

α .  
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It implies that it is needed to change the speed of the wires 

continuously.  
The most complex problem is to consider (α(t),θ(t)) both 

variable in the time [4].  
The solution: For a typical movement of a 3-links robot we 

can suppose to have two points in the state space X(t): 
- Considering the starting shape Xi and the final Xf (in 
radians), time ti and tf (in seconds): 
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When we want to move the tentacle from the starting shape 

to the final shape within [tf-ti] seconds, we can divide the 

trajectory in steps−k  such that 
22

stepsfi KXX ≤− , with 

stepsK  constant chosen. 
Taking into account the position of the tentacle, the motors 

speeds are computed at every beginning of the step. The 
speeds will be constant for the entire step. This approximation 
introduces some errors, as twisting in the structure, because if 
α change continuously even the speed of the wires should 
change in the same way. Solving this problem it’s impossible 
without a real-time control system.  

D. Motion control test 
The tests provide information about the repeatability and 
oscillation of the structure during the movement obtained by 
using the implemented algorithm. The first test is dedicated to 
the study of the repeatability and it is performed by imposing 
a fixed angle to the tentacle segments and moving each 
segment for several times. Finally an evaluation of the 
positioning errors is performed. The results obtained are 
plotted and listed in the following figure and table. 
 

 
 

Fig. 8. Repeatability graphics for the 3 links. 
 

Link Number Error average Error variance 
1 0,08333 deg 0,02166 deg 
2 0,1 deg 0,024 deg 
3 0,65 deg 0,011 deg 

 
Tab. 1. Average and variance of the errors on the links. 

 
Going from link 1 to the link 3, the error grows because 

there is some interaction between the segments, in the same 
time the variance is compensated from the length of the wires. 

The second test was designed to measure the structure’s 
vibration introduced by our control algorithm. A high-speed 
video camera is placed in front of the robot and acquires 
images during the tentacle movements (125 fps, target object 
size 14 mm). Evaluating the images, for more than 500 
frames, we obtained the following results plotted in Fig 8. 

 
Fig. 8. Graphics of the vibration during the movement. 

ideal 
real 

Fig. 6  Flow chart of the motion 
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Taking out the average drift, which is given by the movement 
of the robot during the measurement we have the pure 
oscillation: 
 

 
Fig. 9. Graphics of the pure oscillation of the structure. 

 
Moving the robot on the shortest path in the state space X, we 
should change the speed continuously. Working in Windows, 
which is not a real-time system, this task is not a possible one. 
We imposed a constant speed for each step. This solution 
introduced an error because the robot’s segments twisted. 

One of the possible solutions for this problem, working 
under an operating system without a real real-time support, 
could be to find a trajectory in the state-space X which 
corresponds to a constant speed in the wires space.  

 

E. Constant speed in the wire space for the conical model 
We propose another class of motion control to solve the 

vibration problem showed in section D. It is not possible to 
follow every trajectory in the state space, maintaining the 
wires' constant speed. We can consider the trajectory in the 
state space divided in small steps. Between the steps, we need 
to avoid the structure’s vibration without taking into 
consideration the trajectory. Considering the small steps, for a 
typical movement of a 3 links robot we consider two points in 
the joint space X(t) as follows:  
- the starting shape of the little step (in radians) at time t0 (in 
seconds): 
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- the final shape at time tf  (in seconds): 

 
                                  [ ] ffff Xqqq =,,, 321             (35) 

 
We also consider that ),( i

n
i
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i
nq θα=  are the joint variable 

of the n-th segment (in radians) at the time i (in seconds). 
Hypothesis 1: We impose the constant speed of the motors 

during the movement in the small steps. 
The vibrations in the structure are given by the structure 

twisting; this twisting is given from the incompatible lengths 
of the three wires of the segment. In order to avoid the 
structure vibration we want to move the robot from the 
starting position to the final position maintaining constant 
speeds of the wires and maintaining valid (25). We can 
analyze the direct kinematic as time function writing: 

                     

                            ))t(q(F))t(q(Lw =            (36) 
 
where F(.) represents the direct kinematic in (24). 

In order to simplify the calculus in this paper, we can 
consider the following hypothesis. 

Hypothesis 2: The structure is cylindrical D1=D2. 
Under this hypothesis 

 
                                )cos( nn RRR α⋅Δ−=                      (37) 
 

Considering t0=0 and tf=δt given, we can calculate the 
initial and final wires positions. 
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which is a column vector of three elements. 

From this we can compute the constant speed vector C. 
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We are going to consider a small movement during δt. 

 
    ttqtqJtqFttqL Fw δδ ⋅⋅+=+ )())(())(())(( &     (41) 
 
where JF is the Jacobian of F and where: 
 
                                  C)t(q))t(q(J F =⋅ &           (42) 

 
Fig. 10. Variation of the wires when α changes from 0° to 360°.

Fig. 11. Time evolution of the wire lengths without delays.
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Considering (11) we can compute the average length of the 
wires, during the small step. 
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where Ci is the i-th component of the column vector 
representing the constant wire’s speed. 
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Regrouping θ(t+δt) and θ(t) and using (11) we obtain: 
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i
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So during this movement there is no compression and no 
induced vibration. If the average of the wires is different from 
L in fact, the solution we have is not the wanted solution. A 
“wrong” solution might introduce some structure twisting and 
during the movement them can became a rotational vibration 
of the structure. The proof can be extended to the tronconic 
structure with D1≠D2. Besides, in (45) there is no more 
dependence of L to δt. This means that, if the starting and the 
final points are solution of (36), moving with constant speed 
through the two points, we don’t compress the structure. In 
the state space, for example, choosing a constant speed of the 
wire means move (α,θ)  of the first segment as showed in 
(46). 
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This can be obtained by solving (42) for q(t): 
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VI. PROBLEMS AND FUTURE WORK 
A machine vision system was designed and implemented 

[10], [13]. The algorithm provides all the information we need 
to describe the shape of a hyper-redundant system with only 2 
cameras. This system will be used in order to determinate the 
real shape of the tentacle and his behavior. Our future goal is 
to assemble the visual system together with the control of the 
robot and close the loop studying several types of controls. 

VII. CONCLUSION 
In this paper we presented the experimental tentacle 

structure designed and implemented at the Department of 
Mechatronics, University of Craiova, Romania. We focused 
only to the actuation system of this robot. From this point of 

view, we proposed a direct and reverse kinematical model, 
and we developed a series of repeatability tests to validate the 
model and to determine the model error and the positioning 
error of the system. Acting to achieve this objective, we 
encountered some practical problems as shown upper in this 
paper. We proposed a solution for this problem and we 
performed a series of tests to validate the model and 2 
different algorithms to move the structure [5]. [6]. 

As was considered from the beginning, the solution for 
determining the real shape and behavior of the tentacle is a 
machine vision system. This system is designed and 
implemented, but was not presented in this paper [9], [12]. 
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