

Abstract—Today, logistic systems face increasing dynamics and

complexity. Autonomous Control faces these challenges, by enabling
logistic objects to render their own local decisions. To apply
autonomous control to real world applications, it is necessary to
model and test autonomous processes before implementing them.
The Autonomous Logistic Engineering Methodology provides tools
to develop autonomous processes. In order to support testing and
validation of these models, the methodology is extended by a
simulation component. This article presents a concept, to transform
the process models into executable simulation models. This
procedure uses concepts and techniques of the Model Driven
Architecture. Furthermore, the article presents a procedure that
supports in selecting suitable simulation platforms and in integrating
them into the methodology’s framework.

Keywords—Autonomous Processes, Modeling, Model Driven

Architecture, Model Transformation, Simulation

I. INTRODUCTION
OGISTIC systems face growing complexity and the
influence of an increasingly dynamic environment. One

strategy to cope with this development is the application of
autonomous control, as it decentralized decision competencies
and therefore reduces the complexity of each local decision.
The Collaborative Research Center 637 (CRC 637) investi-
gates the advantages and restrictions of autonomous control in
logistic systems. In the course of applying autonomous control
to real world systems, it is necessary to model and simulate
autonomous logistic processes, as well as to evaluate their
performance and feasibility before implementing them.

The Autonomous Logistic Engineering Methodology
(ALEM) assists logistic experts in modeling autonomously

Manuscript received December 29, 2010. This research is funded by the
German Research Foundation (DFG) as part of the Subproject B2 of the
Collaborative Research Center 637 “Autonomous Cooperation Logistic
Processes – A Paradigm Shift and its Limitations” (CRC 637).

B. Scholz-Reiter is with the BIBA – Bremer Institut für Produktion und
Logistik GmbH at the University of Bremen, Hochschulring 20, 28359
Bremen, Germany.

D. Rippel is with the BIBA – Bremer Institut für Produktion und Logistik
GmbH at the University of Bremen, Hochschulring 20, 28359 Bremen,
Germany (phone: +49 421 218-9793; fax: +49 421 218-5640; mail:
rip@biba.uni-bremen.de).

St. Sowade is with the BIBA – Bremer Institut für Produktion und Logistik
GmbH at the University of Bremen, Hochschulring 20, 28359 Bremen,
Germany.

controlled logistic systems [1]. To support an evaluation of the
models, ALEM is currently extended by a simulation com-
ponent. Due to the structure of the ALEM models, they cannot
be executed directly within a simulation platform.
Consequently, the models have to be preprocessed to enable
simulation.

This article presents a concept to transform ALEM models
into arbitrary, executable simulation models. It adapts several
elements of the Model Driven Architecture (MDA) [2] to
achieve this goal, and enables the creation of simulation
models out of a provided ALEM model. As the transformation
can target different simulation platforms, a procedure to select
suitable simulations is sketched. The article shortly introduces
autonomous control, the ALEM framework, and the
advantages of simulation in general. Then, it proposes the
MDA-based approach to transform ALEM models into
executable simulation models. Finally it presents the
procedure to select and analyze suitable simulation platforms.

A. Autonomous Control
Various scientific disciplines, like physics, biology,

artificial intelligence, control theory, and the engineering
sciences, use the term autonomous control [3]. In the context
of logistic systems, Hülsmann and Windt define autonomous
control as “processes of decentralized decision-making in
heterarchical structures. It presumes interacting elements in
non-deterministic systems, which possess the capability and
possibility to render decisions independently. The objective of
Autonomous Control is the achievement of increased robust-
ness and positive emergence of the total system due to distri-
buted and flexible coping with dynamics and complexity” [4].

Up to now, different decision-making strategies have been
developed for manufacturing systems as well as for logistic
transport scenarios. Although it is impossible to predict the
overall system’s behavior, simulation studies, applying the
different decision strategies, demonstrate the positive effects
of autonomous control on the system’s performance,
flexibility and robustness (see for example [5], [6], [7], [8],
[9], [10]).

The application of autonomous control in manufacturing
systems delegates planning capabilities to commodities.
Instead of one global master plan, the commodities proceed
through production, based on their own local decisions. For
example, once they enter a shop floor, they autonomously
request manufacturing from suitable machines or

A Concept for Simulation of Autonomous
Logistic Processes

Bernd Scholz-Reiter, Daniel Rippel, and Steffen Sowade

L

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

324

workstations. The commodities use objectives to select the
most preferable resource. For example, objectives can demand
that the commodity proceeds through manufacturing quickly
or that it selects those resources with minimum costs.

In case of a malfunction, the commodities react
dynamically. Once they are aware of the situation, they
request manufacturing from another machine with similar
characteristics. With regard to their product structure, they can
shift the sequence of manufacturing steps. This allows
postponing problematic production steps and helps resolving
bottleneck situations [11].

To enable autonomous control in manufacturing systems,
the involved logistic objects have to be equipped with the
necessary logical and technological infrastructure. On the
technological side, the logistic objects have to be able to
perform communication, data storage, data processing, and
decision execution [12]. On the logical side, a suitable
decision-making strategy has to be selected and applied to the
logistic system. As it is impossible to predict the overall
system’s behavior, the selections have to be validated and
compared to different alternatives. Therefore, simulation
provides a tool to experiment with different setups. The next
section shortly introduces simulations and their advantages.

B. Simulation in Logistics
According to the VDI Guideline 3633 sheet 1, simulation

resembles the process of replicating a system in form of a
model. The simulation model covers the system's dynamic
behavior. It is used to draw experimental conclusions that can
be carried over to the real world [13]. Following this
definition, simulation studies allow examining a system, apart
from its real world counterpart.

There are two main areas of application. First, simulations
assess the impact of modifications to an existing system, for
example while upgrading an existing system to make use of
autonomous control. Second, simulations evaluate the
feasibility of a newly designed logistic system prior to its
implementation. In both cases, a simulation study provides
insight into the systems behavior and performance. In
particular, during the design process, simulation supports the
identification of errors in the modeled processes and prevents
these from being implemented in the real world system. Due
to the comparably low costs of modifying a simulation model,
simulations allow comparing different autonomous decision-
making strategies and configurations, with the aim of
identifying the best settings for one particular logistic system.

A simulation consists of three main components: the
simulation platform, the simulation model, and of a set of
experiments [13]:

• The simulation platform defines a framework for the
simulation and is able to execute the simulation model.

• A simulation model describes a scenario, using the
notation provided by the platform. A simulation model
usually represents the real world system.

• An experiment describes one certain situation within the

system. While the simulation model defines the
scenario itself, an experiment defines one definite
situation.

Some simulation platforms omit the distinction between
simulation models and experiments. These platforms require
modeling of the actual systems state in the simulation model
itself. They treat different states as distinct models [13].

There exist several simulation technologies, for example
material-flow simulation, process-based simulation, multi-
agent simulations, or mathematical simulations. Those
simulation technologies differ in the selection and focus of
simulated elements. For example, material-flow simulations
focus on materials, related resources and physical material
flows [14], while process-based simulations use activities as
primitive simulation elements and focus on their logical and
temporal dependencies [15].

In the context of autonomous control, multi-agent
simulations (MAS) provide suitable means to simulate the
logistic systems. MAS focus on the system's objects and their
interactions. They are used to represent and analyze systems
that are made up from interacting and communicating entities
[16]. The autonomy of intelligent logistic objects and agents
constitutes another conceptual similarity between MAS and
autonomously controlled systems. Scholz-Reiter et. al. pointed
out, that agents are one option to interpret intelligent logistic
objects [3]. Due to the high degree of freedom, concerning the
implementation of agents, a MAS was selected to simulate the
ALEM models.

II. AUTONOMOUS LOGISTIC ENGINEERING METHODOLOGY
The Autonomous Logistic Engineering Methodology

(ALEM) is developed within the CRC 637. It provides tools
and methods to develop models of autonomously controlled
systems. It offers a notational concept, a view concept, and a
procedure to model autonomous systems. The methodology
relies on decisions about the desired system infrastructure [17]
and the system's architecture [18]. Additionally, ALEM
provides a software tool (ALEM-T) which supports the
creation, simulation, and evaluation of the model. Fig. 1
depicts the framework's structure.

Structure

Procedure

Notation Modeling

Simulation

Evaluation

InfrastructureArchitecture

Tool-
SupportConcept

ALEM

Fig. 1 The ALEM Framework [19]

ALEM's notation bases on the Unified Modeling Language

(UML) and extends it by several elements and diagrams
specific for this domain of autonomous logistic processes. For
example, knowledge maps, a layout diagram, and product

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

325

structure diagrams have been added [11], [20]. UML provides
a well known notation which is widely used in business
process modeling (see for example [21], [22]).

Process- and system-models are usually associated with a
high degree of complexity [23]. Hence, ALEM applies a view
concept (Fig. 2) [24]. Views focus on single aspects of the
overall system. They enable editing of lesser complex
segments of the model [25].

ALEM’s view concept uses five primary views to divide
the model into single, semantic aspects. These views are
grouped further in static (structure, abilities and knowledge)
and dynamic aspects (processes and communication
protocols). While static aspects describe unchanging features
of the model, dynamic aspects subsume procedures performed
by the logistic objects. In addition, the contents of the
semantic views are further differentiated into micro aspects,
concerning object internal model elements, and macro aspects,
which describe for example the overall systems structure.

Process

• UML–Activity Diagrams
• UML–State Machines

Communication

•UML–Class Diagrams
•UML–Sequence Diagrams

Structure
•UML-Class
Diagrams

•Layout Diagrams

Knowledge
•UML Class
Diagrams

•Product Structure
Diagrams

•Knowledge Maps

Ability
•UML-Class
Diagrams

•Knowledge Maps

Process

• UML–Activity Diagrams
• UML–State Machines

Communication

•UML–Class Diagrams
•UML–Sequence Diagrams

Structure
•UML-Class
Diagrams

•Layout Diagrams

Knowledge
•UML Class
Diagrams

•Product Structure
Diagrams

•Knowledge Maps

Ability
•UML-Class
Diagrams

•Knowledge Maps

Fig. 2 ALEM View Concept [24]

The semantic views differentiate between the system's

structure, knowledge, abilities, processes, and communication.
Each view uses multiple diagrams to depict a certain aspect.

The structure view contains the structural features of the

system. It defines all logistic objects present in the system
and the relationships between them. In addition to the
definition, this view includes the spatial layout of the
modeled scenario. This semantic view is a static view,
primarily containing macro aspects.

The knowledge view covers all aspects concerning knowledge,
and the objectives. UML-Class diagrams are used to
represent the logistic object's knowledge in form of
attributes. In addition, it uses more specialized diagrams,
like product structure diagrams and knowledge maps. This
semantic view is a part of the static view and mainly
contains micro aspects.

The ability view uses a UML-Class diagram to represent
abilities, which can be performed by the logistic objects. It
applies knowledge maps to assign abilities to specific
logistic objects. This semantic view belongs to the static
view and covers micro as well as macro aspects.

The process view uses UML-State Machines and UML-
Activity diagrams to describe the behavior of logistic

objects. It is a part of the dynamic view and incorporates
micro and macro aspects.

The communication view contains UML-Class and UML-
Sequence diagrams. The class diagram defines messages
exchanged by logistic objects, while sequence diagrams
represent communication protocols. This view is dynamic
and mainly contains macro aspects.

A tool for modeling autonomous logistic systems was

proposed as a part of the ALEM framework [26]. Fig. 3
presents a screenshot of the tool and highlights the most
important areas. On the left, it displays the model explorer and
the model overview. The explorer provides access to different
models, while the overview shows the different diagrams of
one particular model. These are ordered in accordance to the
view concept. The overview allows to create and open the
different views’ diagrams. In the center, there is the graphical
diagram editor, having the drawing palette on its right side
and the property sheet at the bottom. The property sheet
provides editing capabilities for a selected element's properties
like a class' name or an attribute's type. To the right, there is a
dynamic view, which gives access to inter diagram relation-
ships. According to the currently edited diagram, it provides
different functionalities. For example, while editing the
structure view’s class diagram, it enables the assignment and
creation of life cycles (process view) for logistic objects [10].

Fig. 3 Screenshot of the ALEM-Tool

The ALEM-Tool is implemented as a set of plug-ins within

the Eclipse Rich Client Platform (RCP). The ALEM-Tool
relies on several open source frameworks, like the Eclipse
Modeling Framework (EMF) to realize the ALEM models
[27], [28]. Additionally, EMF-based implementations of the
Unified Modeling Language are used to cover default
diagrams. Graphical editors were generated for all diagrams
using the Eclipse Graphical Modeling Framework [29].

By linking the tool to an existing simulation platform, it
will be possible to validate and to iteratively enhance the
models. The goal is to enable a user of ALEM-T to directly
execute the models within or from the application.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

326

III. SIMULATION OF ALEM MODELS
ALEM models use a variety of standard diagrams.

According to the ALEM view concept, several types of
diagrams apply in different contexts. For example, UML-
Class diagrams depict the systems structure, the logistic
objects' knowledge, as well as their abilities. Therefore, the
semantic meaning of syntactically equal elements differs. To
reflect the meaning of an element, the model's structure
closely conforms to the ALEM view concept. Structural
elements are stored in one part of the diagram, while
knowledge related elements are stored in another segment. In
contrast, simulation models focus on the objects or the
processes. They store all information regarding one entity
(e.g. agent, object, activity) at the entity itself. Consequently,
the syntactic and semantic structure of ALEM models differs
from simulation models. For this reason, ALEM models have
to be preprocessed and transformed to be executable within a
simulation platform.

A. Model Driven Architecture
This section proposes a general transformation procedure,

based on concepts from the Model Driven Architecture
(MDA) [2], to transform ALEM models into models of an
arbitrary simulation platform. The procedure takes an ALEM
model as input and creates an executable simulation model for
the selected target platform. For each target simulation
platform, a RCP plug-in will be implemented which creates
the necessary models and files.

An MDA-based approach was selected, as MDA proposes
the paradigm to implement programs apart from platform
specific requirements as models. In this process, MDA applies
transformations to specialize generic models to comply with a
specific target structure, like source code or equal highly
specific models. Mellor et al. [30] provide an overview over
the MDA's basic concepts and the relationships between them.
MDA's primitive types are models and meta-models. A model
is an instance of a meta-model. If a meta-model describes
elements specific to a certain platform, its implementations are
called platform specific models (PSM). If the meta-model is
more abstract, the models are called platform independent
models (PIM). The structure of each formal modeling
language can be expressed using a meta-model, describing
which elements are allowed in which context.

B. Transformation Process
To enable simulation, ALEM models will be preprocessed

and transformed on both the semantic and the syntactical
level. Therefore, the transformation procedure covers three
major steps: first, it semantically restructures information and
thereby identifies ambiguous or missing information. Second,
it obtains all information necessary to simulate the model and
resolves ambiguities by instantiation. Finally, it refines the
extended, restructured model into an executable simulation
model (Fig. 4).

On the semantic level, the first transformation step collects
and restructures information that is present in an ALEM
model. The restructuring process can identify missing or
ambiguous information and point these out to the user.
Moreover, it converts semantic elements of ALEM into
respective representations of the target platform. For example,
the transformation matches an intelligent logistic object,
represented as a class in ALEM, to the simulation model’s
representation of a transportation device. The second trans-
formation step, the instantiation, acquires missing information
from the user. By instantiating the simulation elements, the
user creates the simulation model, including one particular
simulation experiment. He assigns initial values and setups to
the simulation elements. On the syntactical level, the third
transformation step translates between different model
formats, like EMF, XML-Schemes, modeling languages or
program code.

ALEM Model (PIM)

Executable Simulation Model (PSM)

1. Restructuring of
ALEM information

3. Refinement

2. Instantiation

Meta-Model

Model Instantiation

Conceptual Simulation Model (PIM)

Fig. 4 Model Transformation Concept [31]

The first two steps require the assistance of an intermediate

model. This model conforms to the executable simulation
model with respect to semantic aspects, but omits syntactic
aspects. It operates on conceptual levels without regarding
characteristics of the target simulation platform. It is called a
conceptual simulation model (CSM). The first transformation
step collects and restructures present information. Thereby, it
creates a meta-model for the later insanitation (CSM-Meta-
Model). By instantiating this meta-model, a human expert
adds and embeds missing information into the CSM. Finally,
the CSM’s instance is refined to be executable on one
particular simulation platform. This last step executes the
syntactical conversion into platform specific languages.

Following the concepts of the MDA, the CSM, as well as
the ALEM-Model itself, are considered to be platform
independent. Although the CSM conforms to one particular
simulation technology (e.g. MAS), it omits platform specific
characteristics.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

327

Fig. 5 Sample CSM 2nd level meta-model for a multi agent simulation (EMF/eCore Notation) [31]

To assure compatibility with the ALEM-Tool, the CSM

models have to be implemented using EMF. Therefore, it is
necessary to evaluate the semantic structure of the target
simulation platform and to formalize a description of the
CSM-Meta-Model’s structure. Exemplary, Fig. 5 depicts an
EMF description of the structure of a CSM-Meta-Model for a
multi agent simulation platform. All CSM-Meta-Models
derived by the first transformation step, comply with this
structure. Therefore, this description is the CSM-Meta-
Models’ meta-model.

This CSM’s main simulation elements are agents. Those
consist of a set of attributes, different kinds of operations
(actions and abilities), and a state machine, describing the
agents’ behaviors. Actions and abilities differ in their scope.
Actions affect the simulation’s world model. For example,
actions describe movement or the loading or unloading of
cargo. In contrast, abilities only affect the agent internal states,
like the calculation of its objectives or the planning of a route.
The state machines consist of states and conditional transition.
Each state can either be a state machine on its own, or it refers
to an ability or action. This structure enables reusability of the
state machines. Tasks are default data types, which describe
an agent’s primary goals, like being manufactured or
transported. Using this description of the CSM-Meta-Model’s
structure, the first transformation step can derive a valid CSM-
Meta-Model from an ALEM-Model.

1) Restructuring
The first transformation step instantiates the

aforementioned description of the CSM-Meta-Model’s
structure (e.g. Fig. 5), to create so called agent templates.
These templates form the CSM-Meta-Model. Therefore, the
step gathers information from the different ALEM diagrams
and combines the information. All elements of the ALEM
structure view’s class diagram are converted either to agents
or to data types, depending on the existence of an associated

life cycle. In both cases, the transformation copies all
attributes and operations, defined in the respective views, into
the templates. The process view’s UML-State-Machines and
UML-Activity-Diagrams are transformed into the CSM’s state
machines and are associated to the respective agents.
Therefore, the transformation introduces empty pseudo-states
into the activity diagrams, to convert them into state machine.

2) Instantiation
The second transformation step is the instantiation of the

CSM-Meta-Model. The user creates the simulation experiment
by instantiating the agent templates. This includes the
definition of the scenario’s spatial layout as well as of the
agents’ initial attribute values.

To enable this task, ALEM’s structure view includes a
layout diagram. The corresponding editor is generated using
the CSM-Meta-Model’s structural description to handle
arbitrary CSMs. It provides modified a palette and property
sheets to access the agent templates instead of the generic
agent type described in Fig. 5. As a result, the user can edit
and spatially position the agents’ instances.

3) Refinement
The refinement transformation step converts the scenario’s

formal EMF model (the CSM instance) into an executable
simulation model. Depending on the target simulation
platform, different technologies must be applied to perform
this step. Target platforms can require models in a textual
form (e.g. XML or source code) or in form of formal models
like EMF or different internal model formats.

In case of textual models, the Eclipse Model-To-Text
(M2T) project provides several script-based languages to
convert EMF models into specified texts. For example, EMF
itself uses the Java Emitter Templates (JET) to generate
executable Java code out of its models [28].

The Eclipse Model-To-Model (M2M) project provides

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

328

different standardized model transformation languages. All of
these focus on EMF, which enables an efficient
transformation within the ALEM context. Nevertheless,
although the source models (instances of the CSM) are created
using EMF, there is no guarantee that the target models
conform to EMF. In this case, a direct transformation may be
impossible or has to make use of import functions provided by
the simulation platform (e.g. XML Import). This directly
influences the selection of the target simulation platform, as
appropriate formats or import functions must be available.

The proposed transformation procedure can be imple-
mented for several target simulation platforms. Nevertheless,
each platform requires the implementation of a suitable CSM,
as well as an implementation of the required transformations.

Once the process is implemented, a majority of the
transformation executes automatically. Commonly, the logistic
expert, using ALEM, has to define the scenario/experiment
(instantiation) as well as the simulation elements’ basic
functionalities (e.g. operations or abilities). The use of
templates for common basic functions (e.g. default decision
strategies, or operations like loading or unloading cargo) eases
the instantiation for the logistic expert.

IV. APPLICATION OF THE TRANSFORMATION CONCEPT
The proposed transformation concept includes several

steps, which have to be conducted or implemented, before a
logistic process expert can make use of the simulation. These
are the selection of a simulation platform, the implementation
of the CSM’s meta description, the design and implementation
of the semantic transformation (first transformation step), and
the design and implementation of default templates for the
syntactic conversion. In addition, it may become necessary to
adopt the ALEM – Layout editor to conform to the new
CSM’s structure. The majority of these steps require a detailed
analysis of the simulation platform’s models and structure.
Therefore, this section proposes a procedure, which guides
through these steps (Fig. 6).

Selection and Analysis

of Simulation Platforms
Implementation of the Transformation

Pre-selection

Analysis

Selection

Definition of the
CSM-Description

Semantic
Transformation

Adoption of the
Layout Editor

Template Creation
(Refinement)

Fig. 6 Application Procedure

In order to apply the transformation concept, a suitable

simulation platform has to be selected. It has to satisfy several
criteria, described later on. The pre-selection should result in a
small set of possible simulation platforms. With regard to the
selected criteria, these may be equally capable to comply with

a user’s requests. Afterwards, each candidate platform is
analyzed in more detail. Thereby, the simulation model’s
semantic structure, as well as its compliance to an ALEM-
Model’s structure is mapped. This mapping delivers primary
inputs to the creation of the CSM’s descriptor model as well
as to the design of the semantic transformation step. The other
way around, both development steps provide experiences,
which influence the decision for a simulation platform. Some
simulation models may not be as expressive as necessary, or
the transformation may become to complex in contrast to
equally capable simulation platforms. Using these
experiences, one simulation platform is selected, and the in-
depth development of the transformation steps as well as the
adaption of the layout editor can be conducted. The following
subsections focus on the process of selecting a suitable
simulation platform. Thereby, specific requirements,
originating from the use of the ALEM-Framework will be
regarded. Additional constraints could occur, if specific
functionality is requested by a user.

A. Pre-Selection
In 1993, the “Verein Deutscher Ingenieure” (VDI) released

a catalogue of criteria, which specifically covers the selection
of simulation platforms for logistic applications [32]. This
catalogue provides several qualitative and quantitative criteria
that refer to the application of software in general, to
simulation platforms in general, as well as criteria that
particularly target simulation of logistic systems. It covers
criteria like the platforms software-license, number and type
of allowed simulation elements, type of the simulation
(discrete/continuous) or its application segment (logistics in
general, material flow, plant layout, etc.). The application of a
catalogue of criteria provides an overview about a simulation
platform’s main characteristics. Therefore, it is a suitable tool
to compare possible simulation platforms. The application of
such a catalogue results in a pre-selection of candidates that
satisfy basic requirements, like costs, range of functions and
area of application.

Although the catalogue proposed by the VDI covers several
criteria, it does not include criteria that arise from the require-
ments of autonomous control or from the intended connection
with the ALEM-Tool. These additional criteria deal with the
compatibility of the tools, as well as of their models.
Furthermore, the concepts of autonomous control require the
simulation platform to provide a high degree of freedom,
regarding the simulation entities and their abilities. Other
criteria arise from ALEM’s focus on process experts. These
cannot be expected to be familiar with a simulation platform.
Therefore, the coupling between the ALEM-Tool and the
simulation platform should be automated as far as possible. In
the following, some additional criteria are provided.

Criteria, referring to the compatibility of a simulation
platform, concern with the accessibility of the simulation
models and the coupling between the ALEM-Tool and the
platform.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

329

Accessibility of model files/import formats: One major
criterion is the accessibility of the simulation platform’s
models. To enable the automatic creation, the platform is
required to provide clear textual models, accessible data
structures or at least import formats, which can be created
by external applications. A typical example for textual
models or an open import format is a XML file.

Integration: The coupling between the ALEM-Tool and the
Simulation platform can be of different degrees. The most
desirable form of integration would be a direct coupling.
Thereby, the simulation model is created in memory and
directly passed to the simulation platform for execution.
This kind of coupling would require the platform to be
implemented in Java and to provide a suitable interface to
pass the model and to execute simulation. A more common
kind of coupling is based on the creation of a simulation
model file. Thereby, the ALEM-Tool creates the simulation
model as a file, and executes the simulation platform. The
platform is at least required to provide a command line
client to run and execute the simulation model file, and to
record simulation feedbacks into an ALEM-readable file.
The most undesirable kind of coupling is an external
simulation platform. In this case, ALEM would create the
simulation model files. The user has to execute the
simulation platform, load the file, configure simulation
runs, execute the simulation and pass back the simulation
results to ALEM.

Due to the application in the field of autonomous logistics,
the simulation platform is required to satisfy additional
functional requirements. These in particular deal with the
execution of simulation runs, with the degree of freedom in
creating simulation models, and the platform’s ability to
record key values for a later evaluation.

Evaluation: ALEM does not restrict a user in the design of the
logistic system. This in particular refers to the distribution
of abilities and knowledge amongst the intelligent logistic
objects. Therefore, the measuring of key data (e.g.
throughput-times or capacities) can take place at different
logistic objects. A user could require the evaluation to
record key values differently for distinct logistic objects.
Consequently, the simulation platform should allow
recording of various key data in different simulation
entities. Optimally, this information could be specified as a
part of the simulation model.

Degree of Freedom: ALEM allows a user to distribute
abilities and knowledge freely amongst the intelligent
logistic objects. The simulation platform has to reflect this
degree of freedom. Several platforms provide a set of
predefined simulation objects. In such a case, these
predefined objects have to be modifiable to alter provided
functionality, or to implement additional abilities.

Execution Modes: Different simulation modes increase the
usability of a simulation platform. In case of testing a

modeled behavior, the platform should provide a graphical
interface that allows a step-by-step execution. In contrast,
while assigning the logistic performance of a modeled
system, the user might not require a graphical user
interface. In this case, it is important that the simulation
executes automatically and delivers its results quickly.

Execution Times: The execution times of the transformation as
well as of the simulation provide additional criteria.
Complex simulation models could prolong the transfor-
mation, while a slow simulation platform, or long startup
times impede with a quick evaluation and with testing.

A third set of additional criteria originate from ALEM’s
focus on logistic process experts. These criteria deal with the
use of information, and the mapping between ALEM-Models
and the simulation platform’s models. In particular, these
focus on the use of already specified information, the
necessity of providing additional information.

Utilization: ALEM-Models require logistic process experts to
specify the logistic system with a high degree of detail. This
enables a very detailed description of the desired processes,
and the single objects’ behaviors. A simulation platform
should be able to exploit as much of the specified
information as possible.

Additional Information: Depending on the simulation
platform, it may become necessary to specify additional
information. This task may become difficult for logistic
process experts, if the additional information is very
specific to a certain simulation platform.

Coherence of Definitions: ALEM makes use of default UML
diagrams to define the intelligent logistic objects’ abilities,
knowledge and behavior. To enable simulation, the
transformation converts these diagrams into simulation
specific representations. One important criterion is the
coherence between the different representations. As an
example, a conversion between different state machines is
an easy task compared to a conversion into a mathematical
representation.

By applying the catalogue of criteria to different simulation
platforms in question, a pre-selection is achieved. For each of
the remaining candidates, a more detailed analysis will be
conducted. While the pre-selection focused on functional
requirements, the following analysis provides a deeper insight
into the simulation models structure. Thereby, it helps to
identify those simulation platforms, which facilitate the
development of the model transformations.

B. Analysis
The analysis aims to investigate the simulation models in

terms of their syntactic and semantic structure. Furthermore, it
results in a preliminary mapping between the ALEM-Model’s
elements and those of the simulation model. The structural
analysis’ first step is the identification of primary simulation
elements. These depend on the type of simulation (e.g. multi-

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

330

agent, material-flow, etc.) as well as on the specific simulation
platform. Some platforms may provide a simulation element
“Machine”, which has to be instantiated with a specific
purpose, while others may provide a set of predefined
machines. In a second step, the simulation platform’s data
structures will be identified. This includes predefined data
structures, e.g. for machine schedules, as well as data
structures which are used to manage a simulation element’s
behavior, state, or arbitrary information. The third step covers
the identification of relations between these elements. Due to
ALEM’s focus on the single logistic objects behavior, the
fourth step covers a detailed analysis of the simulation’s
behavioral definition. Using the identified elements, a formal
definition of the simulation model’s structure can be created.
An example for formal description of a multi-agent simulation
platform was already given in Fig. 5 on page 5.

Using the (preliminary) description of the simulation
model’s structure, a mapping between ALEM’s simulation
elements, and those of the simulation model can be developed.
This mapping should be refined iteratively. In a first step, a
semantic matching between top level simulation elements and
the general contents of ALEM diagrams should be created.
Fig. 7 presents a very rough sketch between the ALEM model
components (e.g Classes in the structure view’s class diagram,
the knowledge views objectives or the process view’s state
machines and activity diagrams) and their respective counter-
parts within a multi-agent simulation model. The data type of
the respective simulation model element is given in brackets
for a later syntactic conversion. By refining this mapping, a
set of relations between ALEM model primitives, and those
primitives, identified during the structural analysis is
developed.

Sim. ModelALEM

Abilities
<Operation>

Communication
<Sequence Diag.>

Knowledge
<Attributes>

Structure
<Class>

Processes
<State-Machine>

Processes
<Activity Diag.>

Com. -Messages
<Class>

Agent
<Class>

State Machine
<SM-Behavior>

Objectives
<Class>

Tasks
<Class>

Actions
<Action>

Abilitiy
<Bahvior>

ACL-Message
<Class>

Fig. 7 Rough Mapping from ALEM to a Simulation Model

This mapping provides insight into the semantic
transformation process. It supports the decision between
candidate simulation platforms, as it enables an estimation of
the necessary effort in implementing the transformation.
Furthermore, the mappings and descriptions of different
simulation platforms can be compared easily, and issues in
transforming between ALEM and one of the candidates can be
uncovered early. The structural analysis provides inputs for
the development of the CSM’s descriptor model and thus
strongly facilitates this process later on. The information
mapping provides relations between both types of models and
therefore acts as a template for the development of the first,
semantic transformation step. Additionally, while designing
those relations, errors within the structural mapping can be
identified before formalizing the descriptor model.

V. CONCLUSION AND FUTURE WORK
Simulation provides a suitable technique to validate and test

autonomous business processes. In particular, during the
development of such processes, simulation supports an
iterative enhancement of the modeled processes. As ALEM
models cannot execute directly in an arbitrary simulation
platform, ALEM will apply an MDA-based transformation
process to convert its models into simulation models.

The possibility to simulate ALEM models will support the
application of autonomous control in different ways. First, it
will provide logistic experts with a tool to check the
correctness and feasibility of the modeled autonomous
processes. Second, simulation results can be compared with a
real world logistic system to assess the benefits and drawbacks
of an application of autonomous control to that system.
Furthermore, the logistic expert can experiment with different
autonomous setups to determine the most suitable alternative
for his system.

The proposed transformation can be applied to different
simulation platforms. Therefore, the article proposed a
procedure to support in selecting a suitable simulation
platform. In particular, the procedure focuses on the pre-
selection of candidates, and covers an analysis of the
simulation models semantic and syntactic structure.

As a next step, the transformation will be implemented
exemplarily for a specific simulation platform. Thereby, a
library of default abilities will be created, to ease the use of
the transformation. Afterwards, the prototypical
transformation will be tested to assess the limitations of
ALEM-Models regarding their qualification to provide
executable simulation models.

REFERENCES
[1] B. Scholz-Reiter, J. Kolditz, and T. Hildebrandt, “Engineering

autonomously controlled logistic systems,” International Journal of
Production Research, vol. 47, no. 6, pp. 1449–1468, 2009.

[2] OMG Model Driven Architecture, Object Management Group Std. 1,
Rev. 1. [Online]. Available: http://www.omg.org/mda/

[3] B. Scholz-Reiter and H. Höhns, “Selbststeuerung logistischer Prozesse
mit Agentensystemen,” in Produktionsplanung und -steuerung:

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

331

Grundlagen, Gestaltung, Konzepte, G. Schuh, Ed. Berlin: Springer
Verlag, 2006, pp. 745–780.

[4] M. Hülsmann and K. Windt, Eds., Understanding of Autonomous
Cooperation and Control in Logistics – The Impact of Autonomy on
Management, Information, Communication and Material Flow. Berlin:
Springer Verlag, 2007.

[5] B. Scholz-Reiter, F. Boese, T. Jagalski, and K. Windt, “Selbststeuerung
in der betrieblichen Praxis: Ein Framework zur Auswahl der passenden
Selbststeuerungsstrategie,” 2007.

[6] B. Scholz-Reiter, M. Teucke, S. Sowade, D. Rippel, M.-E. Özsahin, and
T. Hildebrandt, “Applying autonomous control in apparel
manufacturing,” in Advanced robotics, control and advanced
manufacturing systems. Proceedings of the 9th WSEAS International
Conference on Robotics, Control and Manufacturing Technology
(ROCOM’09), C. Shengyoung and L. Qing, Eds. Hangzhou, China:
WSEAS Press, 2009, p. 6.

[7] B. Scholz-Reiter, M. Görges, T. Jagalski, and A. Mehrsai, “Modelling
and analysis of autonomously controlled production networks,” in
Proceedings of the 13th IFAC Symposium on Information Control
Problems in Manufacturing (INCOM 09), Moscow, Russia, 2009, pp.
850–855.

[8] S. Dashkovskiy, F. Wirth, and T. Jagalski, “Autonomous control in shop
floor logistics: Analytic models,” in Manufacturing, Modelling,
Management and Control 2004, G. Chryssolouris and D. Mourtzis, Eds.
Amsterdam, NL: Elsevier Science Ltd, 2005.

[9] H. Rekersbrink, T. Makuschewitz, and B. Scholz-Reiter, “A distributed
routing concept for vehicle routing problems,” Logistics Research,
vol. 1, no. 1, pp. 45–52, 2009.

[10] B. Scholz-Reiter, S. Sowade, D. Rippel, M. Teucke, M. Özsahin, and
T. Hildebrandt, “A Contribution to the Application of Autonomous
Control in Manufacturing,” NAUN International Journal of Computers,
vol. 3, no. 3, pp. 279–291, 2009.

[11] B. Scholz-Reiter, S. Sowade, T. Hildebrandt, and D. Rippel, “Modeling
of orders in autonomously controlled logistic systems,” Production
Engineering Research & Development, vol. 4, no. 4, pp. 319–325, 2010.

[12] K. Windt, F. Böse, and T. Philipp, “Criteria and Application of
Autonomous Cooperating Logistic Processes,” in Proceedings of the 3rd
International Conference on Manufacturing Research . Advances in
Manufacturing Technology and Management, J. Gao, D. Baxter, and
P. Sackett, Eds., 2005.

[13] VDI-Richtlinie 3633 Blatt 1: Simulation von Logistik-, Materialfluß- und
Produktionssystemen, Verein Deutscher Ingenieure, Berlin: Beuth, 1993.

[14] A. Kuhn and M. Rabe, Eds., Simulation in Produktion und Logistik.
Berlin: Springer, 1993.

[15] K. Tumay, “Business process simulation,” in WSC ’96: Proceedings of
the 28th conference on Winter simulation. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 93–98.

[16] A. Karageorgos, N. Mehandjiev, G. Weichhart, and A. Hämmerle,
“Agent-based optimisation of logistics and production planning,”
Engineering Applications of Artificial Intelligence, vol. 16, no. 4, pp.
335 – 348, 2003, intelligent Manufacturing.

[17] B. Scholz-Reiter, S. Sowade, and D. Rippel, “Modeling the
infrastructure of autonomous logistic control systems,” in Advances in
Communications, Computers, Systems, Circuits and Devices. European
Conference of Systems (ECS’10), V. Mladenov, K. Psarris,
N. Matorakis, A. Caballero, and G. Vachtsevanos, Eds. Tenerife:
WSEAS Press, 2010, pp. 295–300.

[18] B. Scholz-Reiter and S. Sowade, “Der Beitrag der Selbststeuerung zur
Wandlungsfähigkeit,” in Schriftenreihe der Hochschularbeitsgruppe für
Arbeits- und Betriebsorganisation e.V. (HAB). Wandlungsfähige
Produktionssysteme. Berlin: Gito, 2010, pp. 303–322.

[19] B. Scholz-Reiter, D. Rippel, S. Sowade, and M. Teucke,
“Selbststeuerung als Ansatz in der Praxis manuell getriebener Logistik,”
in Deutscher Logistik Kongress, 2009.

[20] B. Scholz-Reiter, J. Kolditz, and T. Hildebrandt, “UML as a Basis to
Model Autonomous Production Systems,” in Digital Enterprise
Technology: Perspectives and Future Challenges, P. F. Cunha and
P. Maropoulos, Eds. Berlin: Springer Verlag, 2007, pp. 553–560.

[21] D. Donko and S. Sabeta, “Specific Modeling of the Business Processes,”
in Advances in Data Networks, Communications, Computers - 9th
WSEAS International Conference on Data Networks, Communications,

Computers (DNCOCO’10), N. Mastorakis and V. Mladenov, Eds. Faro,
Portugal: WSEAS Press, 2010.

[22] T. Gardner, “UML Modelling of Automated Business Processes with a
Mapping to BPEL4WS,” in Proceedings of the First European
Workshop on Object Orientation and Web Services at ECOOP’03, 2003.

[23] A.-W. Scheer, Business Process Engineering - Reference Models for
Industrial Enterprises. Telos: Springer, 1994.

[24] B. Scholz-Reiter, H. Höhns, J. Kolditz, and T. Hildebrandt,
“Autonomous Supply Net Coordination,” in Proceedings of 38th CIRP
Manufacturing Systems Seminar, Florianopolis, Brazil, 2005, CD-ROM,
7 pages.

[25] A.-W. Scheer, ARIS - Modellierungsmethoden, Metamodelle,
Anwendungen, 4th, Ed. Berlin: Springer Verlag, 2001.

[26] B. Scholz-Reiter, T. Hildebrandt, and J. Kolditz, “Modellierung
selbststeuernder produktionslogistischer Prozesse - die
Modellierungsmethode ALEM,” in Informations- und
Kommunikationssysteme in SCM, Logistik und Transport. Teilkonferenz
der Multikonferenz Wirtschaftsinformatik 2008, D. Mattfeld, H.-O.
Günther, L. Suhl, and S. Voß, Eds. Paderborn: Universität Paderborn,
2008, pp. 173–185.

[27] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose, Eclipse
Modeling Frame-work: a developer’s guide. Boston: Addison Wesley,
2003.

[28] Eclipse Foundation. (2009, September) Eclipse Modeling Framework
(EMF). [Online]. Available: www.eclipse.org/emf/

[29] Eclipse Foundation. (2009, September) Eclipse Graphical Modeling
Framework (GMF). [Online]. Available: www.eclipse.org/gmf/

[30] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “Model-Driven
Architecture,” in Advances in Object-Oriented Information Systems, ser.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Verlag, 2002, vol. 2426/2002, pp. 233–239.

[31] B. Scholz-Reiter, D. Rippel, and S. Sowade, “Modeling and simulation
of autonomous logistic processes,” in Advances in Communications,
Computers, Systems, Circuits and Devices. European Conference of
Control (ECC’10), V. Mladenov, K. Psarris, N. Matorakis, A. Caballero,
and G. Vachtsevanos, Eds. Tenerife: WSEAS Press, 2010, pp. 148–153.

[32] VDI-Richtlinie 3633 Blatt 4: Auswahl von Simulationswerkzeugen -
Leistungsumfang und Unterscheidungskriterien, Verein Deutscher
Ingenieure, Berlin: Beuth, 1993.

.

Bernd Scholz-Reiter heads the chair of Planning
and Control of Production Systems in the
Department of Manufacturing Engineering at the
University of Bremen and is managing director of
the BIBA - Bremer Institut für Produktion und
Logistik GmbH.
 Amongst others, he is Associate Member of
International Academy for Production
Engineering (C.I.R.P.), full member of the
German Academy of Engineering Sciences, full
member of the Berlin-Brandenburg Academy of
Sciences, and member of the Scientific Society of
Manufacturing Engineering. He is Vice President

of the German Research Foundation and is the speaker of the Collaborative
Research Centre 637 "Autonomous Cooperating Logistic Processes - A
Paradigm Shift and its Limitations". He is editor of the professional journals
Industry Management and PPS Management, and a member of editorial
committees of several international journals.
 Prof. Scholz-Reiter’s research aims to develop and apply new concepts,
methods and IT-solutions, which contributes to the sustainable improvement
in production and logistics systems.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

332

Daniel Rippel works as research scientist at the
BIBA – Bremer Institut für Produktion und
Logistik GmbH. His educational background is
located in computer sciences, in particular in
artificial intelligence and soft computing.
Currently, his research interests are in the field
of autonomous control, model transformation,
and collaborative decision management in non
hierarchical supply chains.

Steffen Sowade works as research scientist at
the BIBA – Bremer Institut für Produktion und
Logistik GmbH. His educational background is
located in communication networks, system
analysis and management of innovation. His
current research interests are in the field of
autonomous control, service-oriented
architectures and protocols for manufacturing
planning and control systems.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 5, 2011

333

