
  
Abstract—Today, logistic systems face increasing dynamics and 

complexity. Autonomous Control faces these challenges, by enabling 
logistic objects to render their own local decisions. To apply 
autonomous control to real world applications, it is necessary to 
model and test autonomous processes before implementing them. 
The Autonomous Logistic Engineering Methodology provides tools 
to develop autonomous processes. In order to support testing and 
validation of these models, the methodology is extended by a 
simulation component. This article presents a concept, to transform 
the process models into executable simulation models. This 
procedure uses concepts and techniques of the Model Driven 
Architecture. Furthermore, the article presents a procedure that 
supports in selecting suitable simulation platforms and in integrating 
them into the methodology’s framework. 

 

 
Keywords—Autonomous Processes, Modeling, Model Driven 

Architecture, Model Transformation, Simulation 

I. INTRODUCTION 
OGISTIC systems face growing complexity and the 
influence of an increasingly dynamic environment. One 

strategy to cope with this development is the application of 
autonomous control, as it decentralized decision competencies 
and therefore reduces the complexity of each local decision. 
The Collaborative Research Center 637 (CRC 637) investi-
gates the advantages and restrictions of autonomous control in 
logistic systems. In the course of applying autonomous control 
to real world systems, it is necessary to model and simulate 
autonomous logistic processes, as well as to evaluate their 
performance and feasibility before implementing them. 

The Autonomous Logistic Engineering Methodology 
(ALEM) assists logistic experts in modeling autonomously 
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controlled logistic systems [1]. To support an evaluation of the 
models, ALEM is currently extended by a simulation com-
ponent. Due to the structure of the ALEM models, they cannot 
be executed directly within a simulation platform. 
Consequently, the models have to be preprocessed to enable 
simulation.  

This article presents a concept to transform ALEM models 
into arbitrary, executable simulation models. It adapts several 
elements of the Model Driven Architecture (MDA) [2] to 
achieve this goal, and enables the creation of simulation 
models out of a provided ALEM model. As the transformation 
can target different simulation platforms, a procedure to select 
suitable simulations is sketched. The article shortly introduces 
autonomous control, the ALEM framework, and the 
advantages of simulation in general. Then, it proposes the 
MDA-based approach to transform ALEM models into 
executable simulation models. Finally it presents the 
procedure to select and analyze suitable simulation platforms. 

A. Autonomous Control 
Various scientific disciplines, like physics, biology, 

artificial intelligence, control theory, and the engineering 
sciences, use the term autonomous control [3]. In the context 
of logistic systems, Hülsmann and Windt define autonomous 
control as “processes of decentralized decision-making in 
heterarchical structures. It presumes interacting elements in 
non-deterministic systems, which possess the capability and 
possibility to render decisions independently. The objective of 
Autonomous Control is the achievement of increased robust-
ness and positive emergence of the total system due to distri-
buted and flexible coping with dynamics and complexity” [4]. 

Up to now, different decision-making strategies have been 
developed for manufacturing systems as well as for logistic 
transport scenarios. Although it is impossible to predict the 
overall system’s behavior, simulation studies, applying the 
different decision strategies, demonstrate the positive effects 
of autonomous control on the system’s performance, 
flexibility and robustness (see for example [5], [6], [7], [8], 
[9], [10]).  

The application of autonomous control in manufacturing 
systems delegates planning capabilities to commodities. 
Instead of one global master plan, the commodities proceed 
through production, based on their own local decisions. For 
example, once they enter a shop floor, they autonomously 
request manufacturing from suitable machines or 
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workstations. The commodities use objectives to select the 
most preferable resource. For example, objectives can demand 
that the commodity proceeds through manufacturing quickly 
or that it selects those resources with minimum costs. 

In case of a malfunction, the commodities react 
dynamically. Once they are aware of the situation, they 
request manufacturing from another machine with similar 
characteristics. With regard to their product structure, they can 
shift the sequence of manufacturing steps. This allows 
postponing problematic production steps and helps resolving 
bottleneck situations [11]. 

To enable autonomous control in manufacturing systems, 
the involved logistic objects have to be equipped with the 
necessary logical and technological infrastructure. On the 
technological side, the logistic objects have to be able to 
perform communication, data storage, data processing, and 
decision execution [12]. On the logical side, a suitable 
decision-making strategy has to be selected and applied to the 
logistic system. As it is impossible to predict the overall 
system’s behavior, the selections have to be validated and 
compared to different alternatives. Therefore, simulation 
provides a tool to experiment with different setups. The next 
section shortly introduces simulations and their advantages. 

B. Simulation in Logistics 
According to the VDI Guideline 3633 sheet 1, simulation 

resembles the process of replicating a system in form of a 
model. The simulation model covers the system's dynamic 
behavior. It is used to draw experimental conclusions that can 
be carried over to the real world [13]. Following this 
definition, simulation studies allow examining a system, apart 
from its real world counterpart.  

There are two main areas of application. First, simulations 
assess the impact of modifications to an existing system, for 
example while upgrading an existing system to make use of 
autonomous control. Second, simulations evaluate the 
feasibility of a newly designed logistic system prior to its 
implementation. In both cases, a simulation study provides 
insight into the systems behavior and performance. In 
particular, during the design process, simulation supports the 
identification of errors in the modeled processes and prevents 
these from being implemented in the real world system. Due 
to the comparably low costs of modifying a simulation model, 
simulations allow comparing different autonomous decision-
making strategies and configurations, with the aim of 
identifying the best settings for one particular logistic system.  

A simulation consists of three main components: the 
simulation platform, the simulation model, and of a set of 
experiments [13]:  

• The simulation platform defines a framework for the 
simulation and is able to execute the simulation model.  

• A simulation model describes a scenario, using the 
notation provided by the platform. A simulation model 
usually represents the real world system.  

• An experiment describes one certain situation within the 

system. While the simulation model defines the 
scenario itself, an experiment defines one definite 
situation.  

Some simulation platforms omit the distinction between 
simulation models and experiments. These platforms require 
modeling of the actual systems state in the simulation model 
itself. They treat different states as distinct models [13].  

There exist several simulation technologies, for example 
material-flow simulation, process-based simulation, multi-
agent simulations, or mathematical simulations. Those 
simulation technologies differ in the selection and focus of 
simulated elements. For example, material-flow simulations 
focus on materials, related resources and physical material 
flows [14], while process-based simulations use activities as 
primitive simulation elements and focus on their logical and 
temporal dependencies [15]. 

In the context of autonomous control, multi-agent 
simulations (MAS) provide suitable means to simulate the 
logistic systems. MAS focus on the system's objects and their 
interactions. They are used to represent and analyze systems 
that are made up from interacting and communicating entities 
[16]. The autonomy of intelligent logistic objects and agents 
constitutes another conceptual similarity between MAS and 
autonomously controlled systems. Scholz-Reiter et. al. pointed 
out, that agents are one option to interpret intelligent logistic 
objects [3]. Due to the high degree of freedom, concerning the 
implementation of agents, a MAS was selected to simulate the 
ALEM models. 

II. AUTONOMOUS LOGISTIC ENGINEERING METHODOLOGY 
The Autonomous Logistic Engineering Methodology 

(ALEM) is developed within the CRC 637. It provides tools 
and methods to develop models of autonomously controlled 
systems. It offers a notational concept, a view concept, and a 
procedure to model autonomous systems. The methodology 
relies on decisions about the desired system infrastructure [17] 
and the system's architecture [18]. Additionally, ALEM 
provides a software tool (ALEM-T) which supports the 
creation, simulation, and evaluation of the model. Fig. 1 
depicts the framework's structure. 
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Fig. 1 The ALEM Framework [19] 

 
ALEM's notation bases on the Unified Modeling Language 

(UML) and extends it by several elements and diagrams 
specific for this domain of autonomous logistic processes. For 
example, knowledge maps, a layout diagram, and product 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 3, Volume 5, 2011

325



structure diagrams have been added [11], [20]. UML provides 
a well known notation which is widely used in business 
process modeling (see for example [21], [22]). 

Process- and system-models are usually associated with a 
high degree of complexity [23]. Hence, ALEM applies a view 
concept (Fig. 2) [24]. Views focus on single aspects of the 
overall system. They enable editing of lesser complex 
segments of the model [25].  

ALEM’s view concept uses five primary views to divide 
the model into single, semantic aspects. These views are 
grouped further in static (structure, abilities and knowledge) 
and dynamic aspects (processes and communication 
protocols). While static aspects describe unchanging features 
of the model, dynamic aspects subsume procedures performed 
by the logistic objects. In addition, the contents of the 
semantic views are further differentiated into micro aspects, 
concerning object internal model elements, and macro aspects, 
which describe for example the overall systems structure. 
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Fig. 2 ALEM View Concept [24] 
 
The semantic views differentiate between the system's 

structure, knowledge, abilities, processes, and communication. 
Each view uses multiple diagrams to depict a certain aspect.  

 
The structure view contains the structural features of the 

system. It defines all logistic objects present in the system 
and the relationships between them. In addition to the 
definition, this view includes the spatial layout of the 
modeled scenario. This semantic view is a static view, 
primarily containing macro aspects. 

The knowledge view covers all aspects concerning knowledge, 
and the objectives. UML-Class diagrams are used to 
represent the logistic object's knowledge in form of 
attributes. In addition, it uses more specialized diagrams, 
like product structure diagrams and knowledge maps. This 
semantic view is a part of the static view and mainly 
contains micro aspects. 

The ability view uses a UML-Class diagram to represent 
abilities, which can be performed by the logistic objects. It 
applies knowledge maps to assign abilities to specific 
logistic objects. This semantic view belongs to the static 
view and covers micro as well as macro aspects. 

The process view uses UML-State Machines and UML-
Activity diagrams to describe the behavior of logistic 

objects. It is a part of the dynamic view and incorporates 
micro and macro aspects. 

The communication view contains UML-Class and UML-
Sequence diagrams. The class diagram defines messages 
exchanged by logistic objects, while sequence diagrams 
represent communication protocols. This view is dynamic 
and mainly contains macro aspects. 

 
A tool for modeling autonomous logistic systems was 

proposed as a part of the ALEM framework [26]. Fig. 3 
presents a screenshot of the tool and highlights the most 
important areas. On the left, it displays the model explorer and 
the model overview. The explorer provides access to different 
models, while the overview shows the different diagrams of 
one particular model. These are ordered in accordance to the 
view concept. The overview allows to create and open the 
different views’ diagrams. In the center, there is the graphical 
diagram editor, having the drawing palette on its right side 
and the property sheet at the bottom. The property sheet 
provides editing capabilities for a selected element's properties 
like a class' name or an attribute's type. To the right, there is a 
dynamic view, which gives access to inter diagram relation-
ships. According to the currently edited diagram, it provides 
different functionalities. For example, while editing the 
structure view’s class diagram, it enables the assignment and 
creation of life cycles (process view) for logistic objects [10].  

 

 
Fig. 3 Screenshot of the ALEM-Tool 

 
The ALEM-Tool is implemented as a set of plug-ins within 

the Eclipse Rich Client Platform (RCP). The ALEM-Tool 
relies on several open source frameworks, like the Eclipse 
Modeling Framework (EMF) to realize the ALEM models 
[27], [28]. Additionally, EMF-based implementations of the 
Unified Modeling Language are used to cover default 
diagrams. Graphical editors were generated for all diagrams 
using the Eclipse Graphical Modeling Framework [29]. 

By linking the tool to an existing simulation platform, it 
will be possible to validate and to iteratively enhance the 
models. The goal is to enable a user of ALEM-T to directly 
execute the models within or from the application. 
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III. SIMULATION OF ALEM MODELS 
ALEM models use a variety of standard diagrams. 

According to the ALEM view concept, several types of 
diagrams apply in different contexts. For example, UML-
Class diagrams depict the systems structure, the logistic 
objects' knowledge, as well as their abilities. Therefore, the 
semantic meaning of syntactically equal elements differs. To 
reflect the meaning of an element, the model's structure 
closely conforms to the ALEM view concept. Structural 
elements are stored in one part of the diagram, while 
knowledge related elements are stored in another segment. In 
contrast, simulation models focus on the objects or the 
processes. They store all information regarding one entity 
(e.g. agent, object, activity) at the entity itself. Consequently, 
the syntactic and semantic structure of ALEM models differs 
from simulation models. For this reason, ALEM models have 
to be preprocessed and transformed to be executable within a 
simulation platform. 

A. Model Driven Architecture 
This section proposes a general transformation procedure, 

based on concepts from the Model Driven Architecture 
(MDA) [2], to transform ALEM models into models of an 
arbitrary simulation platform. The procedure takes an ALEM 
model as input and creates an executable simulation model for 
the selected target platform. For each target simulation 
platform, a RCP plug-in will be implemented which creates 
the necessary models and files. 

An MDA-based approach was selected, as MDA proposes 
the paradigm to implement programs apart from platform 
specific requirements as models. In this process, MDA applies 
transformations to specialize generic models to comply with a 
specific target structure, like source code or equal highly 
specific models. Mellor et al. [30] provide an overview over 
the MDA's basic concepts and the relationships between them. 
MDA's primitive types are models and meta-models. A model 
is an instance of a meta-model. If a meta-model describes 
elements specific to a certain platform, its implementations are 
called platform specific models (PSM). If the meta-model is 
more abstract, the models are called platform independent 
models (PIM). The structure of each formal modeling 
language can be expressed using a meta-model, describing 
which elements are allowed in which context. 

B. Transformation Process 
To enable simulation, ALEM models will be preprocessed 

and transformed on both the semantic and the syntactical 
level. Therefore, the transformation procedure covers three 
major steps: first, it semantically restructures information and 
thereby identifies ambiguous or missing information. Second, 
it obtains all information necessary to simulate the model and 
resolves ambiguities by instantiation. Finally, it refines the 
extended, restructured model into an executable simulation 
model (Fig. 4). 

On the semantic level, the first transformation step collects 
and restructures information that is present in an ALEM 
model. The restructuring process can identify missing or 
ambiguous information and point these out to the user. 
Moreover, it converts semantic elements of ALEM into 
respective representations of the target platform. For example, 
the transformation matches an intelligent logistic object, 
represented as a class in ALEM, to the simulation model’s 
representation of a transportation device. The second trans-
formation step, the instantiation, acquires missing information 
from the user. By instantiating the simulation elements, the 
user creates the simulation model, including one particular 
simulation experiment. He assigns initial values and setups to 
the simulation elements. On the syntactical level, the third 
transformation step translates between different model 
formats, like EMF, XML-Schemes, modeling languages or 
program code. 
 

ALEM Model (PIM)

Executable Simulation Model (PSM)

1. Restructuring of 
ALEM information

3. Refinement

2. Instantiation

Meta-Model

Model Instantiation

Conceptual Simulation Model (PIM)

 
Fig. 4 Model Transformation Concept [31] 

 
The first two steps require the assistance of an intermediate 

model. This model conforms to the executable simulation 
model with respect to semantic aspects, but omits syntactic 
aspects. It operates on conceptual levels without regarding 
characteristics of the target simulation platform. It is called a 
conceptual simulation model (CSM). The first transformation 
step collects and restructures present information. Thereby, it 
creates a meta-model for the later insanitation (CSM-Meta-
Model). By instantiating this meta-model, a human expert 
adds and embeds missing information into the CSM. Finally, 
the CSM’s instance is refined to be executable on one 
particular simulation platform. This last step executes the 
syntactical conversion into platform specific languages. 

Following the concepts of the MDA, the CSM, as well as 
the ALEM-Model itself, are considered to be platform 
independent. Although the CSM conforms to one particular 
simulation technology (e.g. MAS), it omits platform specific 
characteristics. 
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Fig. 5 Sample CSM 2nd level meta-model for a multi agent simulation (EMF/eCore Notation) [31] 

 
To assure compatibility with the ALEM-Tool, the CSM 

models have to be implemented using EMF. Therefore, it is 
necessary to evaluate the semantic structure of the target 
simulation platform and to formalize a description of the 
CSM-Meta-Model’s structure. Exemplary, Fig. 5 depicts an 
EMF description of the structure of a CSM-Meta-Model for a 
multi agent simulation platform. All CSM-Meta-Models 
derived by the first transformation step, comply with this 
structure. Therefore, this description is the CSM-Meta-
Models’ meta-model. 

This CSM’s main simulation elements are agents. Those 
consist of a set of attributes, different kinds of operations 
(actions and abilities), and a state machine, describing the 
agents’ behaviors. Actions and abilities differ in their scope. 
Actions affect the simulation’s world model. For example, 
actions describe movement or the loading or unloading of 
cargo. In contrast, abilities only affect the agent internal states, 
like the calculation of its objectives or the planning of a route. 
The state machines consist of states and conditional transition. 
Each state can either be a state machine on its own, or it refers 
to an ability or action. This structure enables reusability of the 
state machines. Tasks are default data types, which describe 
an agent’s primary goals, like being manufactured or 
transported. Using this description of the CSM-Meta-Model’s 
structure, the first transformation step can derive a valid CSM-
Meta-Model from an ALEM-Model. 

 
1) Restructuring 
The first transformation step instantiates the 

aforementioned description of the CSM-Meta-Model’s 
structure (e.g. Fig. 5), to create so called agent templates. 
These templates form the CSM-Meta-Model. Therefore, the 
step gathers information from the different ALEM diagrams 
and combines the information. All elements of the ALEM 
structure view’s class diagram are converted either to agents 
or to data types, depending on the existence of an associated 

life cycle. In both cases, the transformation copies all 
attributes and operations, defined in the respective views, into 
the templates. The process view’s UML-State-Machines and 
UML-Activity-Diagrams are transformed into the CSM’s state 
machines and are associated to the respective agents. 
Therefore, the transformation introduces empty pseudo-states 
into the activity diagrams, to convert them into state machine. 
 

2) Instantiation 
The second transformation step is the instantiation of the 

CSM-Meta-Model. The user creates the simulation experiment 
by instantiating the agent templates. This includes the 
definition of the scenario’s spatial layout as well as of the 
agents’ initial attribute values.  

To enable this task, ALEM’s structure view includes a 
layout diagram. The corresponding editor is generated using 
the CSM-Meta-Model’s structural description to handle 
arbitrary CSMs. It provides modified a palette and property 
sheets to access the agent templates instead of the generic 
agent type described in Fig. 5. As a result, the user can edit 
and spatially position the agents’ instances.  
 

3) Refinement 
The refinement transformation step converts the scenario’s 

formal EMF model (the CSM instance) into an executable 
simulation model. Depending on the target simulation 
platform, different technologies must be applied to perform 
this step. Target platforms can require models in a textual 
form (e.g. XML or source code) or in form of formal models 
like EMF or different internal model formats. 

In case of textual models, the Eclipse Model-To-Text 
(M2T) project provides several script-based languages to 
convert EMF models into specified texts. For example, EMF 
itself uses the Java Emitter Templates (JET) to generate 
executable Java code out of its models [28]. 

The Eclipse Model-To-Model (M2M) project provides 
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different standardized model transformation languages. All of 
these focus on EMF, which enables an efficient 
transformation within the ALEM context. Nevertheless, 
although the source models (instances of the CSM) are created 
using EMF, there is no guarantee that the target models 
conform to EMF. In this case, a direct transformation may be 
impossible or has to make use of import functions provided by 
the simulation platform (e.g. XML Import). This directly 
influences the selection of the target simulation platform, as 
appropriate formats or import functions must be available. 

The proposed transformation procedure can be imple-
mented for several target simulation platforms. Nevertheless, 
each platform requires the implementation of a suitable CSM, 
as well as an implementation of the required transformations.  

Once the process is implemented, a majority of the 
transformation executes automatically. Commonly, the logistic 
expert, using ALEM, has to define the scenario/experiment 
(instantiation) as well as the simulation elements’ basic 
functionalities (e.g. operations or abilities). The use of 
templates for common basic functions (e.g. default decision 
strategies, or operations like loading or unloading cargo) eases 
the instantiation for the logistic expert.  

IV. APPLICATION OF THE TRANSFORMATION CONCEPT 
The proposed transformation concept includes several 

steps, which have to be conducted or implemented, before a 
logistic process expert can make use of the simulation. These 
are the selection of a simulation platform, the implementation 
of the CSM’s meta description, the design and implementation 
of the semantic transformation (first transformation step), and 
the design and implementation of default templates for the 
syntactic conversion. In addition, it may become necessary to 
adopt the ALEM – Layout editor to conform to the new 
CSM’s structure. The majority of these steps require a detailed 
analysis of the simulation platform’s models and structure. 
Therefore, this section proposes a procedure, which guides 
through these steps (Fig. 6).  

 
Selection and Analysis 

of Simulation Platforms
Implementation of the Transformation

Pre-selection

Analysis

Selection

Definition of the 
CSM-Description

Semantic
Transformation

Adoption of the 
Layout Editor

Template Creation
(Refinement)

 
Fig. 6 Application Procedure 

 
In order to apply the transformation concept, a suitable 

simulation platform has to be selected. It has to satisfy several 
criteria, described later on. The pre-selection should result in a 
small set of possible simulation platforms. With regard to the 
selected criteria, these may be equally capable to comply with 

a user’s requests. Afterwards, each candidate platform is 
analyzed in more detail. Thereby, the simulation model’s 
semantic structure, as well as its compliance to an ALEM-
Model’s structure is mapped. This mapping delivers primary 
inputs to the creation of the CSM’s descriptor model as well 
as to the design of the semantic transformation step. The other 
way around, both development steps provide experiences, 
which influence the decision for a simulation platform. Some 
simulation models may not be as expressive as necessary, or 
the transformation may become to complex in contrast to 
equally capable simulation platforms. Using these 
experiences, one simulation platform is selected, and the in-
depth development of the transformation steps as well as the 
adaption of the layout editor can be conducted. The following 
subsections focus on the process of selecting a suitable 
simulation platform. Thereby, specific requirements, 
originating from the use of the ALEM-Framework will be 
regarded. Additional constraints could occur, if specific 
functionality is requested by a user.  

A. Pre-Selection 
In 1993, the “Verein Deutscher Ingenieure” (VDI) released 

a catalogue of criteria, which specifically covers the selection 
of simulation platforms for logistic applications [32]. This 
catalogue provides several qualitative and quantitative criteria 
that refer to the application of software in general, to 
simulation platforms in general, as well as criteria that 
particularly target simulation of logistic systems. It covers 
criteria like the platforms software-license, number and type 
of allowed simulation elements, type of the simulation 
(discrete/continuous) or its application segment (logistics in 
general, material flow, plant layout, etc.). The application of a 
catalogue of criteria provides an overview about a simulation 
platform’s main characteristics. Therefore, it is a suitable tool 
to compare possible simulation platforms. The application of 
such a catalogue results in a pre-selection of candidates that 
satisfy basic requirements, like costs, range of functions and 
area of application.  

Although the catalogue proposed by the VDI covers several 
criteria, it does not include criteria that arise from the require-
ments of autonomous control or from the intended connection 
with the ALEM-Tool. These additional criteria deal with the 
compatibility of the tools, as well as of their models. 
Furthermore, the concepts of autonomous control require the 
simulation platform to provide a high degree of freedom, 
regarding the simulation entities and their abilities. Other 
criteria arise from ALEM’s focus on process experts. These 
cannot be expected to be familiar with a simulation platform. 
Therefore, the coupling between the ALEM-Tool and the 
simulation platform should be automated as far as possible. In 
the following, some additional criteria are provided. 

Criteria, referring to the compatibility of a simulation 
platform, concern with the accessibility of the simulation 
models and the coupling between the ALEM-Tool and the 
platform. 
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Accessibility of model files/import formats: One major 
criterion is the accessibility of the simulation platform’s 
models. To enable the automatic creation, the platform is 
required to provide clear textual models, accessible data 
structures or at least import formats, which can be created 
by external applications. A typical example for textual 
models or an open import format is a XML file.  

Integration: The coupling between the ALEM-Tool and the 
Simulation platform can be of different degrees. The most 
desirable form of integration would be a direct coupling. 
Thereby, the simulation model is created in memory and 
directly passed to the simulation platform for execution. 
This kind of coupling would require the platform to be 
implemented in Java and to provide a suitable interface to 
pass the model and to execute simulation. A more common 
kind of coupling is based on the creation of a simulation 
model file. Thereby, the ALEM-Tool creates the simulation 
model as a file, and executes the simulation platform. The 
platform is at least required to provide a command line 
client to run and execute the simulation model file, and to 
record simulation feedbacks into an ALEM-readable file. 
The most undesirable kind of coupling is an external 
simulation platform. In this case, ALEM would create the 
simulation model files. The user has to execute the 
simulation platform, load the file, configure simulation 
runs, execute the simulation and pass back the simulation 
results to ALEM.  

Due to the application in the field of autonomous logistics, 
the simulation platform is required to satisfy additional 
functional requirements. These in particular deal with the 
execution of simulation runs, with the degree of freedom in 
creating simulation models, and the platform’s ability to 
record key values for a later evaluation. 

Evaluation: ALEM does not restrict a user in the design of the 
logistic system. This in particular refers to the distribution 
of abilities and knowledge amongst the intelligent logistic 
objects. Therefore, the measuring of key data (e.g. 
throughput-times or capacities) can take place at different 
logistic objects. A user could require the evaluation to 
record key values differently for distinct logistic objects. 
Consequently, the simulation platform should allow 
recording of various key data in different simulation 
entities. Optimally, this information could be specified as a 
part of the simulation model. 

Degree of Freedom: ALEM allows a user to distribute 
abilities and knowledge freely amongst the intelligent 
logistic objects. The simulation platform has to reflect this 
degree of freedom. Several platforms provide a set of 
predefined simulation objects. In such a case, these 
predefined objects have to be modifiable to alter provided 
functionality, or to implement additional abilities. 

Execution Modes: Different simulation modes increase the 
usability of a simulation platform. In case of testing a 

modeled behavior, the platform should provide a graphical 
interface that allows a step-by-step execution. In contrast, 
while assigning the logistic performance of a modeled 
system, the user might not require a graphical user 
interface. In this case, it is important that the simulation 
executes automatically and delivers its results quickly. 

Execution Times: The execution times of the transformation as 
well as of the simulation provide additional criteria. 
Complex simulation models could prolong the transfor-
mation, while a slow simulation platform, or long startup 
times impede with a quick evaluation and with testing. 

A third set of additional criteria originate from ALEM’s 
focus on logistic process experts. These criteria deal with the 
use of information, and the mapping between ALEM-Models 
and the simulation platform’s models. In particular, these 
focus on the use of already specified information, the 
necessity of providing additional information. 

Utilization: ALEM-Models require logistic process experts to 
specify the logistic system with a high degree of detail. This 
enables a very detailed description of the desired processes, 
and the single objects’ behaviors. A simulation platform 
should be able to exploit as much of the specified 
information as possible. 

Additional Information: Depending on the simulation 
platform, it may become necessary to specify additional 
information. This task may become difficult for logistic 
process experts, if the additional information is very 
specific to a certain simulation platform. 

Coherence of Definitions: ALEM makes use of default UML 
diagrams to define the intelligent logistic objects’ abilities, 
knowledge and behavior. To enable simulation, the 
transformation converts these diagrams into simulation 
specific representations. One important criterion is the 
coherence between the different representations. As an 
example, a conversion between different state machines is 
an easy task compared to a conversion into a mathematical 
representation. 

By applying the catalogue of criteria to different simulation 
platforms in question, a pre-selection is achieved. For each of 
the remaining candidates, a more detailed analysis will be 
conducted. While the pre-selection focused on functional 
requirements, the following analysis provides a deeper insight 
into the simulation models structure. Thereby, it helps to 
identify those simulation platforms, which facilitate the 
development of the model transformations. 

B. Analysis 
The analysis aims to investigate the simulation models in 

terms of their syntactic and semantic structure. Furthermore, it 
results in a preliminary mapping between the ALEM-Model’s 
elements and those of the simulation model. The structural 
analysis’ first step is the identification of primary simulation 
elements. These depend on the type of simulation (e.g. multi-
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agent, material-flow, etc.) as well as on the specific simulation 
platform. Some platforms may provide a simulation element 
“Machine”, which has to be instantiated with a specific 
purpose, while others may provide a set of predefined 
machines. In a second step, the simulation platform’s data 
structures will be identified. This includes predefined data 
structures, e.g. for machine schedules, as well as data 
structures which are used to manage a simulation element’s 
behavior, state, or arbitrary information. The third step covers 
the identification of relations between these elements. Due to 
ALEM’s focus on the single logistic objects behavior, the 
fourth step covers a detailed analysis of the simulation’s 
behavioral definition. Using the identified elements, a formal 
definition of the simulation model’s structure can be created. 
An example for formal description of a multi-agent simulation 
platform was already given in Fig. 5 on page 5. 

Using the (preliminary) description of the simulation 
model’s structure, a mapping between ALEM’s simulation 
elements, and those of the simulation model can be developed. 
This mapping should be refined iteratively. In a first step, a 
semantic matching between top level simulation elements and 
the general contents of ALEM diagrams should be created. 
Fig. 7 presents a very rough sketch between the ALEM model 
components (e.g Classes in the structure view’s class diagram, 
the knowledge views objectives or the process view’s state 
machines and activity diagrams) and their respective counter-
parts within a multi-agent simulation model. The data type of 
the respective simulation model element is given in brackets 
for a later syntactic conversion. By refining this mapping, a 
set of relations between ALEM model primitives, and those 
primitives, identified during the structural analysis is 
developed.  

 
Sim. ModelALEM

Abilities
<Operation>

Communication
<Sequence Diag.>

Knowledge
<Attributes>

Structure
<Class>

Processes
<State-Machine>

Processes
<Activity Diag.>

Com. -Messages
<Class>

Agent
<Class>

State Machine
<SM-Behavior>

Objectives
<Class>

Tasks
<Class>

Actions
<Action>

Abilitiy
<Bahvior>

ACL-Message
<Class>

 
Fig. 7 Rough Mapping from ALEM to a Simulation Model 

 

This mapping provides insight into the semantic 
transformation process. It supports the decision between 
candidate simulation platforms, as it enables an estimation of 
the necessary effort in implementing the transformation. 
Furthermore, the mappings and descriptions of different 
simulation platforms can be compared easily, and issues in 
transforming between ALEM and one of the candidates can be 
uncovered early. The structural analysis provides inputs for 
the development of the CSM’s descriptor model and thus 
strongly facilitates this process later on. The information 
mapping provides relations between both types of models and 
therefore acts as a template for the development of the first, 
semantic transformation step. Additionally, while designing 
those relations, errors within the structural mapping can be 
identified before formalizing the descriptor model. 

V. CONCLUSION AND FUTURE WORK 
Simulation provides a suitable technique to validate and test 

autonomous business processes. In particular, during the 
development of such processes, simulation supports an 
iterative enhancement of the modeled processes. As ALEM 
models cannot execute directly in an arbitrary simulation 
platform, ALEM will apply an MDA-based transformation 
process to convert its models into simulation models.  

The possibility to simulate ALEM models will support the 
application of autonomous control in different ways. First, it 
will provide logistic experts with a tool to check the 
correctness and feasibility of the modeled autonomous 
processes. Second, simulation results can be compared with a 
real world logistic system to assess the benefits and drawbacks 
of an application of autonomous control to that system. 
Furthermore, the logistic expert can experiment with different 
autonomous setups to determine the most suitable alternative 
for his system. 

The proposed transformation can be applied to different 
simulation platforms. Therefore, the article proposed a 
procedure to support in selecting a suitable simulation 
platform. In particular, the procedure focuses on the pre-
selection of candidates, and covers an analysis of the 
simulation models semantic and syntactic structure. 

As a next step, the transformation will be implemented 
exemplarily for a specific simulation platform. Thereby, a 
library of default abilities will be created, to ease the use of 
the transformation. Afterwards, the prototypical 
transformation will be tested to assess the limitations of 
ALEM-Models regarding their qualification to provide 
executable simulation models. 
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