
 

 

 
Abstract— In this paper, a piezoelectric micro robot is modelled 

and simulated based on hybrid fuzzy-based controller operating in a 
constrained environment (pipe). A mathematical model that 
represents the dynamic characteristics of micro robot is first 
presented. Then, the dynamic response of the robot system subjected 
to different input excitations is investigated. Different types of 
controllers are integrated into this system via a proportional-integral-
derivative (PID) controller, the sliding mode controller (SMC) and 
active force control (AFC) method which incorporates a fuzzy logic 
(FL) algorithm. The primary objective of the scheme is to ensure 
accurate trajectory tracking control of the micro robot system is 
achieved. The performance of the control system under different 
types of disturbances is evaluated through a rigorous simulation 
study. The obtained results clearly demonstrate an effective trajectory 
tracking capability of the worm-like micro robot in spite of the 
negative effects of the external disturbances. 
 

Keywords— Active force control, fuzzy logic, micro robot, 
sliding mode control 

I. INTRODUCTION 

owadays micro robots are widely used in a number of 
engineering applications since robots of this type may be 

able to operate in unstructured environment thanks to their 
enhanced adaptability to effectively operate even under hostile 
conditions such as radioactivity, electromagnetic field and 
high temperature gradients. One such application of interest is 
the operation of micro robot in a pipe line that can perform a 
number of tasks such as in-pipe inspection, fault diagnostics, 
condition monitoring and obstacle removal. Some basic 
research on mobile mechanisms for use in pipes has been 
reported in which many are driven by piezoelectric actuators 
[1]-[4], giant magnetostrictive actuators [5],[6], pneumatic 
actuators [7]-[9], or electromagnetic actuators [10].  

Research and development on the use of piezo actuators and 
micro mechanisms for micro robots has been actively carried 
out [11],[12]. Compared to other actuators, the piezoelectric 
type proves to be more promising and practical because of its 
high power and better response. A number of piezoelectric 
actuators have been proposed, such as those based on stacked, 
bimorph and uni morph configurations. Characteristics of the 
new piezoelectric linear step locomotive mechanism for an in-
pipe micro inspection robot were studied [13]. It can move not 
only in a straight pipe but also through a curved or bent 
configuration. 

 
 
 

In this research, a micro robot with hybrid fuzzy-based 
controller is modelled and simulated for in-pipe application. A 
mathematical model that justifies the dynamic characteristics 
of the micro robot is first presented. Then, the dynamic 
response of the robot system subjected to different input 
excitations is investigated. A PID controller which is 
implemented with SMC is applied to the micro robot system 
to follow the desired trajectory, while an AFC controller is 
utilized to reject the unwanted disturbances which may be 
created due to friction forces or fluid viscosity in the pipe. An 
intelligent method like fuzzy logic (FL) is used to find the 
AFC parameters. The performance of the control system under 
different types of disturbances is evaluated through a rigorous 
simulation study presented in this paper.  

II. ROBOT MODELLING 

A. Motion Mechanism 

Mechanism of motion for this micro robot is derived from a 
mechanism which named Impact Drive Mechanism (IDM). 
This is a method for moving an object under friction by 
impulsive force. It utilizes static friction and impulsive force 
caused by the rapid displacement of an actuator. The motion 
mechanism basically consists of three parts: the main body, 
actuator and the inertial weight. When the actuator makes 
rapid extension or contraction, a strong inertial force is 
generated and the main body is moved against static friction. 
When the actuator makes slow retraction, the inertial force 
could be smaller than static friction so that the main body 
keeps the position. Repeating those fast and slow actuator 
displacements carries out the motion. 

The mechanism is able to control the minute motion of 
several nanometer and at the same time has virtually unlimited 
movable range. The mechanism can be extended to multiple 
degree-of-freedom systems with multiple actuators and 
counter weights. The IDM is considered to be a suitable 
mechanism for micro systems since its construction is quite 
simple. 

Fig. 1 shows a basic motion principle of the piezo IDM. 
The motion mechanism consists of three components: the 
main body, the actuator and the inertial weight. The main 
body is laid down on the guiding surface with only the friction 
acting between the surfaces. On one end of the main body, an 
actuator is attached. The weight does not touch the surface. 
Making slow extension and rapid contraction can carry out 
motion toward the other direction.  
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where U(t) is defined as:  
 
 U(t) = -[(GB)-1GAx(t) + (GB)-1GEdt –  
rS(t)/|S(t)|]                                                                    (11) 
 
where it is assumed that GB is non-singular. 

 
For this study related to Equation (11) we derived the constant 
matrices as:  
 

ۯ ൌ 
െ0.328 0.965 െ0.005
13.34 െ0.266 െ9.87
0 0 െ4.49

൩ , ۰ ൌ 4.49,	 

۱ ൌ ቂ0 1 0
0 0 1

ቃ , ۵ ൌ 0.222,	 

۳ ൌ 
0 0 0
0 0 0
0 sin	ሺݐሻ 0

൩ , ݎ ൌ 17.04 

 
The controller parameter is derived by inserting these 

matrices into Equation (11) and the simulation results for 
system under disturbance are shown in Fig. 9. 

 

C. AFC Controller 

Use The research on active force control (AFC) is initiated 
by Johnson (1971) and later Davison (1976) based on the 
principle of invariance and the classic Newton’s second law of 
motion [17],[18]. It has been demonstrated that it is possible to 
design a feedback controller that will ensure the system set 
point remains unchanged even in the presence of the 
disturbances or adverse operating and loading conditions 
provided that the actual disturbances can be modelled 
effectively. Hewit and Burdess (1981) proposed a more 
complete package of the system such that the nature of 
disturbances is oblivious to the system and that it is readily 
applied to multi-degree of freedom dynamic systems [19]. 
Thus, an effective method has been established to facilitate 
robust motion control of dynamical systems in the presence of 
disturbances, parametric uncertainties and changes that are 
commonly prevalent in the real-world environment. 
Usefulness of the method was extended by introducing 
intelligent mechanisms to approximate the mass or inertia 
matrix of the dynamic system to trigger the compensation 
effect of the controller [20].  

The AFC method is a technique that relies on the 
appropriate estimation of the inertial or mass parameters of the 
dynamic system and the measurements of the acceleration and 
force signals induced by the system if practical 
implementation is ever considered. For theoretical simulation, 
it is normal that perfect modelling of the sensors is assumed 
and that noises in the sensors are totally neglected. In AFC, it 
is shown that the system subjected to a number of disturbances 
remains stable and robust via the compensating action of the 
control strategy. A more detailed description on the 
mathematical treatment related to the derivation of important 

equations and stability criterion [18]. For brevity, the 
underlying concept of AFC applied to a dynamic rotational 
system is presented with reference to Fig. 5. 
 

 
Fig. 5 schematic diagram of an AFC scheme 

 
The notations used in Fig.5 are as follows: 
 

G(s) :  Dynamic system transfer function 
Ga(s) : Actuator transfer function 
Gc(s) :  Outer loop controller 
KAFC : AFC constant 
H(s) : Weighting function 
F  : Applied force 
F*  :  Estimated force  
m  :  Estimated mass  
a  : Linear acceleration  

 
The estimated disturbance is obtained by considering the 

following expression: 
 

F*= F – m a                                          (12) 
  
F can be readily measured by means of a force sensor and a 

using an accelerometer. m may be obtained by assuming a 
perfect model, crude approximation or intelligent methods 
[21]. F*is then passed through a weighting function H(s) to 
give the ultimate AFC signal command to be embedded with 
an outer control loop. This creates a two degree-of-freedom 
controller that could provide excellent overall system 
performance provided that the measurement and estimated 
parameters were appropriately acquired. The outer control 
loop can be a proportional-integral-derivative (PID) controller, 
resolved motion acceleration controller (RMAC), intelligent 
controller or others deemed suitable. It is apparent that a 
suitable choice of H(s) needs to be obtained that can cause the 
output to be made invariant with respect to the disturbances 
such that: 

 
Ga(s)H(s) = 1                       (13) 
 
A set of outer control loop control is applied to the above 

open loop system, by first generating the world coordinate 
error vector, which would then be processed through a 
controller function, Gc(s), typically a classic PID controller. 
The main computational burden in AFC is the multiplication 
of the estimated inertial parameter with the angular 
acceleration of the dynamic component before being fed into 
the AFC feed forward loop. The effectiveness of the AFC 
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harmonic disturbance at relatively high frequency but not as 
much as using intelligent AFC loop to reject unwanted 
disturbance of system. The proposed piezoelectric actuated 
micro robot is able to operate effectively based on the closed-
loop control configuration with the given loading and 
operating conditions 

 

V. CONCLUSION 

A piezoelectric worm-like micro robot has been modelled 
and simulated incorporating a hybrid control strategy, i.e., 
SMC-PID scheme which is incorporated with a fuzzy-based 
AFC method. This hybrid control strategy is employed to 
ensure an accurate and robust trajectory tracking of the robot 
system under the presence of the prescribed disturbances and 
operating environment. The PID controller was initially tuned 
using the typical Ziegler-Nichols method so as to achieve 
satisfactory performance. AFC control strategy is used to 
produce robust tracking performance when the system is under 
disturbance in which the estimated mass parameter was 
intelligently computed using the FL method. The simulation 
results clearly demonstrated the effectiveness of the closed-
loop control algorithms, particularly the PID with SMC 
methods combined with the intelligent AFC strategy. Future 
works may include the rigorous study on the sensitivity 
analysis related to the effects of other loading and operating 
conditions. The possibility of performing practical 
experimentation on the micro robot system should also be 
explored and investigated.  
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