
 
Abstract— This paper describes the performance measurement 

system of the active steering railway vehicle with the scaled test bed 
using the acquisition telemetry system about the wheel lateral force. 
Active steering system of railway vehicles has proven its ability to 
bridge the gap between stability and curve friendliness. This scaled 
test-bed system consists of two steering actuators, a steering controller, 
and various sensor systems to detect lateral displacement, vibration, 
track curvature, and sensor systems. To compare with the various 
control strategies, we installed the telemetry systems on the steering 
wheelsets to detect the wheel/rail lateral force. Running test results of 
1/5 scaled active steering vehicle on the curved track show that the 
proposed measuring system has good performance. 
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I. INTRODUCTION 
TUDIES on the steering system of the railway vehicles are 
difficult field to solve in the process of the realization. 

Several studies have been made on applying the active 
controller to the steering mechanism in the late 1970s, main 
research was started in the mid 1990s. The 
environment-friendly vehicle dynamics techniques are likely to 
become part of the mainstream as a track friendly, the research 
of the railway vehicle is focusing on ECO4 which means Energy, 
Efficiency, Economy, and Ecology. 
 

In urban transit systems, rail passenger vehicles are often 
required to construct tight curves. During curve negotiation, the 
wheelsets of conventional vehicles generally misalign radically 
with the track increasing wheel/rail contact forces and resulting 
in increased wheel and rail wear, outbreak of squeal noise, fuel 
consumption, and risk of derailment. To alleviate these 
problems, modified suspension system designs, application for 
alternate wheel profiles, active and semi-active steering 
techniques have been proposed. Over the past few decades, a 
considerable number of studies have been conducted on the 
effects of the active steering system of railway vehicles. And the 
active steering system has proven its ability to bridge the gap 
between stability and curve friendliness [1]~[8].  

Generally scaled railway vehicles were developed to 
reproduce the fundamental dynamic behavior of the full size 
railway vehicle in laboratory conditions. In this paper, a 1/5 
scaled railway vehicle is carried out for the development and 

 

testing of prototype bogie design, and the investigation of 
fundamental railway vehicle running behavior. 

 
In this paper, we designed a scaled test-bed which consists  of 

a driving bogie, a steering bogie, and various sensor systems  
with a telemetry system for measuring the wheel lateral force, 
and tested the performance of the various active steering 
strategies on the a curved track.  

 
This paper is organized as the followings. Section 2 describes 

an active steering control system for 1/5 scale model. Section 3 
contains the construction of the test-bed for researching the 
steering dynamics. Section 4 shows the experiment results. The 
main conclusions are then summarized in section 5. 
 

II. ACTIVE STEERING CONTROL SYSTEMS 
The control strategy for an active steering mechanism is 

divided into three categories. When the wheelsets of the vehicle 
moves a curved track and the pure rolling can lead when the 
tangential velocity of the outside wheel is faster than that of the 
inside wheel because of radius difference by the gauge which is 
defined as the distance between the inside track and the outside 
track. But the inner and outer side wheels have the same rotation 
speed because the wheelsets of the conventional railway vehicle 
is under constraint, consequently the pure rolling turns it into a 
possibility through the bigger radius of the outside wheel than 
that of the inside wheel. That is, in order to go on smoothly over 
curve section a difference of a radius of rotation takes place by 
moving the wheelsets in the right and left direction based on the 
wheel conicity. 

 
The proposed active steering control system is constituted a 

steering controller module in charge of steering control 
algorithm as the core part including A/D and D/A input/output 
terminals, a control station module having function of remote 
command and data acquisition, actuator module for driving the 
steering    bogie corresponding to the controller output signals, 
and various sensors system module.  

 
The basic concept of steering control strategy is to apply a 

controlled torque to the wheelsets in the yaw direction. This can 
be achieved through longitudinal actuators as shown in Fig.2. 
This strategy is founded on the coupling of the lateral and 
yawing motions of the wheelsets by using the laser sensor 
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signals represented in the wheel/rail displacement.  
 

 
Fig. 2 active steering control strategy: longitudinal actuator method 
 
As the feedback signals, the relative movement between the 

wheels and the rail are considered in the development of 
controllers using the measured distance of the laser sensor from 
axle box to rail head.  

 

 
Fig.3 realization of the active steering control module with 

MATLAB/SIMULINK 
 
Fig.3 shows a realization of the active steering control 

module with MATLAB/ SIMULINK for scale model. 
 
 

III. CONSTRUCTION OF TEST-BED 
Test-bed is carried out for the development and testing of 

active steering bogie. A block diagram of test-bed for the active 
steering control system is given in Fig.4.  

 

 
Fig.4 research test-bed: the 1/5 scale active steering vehicle and the 

curved track 
 

A. Curved Track 

 
Fig.5 drawings of the curved track of test-bed for running test for 

active steering control system 
  
For running test, 27.11 [m] and R=20 curved track is used. 

 

 
Fig. 1 block diagram of the proposed active steering control systems 
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This track has not a cant, and consists of the straight track 
(6.41m), curve track (14.30m) and straight line track (6.41m). 

B. The Scaled Research Vehicle 
The scaled research vehicle is consisted of the diving bogie 

module, the steering bogie module, the controller module, the 
sensor system module, and car-body module. 

First, driving bogie module consists of a BLDC motor of 
DC48V 39.1A, a 5:1 reduction gear, a driving motor driver, and 
a braking system. Two encoders which are mounted two wheel 
side of the driving motor axle are used for calculating the 
vehicle speed. 

 

 
Fig.6 a driving motor and a motor driver  

 

 
Fig.7 a driving bogie module 
 

 
Fig.8 an active steering controller (DS1103 PPC Controller Board 

and desktop PC) 
 
Second, the dSPACE system (DS1103 PPC Controller 

Board) is mounted in a dSPACE expansion box to control the 
active steering bogie in a scaled railway vehicle[29]. The 
research vehicle has an active steering controller that works in 
coordination with control signals of the steering controller to 
alleviate wheel/rail contact forces and to decrease wheel/rail 
wear. The role of the active steering control module is 
followings: 
▪ Generation of steering command to actuator based on the 

control algorithm.  
▪ A/D and D/A input/output terminals. 
▪ MATLAB/SIMULINK and dSPACE as a rapid control 

prototyper. 
 
Table 1 Specification of the DS1103 PPC Controller Board 

Processor 

Type PPC 750GX 
CPU Clock 1GHzCache 

Cache 
32KB level 1 

instruction and data 
cache, 1MB level 2 

Bus frequency 133MHz Memory 

Memory Local 32MB SDRAM 
Global 96MB SDRAM 

ADC 

Channels 
16 multiplexed 

channels, 4 parallel 
channels 

Resolution 16-bitOutput range 

Input range ±10 [V] 
Over-voltage 

Protection ±15 [V] 

DAC 

Channels 8 channels 
Resolution 16-bit Output range 

Output range ±10 [V] 

Digital I/O Channels 32bit Parallel I/O 
Voltage Range TTL I/O Level 

 

 
Fig.9 schematic views of the active steering bogie module 
 
Third, the steering bogie of F-link type which consists of two 

steering actuators and several links is depicted in Fig.9. The 
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basic concept of steering control strategy is to apply a controlled 
torque to the wheelset in the yaw direction. This can be achieved 
through longitudinal actuators as shown in Fig.10. 

 

 
Fig.10 an active steering bogie module 
 
The actuator force actF  is proportional to the input voltage 

values. That is, the actuator force increases from 0 [N] to 200 
[N] approximately proportionally to the actuator command 
voltage ( conV , 0 [V] to 4 [V]). 

 

conact VF 50=                                            (1) 
 
where actF  means a actuator force [N] and conV  represents a 

voltage command [V]. 
 
Finally, the sensor systems of the test-bed for measuring the 

lateral displacement, wheel dynamics, and yaw angle mainly 
consist of four components:  
▪ Wheel/rail relative displacement measurement using laser 

sensor  
▪ Car-body vibration characteristic measurement using 

accelerometer sensor 
▪ Yaw angle measurement of the steering bogie using gyro 

sensor 
▪ Detection of the start/end point of the curve track using 

magnetic sensor 
▪ Wheel/rail dynamics monitoring using wireless camera 

systems 
 
 

 
Fig. 11 the scaled vehicle with various sensor systems 

 

C. Measurement System of the Wheel Lateral Force 
For active steering control of the testbed, it is vital to confirm 

the performance of the various steering strategy and control 
algorithms. 

 
Fig. 12 shows the signals flow and bridge circuits for the 

measuring the later force and illustrates the bridge circuits for 
wheel load and lateral force measuring. 

 

 
Fig.12 the signals flow and bridge circuits for the measuring the wheel 
load and the lateral force 

 
Since wheel-rail forces occur in three dimensions, the key to 

using strain gauges is to install the gauges in specific 
configurations to measure axial loads as well as lateral forces 
independently. 

First, to measure axial loads, a strain gauge is installed in the 
vertical position in the wheel inner surface. This gauge 
configuration eliminates the effects of any lateral bending that 
could reduce or exaggerate a strain reading taken on only one 
side of the wheel axial load. 

Next, measuring lateral forces is more complicated than 
measuring vertical wheel loads. Lateral forces are applied by the 
head of the rail to the wheels. The installed strain gauge for 
measuring the lateral forces can be susceptible to the change of 
the axial loads. The generally accepted practice is to install 
gauges on the calibration equipment.  

 
Fig. 13 lateral force measuring system and its prototype 
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Two separate gauges are installed, in the insides of the wheel, 

then wired together to complete the bridge circuit. This gauge 
configuration eliminates the effects of any lateral bending that 
could reduce or exaggerate a strain reading taken on only one 
side of the rail. 

 

IV. EXPERIMENTS OF TEST-BED 
In the running test of the research vehicle, the test-bed for the 

active steering control system can be tried and validated under 
real-time condition. 

 

 
Fig. 14 lateral force measuring system  

 
Fig. 14 shows the lateral force measuring system. This system 

consists of the main strain gauge bridge circuit and transmitter, 
signals receiver antenna, and telemetry receiver. Fig.15 
illustrates an actual object of the wheel load and lateral force 
measuring systems. 

 

 
Fig. 15 a prototype of the lateral force measuring system which 
contains bridge circuits, signals transmitter, antenna, and battery 

 
The experimental results of the vehicle speed and the moving 

distance are shown in Fig. 16. 
 
 

 

 
Fig. 16 the experimental results: the moving distance of the driving 

axle and braking axle 
 
Fig. 17 shows experimental results of the lateral force data of 

the four wheels to analyze the performance of the steering bogie 
using the measuring system. The measuring signals of the 
telemetry are transmitted to the dSPACE DAQ via A/D 
converter. 

 
 

 
Fig. 17 the experimental results: the lateral force of the wheel 

using the measuring system in case of applying the displacement 
control strategy 

 
As a performance measure of the various control strategy, we 

make a comparative study of the lateral forces measured by the 
proposed telemetry system and collected data from the various 
control strategies which are passive systems (no control), a 
displacement control strategy, and a radial steering control 
strategy experimental results. Fig. 18 shows the experimental 
results of the lateral force measured by the telemetry system for 
comparing the active steering performance. 
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(a) in case of left trailing wheel 

 

 
(b) in case of right trailing wheel 

 

 
(c) in case of left leading wheel 

 

 
(d) in case of right leading wheel 

Fig. 18 the experimental results: measurement of the lateral 
force using the telemetry system 

 
As a performance measure, the experimental results of the 

lateral force of the left trailing wheel for comparison with the 
various steering strategies (i.e. no control, displacement control 
strategy, radial steering control strategy) to produce the pure 
rolling are shown in Fig. 18-(a).  A good steering strategy is one 
that provides low values (low lateral force) for running on the  
curved track. From the results above, it appears that 
‘Displacement Control Strategy’ is the best of the three 
strategies. 

 

V. CONCLUSION 
Active steering system of railway vehicles has proven its 

ability to bridge the gap between stability and curve friendliness. 
Generally scaled railway vehicles were developed to reproduce 
the fundamental dynamic behavior of the full size railway 
vehicle in laboratory conditions. Scaled railway vehicles were 
developed to reproduce the fundamental dynamic behavior of 
the full size railway vehicle in laboratory conditions. In this 
paper, a 1/5 scaled railway vehicle is carried out for the 
development and testing of prototype bogie design, and the 
investigation of fundamental railway vehicle running behavior.  

 
In this paper, we present the performance measurement 

system of the active steering railway vehicle on the scaled test 
bed to collect the wheel lateral force. Control strategy to the 
active steering system based on two axle vehicle attached to 
actuator of the yaw torque considering the riding quality has 
been applied. Experiment results show that the proposed 
measuring systems yields good performance through comparing 
with the passive system, the displacement control strategy, and 
the radial steering control strategy.  
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