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Mathematical model for small satellites, using
attitude and rotation angles

Teodor-Viorel Chelaru’, Cristian Barbu!, Adrian Chelaru*

Abstract - The paper purpose is to present some aspects
regarding the calculus model and technical solutions for small
satellites attitude control. Mathematical model is put in
nonlinear and linear form. The linear form is used for attitude
control system synthesis. The attitude control system obtained
is used in nonlinear form in order to maintain desired attitude.
A few numerical simulations are made for standard input and
the satellite behavior is obtained. The satellite model presented
will be with six DOF and uses Cartesian coordinates. At this
item, as novelty of the work we will use the rotation angles to
describe the kinematical equations. Also this paper proposes a
Fourier linearising of Trigger Schmidt element used for
applying the command moment. The results analyzed will be
the rotation angles of the satellite as well the rotation velocity.
The conclusions will focus the comparison between results
obtained using different attitude control system, and the
possibility to use such system for small satellite.

Keywords— Automatic, Attitude control system, Mathematic
model, Simulation, Small satellite

NOMENCLATURE

& - Rotation angle around body X , axis
77 - Rotation angle around body Y axis

¢ - Rotation angle around body Z , axis
v - Attitude angle around Zz axis
0 - Attitude angle around y axis
¢ - Attitude angle around x axis

O ;, -Angular velocity of the body frame relative to the inertial
frame expressed in body frame;

O, -Angular velocity of the reference frame relative to the
inertial frame expressed in relative frame;

O ., -Angular velocity of the reference frame relative to the
inertial frame expressed in body frame;
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M ;. -Angular velocity of the body frame relative to the
reference frame expressed in body frame;

A,B,C,E - Satellite inertia moments;

m - Satellite Mass;

a - Major semi axis of elliptical satellite orbit;

e - Eccentricity of elliptical satellite orbit;

t - Time;

I' - Position vector of satellite relative to origin of the inertial
frame — center of the Earth;

T -Orbital period;

V - Velocity;

VysVy,, V), - Velocity components expressed in inertial frame;

X;,Yy,Z, - Body frame;
Xz, Yz, Zy - Reference frame;
X,,Y,,Z, -Inertial frame

X;,Y;,Z; - Satellite coordinate expressed in inertial frame;

I. INTRODUCTION

It is indisputable that today, the use of satellites is the spatial
program main goal, due to their importance in terms of

telecommunications, remote sensing and navigation that they
provide. During a satellite mission, the quality of Attitude
Control System (ACS) is a basic element for achieving good
functioning condition. For ACS completion is required to build
a suitable mathematical model that allows both the synthesis of
the control system and its simulation.

Starting from this requirement the paper will introduce two
novelties:

-The use of the rotation angles for describing the kinematical
equations;

-The linearising of Trigger Schmidt element used for
applying the command moment, thru Fourier Transformation

Unlike regular paper, which covers the regular aircraft
cases, where the kinematical equations use Euler angles, in our
case, when the satellite has a complex evolution, the papers
[4],[5] and [10] recommends the quaternion vector or the
rotation angles. Using kinematical equations written with Euler
angles, in addition to benefits related to the significance of
physical measurable sizes, the following drawback is involved:
the use of trigonometric functions in program algorithms.
Although complications related to solve the kinematical
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equations, the rotation angles can be used for attitude control,
as it will be shown next.

II. GENERAL MOVEMENT EQUATIONS

A. Used frames

First of all, we must define a frame, call referance frame
(RF), in which the satellite will be stabilized related to three
axes. As we can see in figure 1 the frame origin of referance
frame is in the mass center of the satellite and moves with it.

Axis Z, is orientated towards Earth mass center, X axis is
in orbit plane, normal of Z, axis and orientated towards

velocity direction. Axis Y} is normal to the orbit plane, and
completes an orthogonal right-hand system. In the same time
we define an angular velocity ®,, which means angular
velocity of the reference frame related to inertial frame. Inertial
frame X,,Y,,Z, (IF) has its origin in Earth center being use
for the description of orbital moving of the satellite. The body
frame X,Y,Z, (BF)is an orthogonal frame heaving the axis,

if is possible, along the principal inertial axis. The attitude of
the boy frame related to the reference frame is defined using
attitude angles type Euler, or quaternion vector or, as we will
present later on, the rotation angles.

Xy

Y,
Fig. 1 definition of the used frames

B. The angular velocity of the body frame

The two main terms of the kinematical orientation of the
satellite are:
- The angular velocity of the BF related the RF:

Oy = ppi+qpj+rK (1
- The angular velocity of the RF related IF:
Oy =0y + a’ij +ok, )

The angular velocity of the RF related IF @, : expressed in
BF is:
O = iBi + a)_/Bj + ok A3)
The link between this two expressions being on the rotation
matrix:
Ops = A0,

(4)

where, the rotation matrix Ae will be further defined
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Finally we define the angular velocity of the BF related to the
IF :

Oy =0itojtok (5)
Between these three sizes there is the link:
Oy =Wpp T Opyp (6)

Because all components are expressed in the body frame, it can
be write immediately the scalar link:

r
[wx a)y a)z]7 = [.pB qB rB] + Ae [wi a)j a)k]r
(7
Because the RF are defined by unitary vectors:1,, jz, Kz,
their definition based on position vector I and velocity V:
ro . VXTI
Ky=——=35jg=7—"73
r |v X r|

_rx(vxr) r’v-r-(v-r)

i, =JjzxKk,

(1)

I"|VXI‘| I"|VX1‘|

Deriving in reference frame we obtain successive:

v

X

Y,
Fig. 2 definition of the unitary vectors for the reference frame

di . . . .

% = (a)ilR T o) +a)kkR)XlR DR a)ij;

di

Yr _ (a)iiR +0,jg +a)kkR)><jR =K, —w,i,;

dk

dR = (O‘)iiR "'C‘)ij +(°kkR)XkR = (DjiR -

t

(10)

If we perform scalar product of each relation with unitary
vectorsip, o, K, found that:

dir dky . dk, . di,

. = k,=-— LW, = i, =— k,;

odt *® dat " dar *® dt  °©
di, . djp .

o, =—LFj =R 11

odr ot dr " (n

Taking into account by definition relations (8) and the features
of mixed product we obtain successively:
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dk, . ldr 7 \vxr
i Ve e N I
dt rdt r |v><r|
= v(vxr)— 3 r(vxr) (12)
r|V><r| r |V><r|
1 )
= r(vxv 5 v(rxr)=0
r|V><r| r |V><r|
Similarly, we obtain:
J :—dkR iR :(Lzr—le rzv_r'(v.r) =
dt r r r|v><r|
i (13)
=z—[(""’)2 —FZVZ]
r |V><r|
Taking into account that [14]:
|V><r|:rvcos,6’;r-v=rvsinﬂ, (14)
finally we obtain:
@, :—Xcosﬂ:—i2 (14)
r r
If the orbit is circular, obviously we have:
a)j = —; (15)
Finally for obtain @, , develop such:
dig . 1 d . 1 . 1.
®, =—§1R =—WE(VXI')IIe =—M[l'><r"l‘v><r]l,e
== (fxr)iR
v xr]
(16)
But, for Keplerian case we can write:
. r
r=-u— (17)
r
obtaining that:
W, = 3,u [rxr]iR:O (18)
Plvxr]

Obviously, for Keplerian movement, no acceleration outside
from the orbit plan, so we can write:

Wy, :[O o, 0]’ (19)
where:
h

0=~ Q)

Taking into account of relation (4) finally we can write:

T
[pB 9z rB] =[a)x a)y a)Z]T_Ae[O a)j O]T

21

This relationship is important because if we measure or
calculate the angular velocity of the BF related to

[FO, =i+, j+ oK, thenusing (21) we can determine
the angular velocity of the BF related with RF
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r . .
Oy = [p s dg I’B] and use it to control the vehicle
attitude related to RF

C. Kinematical equations

Unlike paper [3], which covers the regular flight vehicles,
where the kinematical equations use Euler angles, in our case,
when we have unusual or unpredicted attitude, the papers [5],
[10] recommend quaternion or rotation angles. Using
kinematical equations written with Euler angles the following
drawback is involved: singularity of the connection matrix and
the use of trigonometric functions in program algorithms. To
outline this disadvantage, further we will compare the attitude
Euler angles with rotation angles.

For attitude angles case using partial rotation matrix:

cosyy siny 0
A, =|—-siny cosy 0
0 0 1
cosd 0 -—sinf 1 0 0
A,=| 0 1 0 A,=|0 cosg sing
sind@ 0 cosé 0 —sing cos¢
the complete rotation matrix becomes:
A=A, ,=AA A, (22)
If we denote:
cp=cosg; s¢p=sing; cd=cosf;cs@ =sinb;
cy =cosy; sy =siny
the rotation matrix is:
cyct sy —cys6
A, =|—chsycO+sgsl cocy  chsysO+sgcd
sgswcld+cgs@ —sgcy —s@swsO+coed
(23)

The derivatives rotation matrix related the attitude angles
are:

-The derivative related ¢ angle:

0 0 0
8(;;; =|sgsycO+cds@ —sgcy —s@swysO+cocld
csycO—sgs@ —cocy —cgsysO—sgcl
(24)
- The derivative related & angle:
—cys6 0 —cych
%: csys@+spcd 0 cgsypeld—sgs | (25)
—sgsys@+cpcd 0 —sgswpcld—cgsb

- The derivative related i/ angle:
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A —sycl cy sys6
“=|—cogcycld —cgsy cocysl (26)
sgcycld sy —sgcysl

For the case where g >0; 8 > 0; w — 0, the matrices
obtained above are:

1 00 0 0 0
A=l0o 1 0, RBlo 0 1]
2

00 1 0 -1 0
00 -1 0 10
A _lgo oAl 00| @
o0 oy
1 0 0 0 0 0

In order to obtain the connection between the derivatives of
Euler angles and components of rotation velocity in the body
frame, starting with relation:

O =W +0+9, (28)
we can write:
P 0 o] [é 0] [
qp :A‘W’e 0 +A,, 0 +A¢ 0 :Adw 0(+]0
Ty 0 U 0 U 0
If we denote attitude vector:
a,=[¢ 6 y] (29)
we obtain:
o, =U,a, (30)
where:
1 N4 0
U,=(0 cgey sp| 31
0 —sgy c¢
Denoting W, the connection matrix:
1 —csy/cy sosw/cy
W,=U/=|0 ch/cy —sd/cy (32)
0 s¢ co
we can finally write:
a,= WA[pB qp rB]T ) (33)

Observation: The connection matrix W, can be singular for

case when cy =0.

Considering (21) from (33) yield:
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¢ o, 0
0|=W,|o -WA o | (4
74 . 0

Considering (29) finally we can write matrix relationship:

a, =W, -WAo, (35)
The derivatives of the connection matrix are:
0 s /c c /c
oW gsylcy cosylcy
3 =0 —-sd/cy —cdl/cy
¢ 0 co —-s¢
0 0 O
oW, =0 0 O
06
0 0 O
0 —cg/c’y  splcty
oW, _ 2 2
—==|0 csy/cy —sgy/cy
oy
0 0 0
(36)

For case # —> 0; 8 — 0; v — 0, matrices obtained above
are:

1 0 0 0 0 O
w,=l0 1 0. Ma_lg o —1f.
o¢
0 0 1 01 0
5 0 0 O 5 0 -1 0
VVA—OOO;VVA=O 0 0. a7
00 oy
0 0 0 0 0 O

Besides the kinematical relations with the attitude angles
described above in the model we use the rotation angles that we
will introduce next.

In paper [10] a group of three angles, called the rotation
angles, were first introduced. The sizes were used to describe
the aircraft movement.

Angles of rotation have the advantage that they can be
measured easily on board of the space vehicle. Furthermore
they retain the advantages of quaternion, removing singularity
from kinematical equations written with the attitude angles
(32). Also, allow the polynomial expression of the kinematical
equations, an important advantage in building high-speed
algorithms and easily implemented on hardware support.
Angles of rotation retain the advantage of angles Euler type,
that of being quantities directly measurable with a concrete
physical meaning.

It is well known that a sequence of rotations of a rigid body
with a fixed point can be replaced by a single rotation ¢ around
an axis through the fixed point.
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Fig. 3 Single rotation from fixed frame to mobile frame

In order to build kinematical equations we will use two
frames:

0OX,Y,Z, - The fixed frame with unitary vectors: I,J,K ;

Oxyz — The mobile frame, linked by body with unitary
vectors i, j, K ;
We suppose that the body has angular velocity g, with the
components ( Pg,qg,75 ) in mobile frame Oxyz:

Oy =ipy +jqp + Ky (38)

Axis E is the axis around which a single rotation O is

necessary to overlap frame OX,Y,Z, over frame Oxyz (fig. 3).

The unitary vector for axis E'is e, :

e, =1/+JIm+Kn, (39)
Considering the notations from figure 3, we can write:
A=e_,xR;; B=e_-(e;-R;); C=R;-B. (40)

In this case, the relation between the position vectors of the
point P and the point P, became successively:
R=B+Asinoc+Ccoso;
R=e, (e, -R,)+(e,xR;)sinc+[R, —e_ (e, -R,)]cosa;
R=R,coso+e_-(e, -R,)1—-coso)+(e, xR,)sino.

(41)

If the point P, is located initially on the axis X, the point P
will be finally on-axis x.
Because the vectors R and R, are equal in module, we can
substitute in relation (41):
R—-i; Rj—>L

Similarly, if the point P is located on the axis y or z, we can
substitute:
R—-j R,—»J; R>k; R,—>K
Finally we obtain the system:
i=Icoso+{l+JIm+Kn)l(1-coso)+ Al +Im+Kn)xIsino;

j=Jdcoso+ I+ JIm+Kn)m(l-coso)+ (Il +JIm+Kn)xJsino;

k =Kcoso + (Il +JIm+Kn)n(l1-coso)+ I/ +Im+Kn)xKsino.

(42)

If we note ¢ =COS O, S =SIn o, we obtain the relation:
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i § k[ =aft 5 K],

where, Ae is the direct rotation matrix:
c+1’(1-c)
A =|Im(l-c)—ns

e

Im(1—c)+ns In(1-c)—ms
c+m*(—c) mn(l-c)+Is

In(l—c)+ms mn(l—c)—Is c+n*(1-c)

(43)
which coincides with that defined by the relation (23) using
attitude angles.

Thus, the overall rotation angle can be expressed by the
superposition of three simultaneous rotations along the mobile
frame axes:

E=ol; n=om; ( =on
The sizes are called the rotation angles:
& - Rotation angle around x axis;

(44)

1 - Rotation angle around y axis;
€ - Rotation angle around z axis.
The angles verify the relation:
o=+ +¢7 . (45)
Using rotation angles, from (43) the rotation matrix
becomes:

al’+c ané+bl alfé—bn
A,=|aén-b¢ an’+c  aln+bE|  (46)
all+bn anl —-bE  al’+c
where:
l-c s .
a=—, b=—; c=coso; s=sinoc 47)
o o
From (45) we obtain derivatives:
o ¢ Jdo n Jo
LTy LTy T (48)
ok o on o d o
with which we obtain derivatives matrix A, :
2a¢ an all
OA oA, &
c=lan 0 b =
o oo o
ag —-b 0|
oa, |0 © Th
ae:aé 2an ac+aen
T lbp ag of CF°
0 b aé
OA oA, ¢
c=|-b 0 an |[+—<= 49
os oo o

at —an 2ad

where:
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aé*—s anE+bE dlE-bn
?e: aén-b'¢  an’-s adln+bE| (50
T \aecbn ang-vE d s
where we noted
, da os+2c-2 ,, db oc-s
== b= =" (5])
do c do o

An interesting case is 0 —> 0.

For this situation we have:

lima=—;limb=1; lima'=0 limd'=0; (52)
-0 2 o0 -0 c—0
and matrix derivatives are:
1 0 0 0 0 0
A, 01 0} A, =10 0 O0};
0 0 1 0 0 O
0O 0 O oA 0 0 -1
a;e:OOl;ae:OOO;
S o 10l M |10 o
0 1 0
é’Ae =—-1 0 O (53)
ag
0O 0 O

Because the rotation matrix (23) and (46) is the same
regardless of the variables used, we obtain the following
relationships between different variables (Euler angles, rotation
angles)

The attitude angles from the rotation angles are given by:

a b
fan ¢ = — 3,2 & - aé/ﬁ’angzﬁzbn—zaff
a, an’ +c a, ad +c
siny =—a,, =bg +an&;
(54)

Also, we can obtain the rotation angles from attitude angles
using the relations:

3 743, Az —d3 a;, —dy;

azﬁ .
&= M= (=

55
2b 2b 2b (53)
where:
b=22% . 5 =arccosc c:(a11 +a,,+a,, —1)/2.
o : : :
(56)

Next, we will try to obtain the connection between the
derivatives of rotation angles and components of rotation
velocity in the body frame.

Thus, as rotation around axis E is an equivalent
transformation in terms of the two systems, it follows that the
vector e projections are identical:
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e=l+Jm+Kn=il+jm+kn . (57)
If this relationship is derived with respect to time we obtain:

U+Jin+Ki=il+jm+kin+o,,xe., (59
where:
O x € =i(qgn—rym)+ j(ryl — pyn) +K(pym—q,l),
(59)
thus:

Ii+Jm+Kﬁ:i(f+an—er)+
+ jm+ry — pn)+k(n+ pym—q,l).

(60)
If we multiply successively by i, j,k results:
i Ji K-ill i 0 n —m|pg
I-j Jj Kj|m|=|m|+|-n 0 [ | g

Ik J-k K-kjn n m =1 0 | r

or otherwise:

[ 0 —n m|p,
(-A]m|=| n 0 -I|gq, (61)
n -m [ 0|

Introducing the matrix A, given by (46), the left member of

the relationship becomes:

l-c —ns ms | [ 1> Im all|l
ns l—c —Is|m|-(0=c)\lm m* mn|m|=

-ms Is 1-c|n nl mn n’||n

t -n m| l

_ 2 1| (=) + mi )| m

b+i -m t | A n

(62)
where we noted ¢ =tg(c/2)
Since the projections of unitary vector e_ satisfying the
relationship:
I +m* +n* =1,
results from differentiation:
H+mm+nn=0, (63)
making the last term of the previous development to be null.

On the other hand reverse matrix of the first term of relation
(62) is

1)

-1

t —-n m >+t Im+nt nl—mt

n t -1 = i Im—nt m?>+t> mn+lt
1+

-m t ( ) nl+mt mn—It n*+t*

(64)
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Multiplying by inverse matrix thus defined, relation (62)
becomes:

I -  —Im—nt —nl+mt| p,
2| min |=| —Im+nt 1-m> —mn-1It| q, |,
n —nl—-mt —-mn+lt 1-n° 7y

(65)

which leads to algebraic relations:

21 =rym—qzn+(p;—1lo)/t;

2m=pyn—ryd+(q, —mo)/t, (66)
2n=qyl — py;m+(ry, —no)/t,

where:
oc=Q-e_=pl+qm+rn. (67)

By derivation of the definition relations (44) we obtain:
E=(1-h)l6+h(p, —ntq, +mtry) ;
1= (L= W)m + h(nip, +q, —liry)
c=(—-hnoc+h(-mtp, +1tq, +r,), (68)

where derivatives of the angles of rotation can be put in the
form:

. . r
o ¢l =wlp, ¢ r]
in which, with local notations:
o 1-h
= — N = 5 70
0y A 3 (70)
connection matrix W, is given by:
g mg L& 0 -¢ n
We=fl&n n* Cn|+-| & 0 =&[+AalL, (1)
& nG ¢ -n & 0
or, in compact form:
f&+h  ME-C/2 fE+n/2
W, =| fen+6/2  fa'+h  fin-§/2 (72)
fEC-n/2 ME+E/2 ST +h
If we denote:
a = [5 n é/]T
we can write relation (69) in following form:
a,=W,0,, (73)

Relation (73) represents kinematical equations written using
rotation angles, being equivalent with relation (33) which is
written using attitude angles.

Using notations:

o dh

do

s—0 _i_0'2+os—4(l—c)

do 20°(1-¢)

- :

l-¢’

1
2 b
(74)
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we can determinate the derivatives of the matrix WR :

2/ fm o fC ]
aWR =| fn 0 —1/2 +—éVVRé;
ot oo o
2 0
0 fE 12
oW oW
=l fe 2 fo e
n Jo o
-1/2 & 0]
0 -2 g
W _ /2 0 fn +NR£, (75)
g Jdo
S fm 2/¢
where: )
AV fE+n  fnE f¢é
=] S fm*+n fln |
fé¢ e N
(76)
An interesting case is wheno —> 0 .
For this situation we have:
. . 1o
(lfliréh—lcl}%f—a,}g%h—o (lfliréf—o (77)
and the derivatives are:
1 00 0 00
W,=(0 1 O;aWR:O 0 0}
oo
0 0 1 0 00
0 0 0 0 0 12
ng_ 0 0 —vz;fgf: 0 0 0
oy2 o | 7 |-y2 0 o0
0 —1/2 0
We _ /20 0| (79
g
0 0 0

Beside equations (33) or (73) which describe vehicle
orientation there are still three equations that starting from
dynamic Newton equation, linear coordinates of the vehicles
will produce:

=V

Xp = Iy z, =V,

z

Vies ¥, (79)

D. Dynamical equations

Developing vector equations presented in the paper [4], and
considering that the satellite has no moving parts and weight is
constant, we can write two matrix equations

- Force equations in the Earth frame
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. ﬂ . lLl . ll'l
Vi==5x5V, ===y Ve =525 (80)
r r r
where:
r:ﬁx,z+y,2+z,2 (81)
- Moment equations in the body frame, relations
known as Euler dinamic equations:
@, L L. (B-Ow0,+Eoo0,
@, |=3" Mg |+ | M |+37[(C - Do.o, + E(0 - o))
d)z NG NC (A_B)a)xa)_v —EC().VC():
(82)
where two inertial products are null:
D=F=0 (82)
The inverse matrix for the inertia moment is given by:
. C 0 E
T——— 10 (A4C-E»/B 0| (84
AC—-E
E 0 A

a
nd the inertial moments are given by:

A=[(*+2%)dm; B=[(z*+x")dm; C=[(x" +y*)dm

E= I zxdm; (86)
The moment applied to vehicle has two terms:
- Gravitationally moment term:
T
MG:[LG Mg NG] 87
Command term which is performed using micro-jet:
r
M. =[L. M. N.| 9

State vector for these equations is:

Oy = [a)x o, a)z]T > (89)

and means the rotation speed of the body frame related to the
inertial frame, heaving components along body frame. These
nonlinear differential equations have no closed analytical
solution.

F. Gravitational Moment

Space vehicle has a asymmetric body, situation where there
is a tendency to align its principal axes of inertia according to
the direction of the gravitational field.

Fig. 4 gravitational moment of mass element

If we assume that we have a vehicle, whose center of mass (cm)
is positioned at a distance I from Earth’s center, and a mass

element dm belonging to the vehicul positioned at a distance
p from the vehicul center of mass and a distance R from the
center of the Earth we can write the link between them:

R=r+p (90)
In the reference frame, the position vector for the center of mass
has the form:

r=-K,r 1)
If we wish to express this vector in the body frame we have:

[r r, rZ]TzAA[O 0 —r]T, (92)

X

from which:
Vo ==ra,5; 1, =—T0,5; 1, = —Fay (93)
The position vector for the mass element is given by:
p=xi+yj+:zk (94)

Mass element involve following elementary gravitational

moment:
dM, =p><dG=—'UdmpxR:—’Udm

R’ R’

pxr (95

For R_S, taking into account that: p < R and p <7,

we can successively write:

R =r*+p* +2pr= r2[1 + 2%) (96)
from where:
97)

In this case, gravitational moment becomes:

dm r
M, = —,uj‘?pxr = —%I(l —3‘:—2Jp xrdm (98)

3
M, = r—élj(pr)(p X r)dm (99)

Scalar product becomes:
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pr=—r(a,;x+ayy+a;z)  (100)
and vectorial product is:
PXT =—r(ay3y —a,;2)i —r(a, ;2 — a;;X)j
(101)

—r(ay;x —a;y)K
and integral expression, neglected inertial products becomes:
3u . .
M, = [(B-C)a,;a,5i+(C— A)a,;a;55+
r (102)
(4-B)a, ;a, K]
In order to evaluate the coefficient size we can express the
coefficient 3L / r’ using angular velocity @ ;
h’r o’r
3£ - e Il A O 5)
r (1-e)ar (1-¢e)a
In this case, the gravity gradient moment components become:
2

wir
(1—7)01(3 —C)a, ;a5 5;

a)zr

Mg;=3—"——
¢ (1- e)a

L.=3
(C-A)q 333

N;=3 (A-B)a,;a,; (104)

(1-e )a
If we consider attitude angles, the relations are:
2

LG =3m(B C)X :

x(cgswsO+spcO)(—sgs s O+ cgc)
M, =3O (C = A)x
¢ T(-éa

x (—cysO)(—sdsys 0 + cgcd)

2

(1-e )a
(—cws@)x(cgsys O+ sgch)

If we consider rotation angles we will obtain:
2

Ly =3—2 (B-C)aln+b&)al’ +c)
(1-e)a

2

My =3—220(C - A)alE -bn)al’ +c)
(1-¢e)a

N =3—22 (4= B)alE —b)aln +bE)
(1-¢e)a

N;=3 (A-B)x

(105)

(106)

III. AUXILIARY EQUATIONS

For guidance command we need integrals term defined
hereby:
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i, 1, i,]=[6 6 vl (107)
or, if we use rotation angles:
ar, Al AL =[ag An acT qos)

Because the satellite’s orientation control by means of
engines is due by their symmetrical arrangement about the
rotation axis, applying torque in either direction can not be
done only by switching between two motors. For it is necessary
that the chain of command to contain a switching element to
achieve a discrete output, constant amplitude, modulated in
duration. As shown in [7], the control system can be described
by a Schmidt trigger type element, whose functional diagram is
given in Figure 5. It is noted that this element is composed of a
nonlinear block, relay with hysteresis and insensitivity zone
and a linear integrator block that allows additional tuning of the
system. To control the output, this is turned to the entry,

forming a feedback loop.
M
—£

L

—| TS+l

Fig. 5 command type trigger Schmidt with nonlinear element

Nonlinear element is relay type, with insensitivity zone and
hysteresis, as we can see in figure 6

woob,

EBE
|

Fig. 6 nonlinear element operating schedule (N)

=V

As we can see in figure 6 the size of insensitivity zone is 2a,
the size of hysteresis zone is b , and saturation command is

+ M where 7,, are time constants and k;\} gain constants.

IV. BALANCE MOUVEMENT

The study of flight stability will be made accordingly to
Liapunov theory, considering the system of movement
equations perturbed around the balanced movement. This
involves a disturbance shortly applied on the balance
movement, which will produce deviation of the state variables.
Developing in series the perturbed movement equations in
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relation to status variables and taking into account the first
order terms of the detention, we will get linear equations which
can be used to analyze the stability in the first approximation, as
we proceed in most dynamic non linear problems. To determine
basic movement parameters in equations we consider the
vehicle stabilized with the body frame overlap reference frame.
That means the attitude angles or the rotation angles are nulls:

a,=[0 0 0] ;a,=[0 0 o] (09
and also the angular velocity or body frame related reference
frame are nulls.

0,=[0 0 of (@10
In this case the link between angular velocity, for balance
movement becomes:

Oy =g, (111)
moreover, because the attitude or rotation angles are nulls, and
rotation matrix A is a unitary matrix, the previously relation
becomes:

Op =0, (113)
or, in scalar form:
o=0;0=0;0 =0 (113)

In order to have a stationary movement, we admit that the orbit
is circular. This hypothesis leads to a constant orbit range,
¥y =a, and allows us to have a constant value for orbital
angular velocity:

(114)

V. LINEAR FORM OF THE GENERAL EQUATIONS

Considering base general equation due by Kepler model we can
obtain linear form.
From dynamic Euler equation we obtain following linear form:

A®, =M A0, + M Aa, +J'AM (115)

where:
B-C 0 0 0 o o
M, =J' 0 C-4 0 |o. 0 ol|+
0 0 A-B|lo, o 0
o, , 0
+J'E|-20, 0 2o,
0 -0, -0,
(116)

Taking into account balance movement established above, the
matrix becomes:

~E(B-A4-0C) BC-C*-E’°
AC - E? AC - E?
M, =0, 0 0 0 (117)
| E*+4° - 4B E(B-A4-0C)
AC - E? AC - E?
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AM,=[AL. AM_. AN.[ (118)

Starting from gravity gradient moment components, for small
attitude angles we obtain the following relations:

AL, =30*(B~-C)A¢
AM , =30’ (A~ C)A

ANg =0 (119)
or, if we use rotation angles:
AL, =30 (B~ C)AE
2
AM, =30’ (A-C)An
ANg =0 (120)
Matrix form becomes in both cases:
B-C 0 0
M, =303 0 A4-C 0 (121)
0 0 0
or:
[ C(B-C)
— 0
AC-FE
A—
M, =3w; 0 4-C 0| (122)
E(B-C)
— 0
| AC-E |

From kinematical equation (33), if we use altitude angles we
obtain:

Ad, =W Ao, +W, Aa, (123)
where:
Wl ow, Law 0 00
W, =|—24 141241 0 o, 0
ap | 9 | Jy
0 0 oy
(124)

For the base movement, because we consider @ ,, = 0, that

lends to a nulls matrix:

0 00
W,,=/0 0 O (125)
0 00
Taking into account that @, is base movement, it leads to
Awy, =0. (126)

In this case, the relation in perturbations between angular
velocity becomes:
Aoy, =Am, — A

Aa, (127)

ewA

where:
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o, 0 0
OA | OA | OA
cod = Ci—=1——=| 0 , 0 |28
ap | 09 | vy
0 o
For the base movement we have:
0 O o,
A=l 0 0 0 (129)
-, 0 0
From relation (123) it results:
Ad, =W Ao, +A Aa, (130
where:
AA =WwA —WAAmA (131)
For the base movement we have:
0 0 -o,
A,==A_,=/0 0 0 | (32
o 0 0

Similarly, if we use rotation angles, the kinematical equation
(73) in linear form becomes:

Aa, = W,Aw, + AzAa, (133)
where:
AR:WwR—WRAewR (134)
whereabouts:
BR 0
oW, | OW, | oW,
oR — o€ : 2 : ac Oz
| n | O 0 ())BR
o, 0 0
OA | OA | OA
Ae{uR = ol < . 0 RI 0
a | on | g
0 0 o
(135)

Finally, using relations (115), (133), rotation angles cases we
can outline the stability and the command matrices:
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Table 1 stability matrix

T T
: Oz : ap
R . I —
I I
l l
Oz : Ma) : MR
I I
I I
L — o —————
I I
I I
a, | W, ! A,
| |
I I
I I

In this case the system can be put in standard form:

X =Ax+ Bu (136)

where:

x=lo, a[liu=[L. M. N.J @37)
Observation. For balance movement described above, where
body frame coincide with reference frame, stability and
command matrix are identically for attitude angles and
rotation angles.
Next we found an analytical solution of the equations. For this
purpose we put matrix relations in scalar form.
From kinematical equation we obtain:

Ad)zAmx -0 ,Ay;
AézAwy
Ay =Ao, + w,A¢
(138)

From dynamic equations we can write:
Ao, =-a,0 Ao, +a.0 Ao, + 3afa)fA¢ +
! n
+b AL. +bAN,.

Ao, =3alw; A0+ b AM

Ao, =-a o Ao, a0, Ao, + 3afcqu¢ +

+b!AL. +b"AN .

where we denoted:
pEB=4-C) . _ CB-C*-E*
AC-E’ AC-E*

(139)

b

X X
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CB-C* , A-C , AB-A'-E*

a¢=—,a = ;a ;
Y AC-E* 7 B : AC—-E*?
. E(A+C-B) , EMB-C) C
a:=——————:al = >3 b. = =3
AC—-E AC—-E AC—-E
b::%;b::%; i:%;
AC-E AC-E AC-E
. 1
by:E (140)

Deriving equations (138) and substituting in (139) we obtain:
Ap+alo Ap+(al —3a?)o’Ad = (ai - Do AV
—a;w Ay +b AL +b! AN
AG-3a’w’AO = b AM
Ay +aio Ay +a oAy =(1-a))o,Ad+
(aZ +3al);Ap+Db.AL. +b!AN .

(141)

Similarly, for rotation matrix we obtain:

. . . N 2n g gz .
Aé+aiw,AS+(a; —3a;)w;AS = (a; —Dw, AL
—aiw;A +bAL+b!AN

s n_ 2 M
Afj=3alw;An =b, AM

P> z . x 2 _ X %
Al +a oAl +a ;A =(1-a)o,AS+
(aZ +3al)w;AE+bAL. +b!AN .

(142)

First, we observe that the second equation can be analyzed
separately.
For first and third equations, considering value of @,

constant, we can apply Laplace transformation, and put these
relations in matrix form:

A(s)x=bu (143)
where:
Als) = {sz ta;w;s+(a; - 3a: )a)jz.

(a; -Do;s—(a; + 3a)w’

x 2
—(a: —l)a)js+a;a)j:|
J

s7+ aja)js+aja)f
(144)

bl bn

bl b’ r T
b= x=[¢ ¢Tsu=[ N]
(145)
Easily we can obtain inverse of A(s) matrix:
a1 s’ +dios+alw; (a -Vo,s —aw;
S Pl- (@l —Do;s+(aZ + 3af)wf st + a;w;s+(a; - 3af)a),2.
(146)
where characteristic polynomial is:

P(s)=s"+ (a;‘ + azz)a)l.s3 +(aja; +aja; +1 —3af)a)/2.s2 +
X z z [ 4 3
+(a; +a; —3a;a; —3a:a; +3a;)w;s +

+(alal +alal -3acal + 3afaf)a);‘
(147)

Using these results we put previously relations in form
x=A""(s)bu (148)

which represents analytical solution for commanded linear

equations.

Observation. For balance movement described above, the

stability matrix A, defined by relation (144) are identically for
attitude angles and rotation angles.

VI. EXTENDED SATABILITY AND CONTROL MATRICES

Besides the general motion equations in linear form as outlined
above, S/C needs other relationships to be added. Among them,
the most important and which can not be neglected are the
actuator equations and the guidance equations. For the
autonomous flight, as is case of S/C ‘s, the guidance equation is
necessary to introduce integrated terms specific to PID-type
controllers.

For linearization to the Trigger Schmidt type command
system,, we applied the method given by paper [7], using
Fourier transform. Thus, by first harmonic approximation, we
obtain a linear transfer function of the form:

+Q
N(s)=k,, ST (149)
where we denoted:
Ky =4 g, =00 (150)
Xo a,
where:
. _2M 1_(aM+bM) _aM2
1= 2 5
o0 X, X,
2M b
b =-——--2 (151)
T X,

where a,,, b v » M define non linear function from figure 7,

and sizes X, and ® means amplitude , respectively the

pulsation of the input signal.

In this case, considering the integrator element and feedback
loop, the linear transfer function of the command system for a
channel is:

ky (s+Q,,)
T, 50+l +1)s+kLQ,

or, if you neglect the pulse term 2, , we obtain the following

H,(s) = (152)

simplified linear relationship:



INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT

Issue 4, Volume 5, 2011

u

H,(s)= utt

M (153)
TS +ky +1

Starting from the previously relation, the linear form of the
command equation became:

[ALC AMC ANC]7 =

(154)
=D, [AL. AM,. AN.] +D Au
where:
~(1+k4 )y, 0 0
D, = 0 —(1+ & ), 0 ;
0 0 —(1+k4 ),
k' /t, 0 0
D,=| 0 kiyfs, O |5 (55
0 0o k'/z,

Similarly, linear form of auxiliary equation (108) became:

Al ap, Al =[ag An AZT ase)

Using linear relation (154) and (156) we can build extended
stability and control matrixes.

Table 3 extended stability matrix A

L ow o [ Lo M
i ! i
0, 3 M, 3 M, 3 J
| | |
R S S I
| | |
1 1 1
a, | W, ! A, !
| | |
S S SO N D
1 1 1
| | |
| O T A 1
| | |
| | |
S S I
| | |
1 1 1
M. | 1 . Dy
| | |
l l l

Table 4 extended control matrix B

w u, u,
Oy
a
__; ____________
w| o

Observation. For balance movement described above, where
body frame coincide with reference frame, extended stability
and extended command matrix are identically for attitude
angles and rotation angles.

In this case the system can be put in standard form:

x = Ax+ Bu (157)

where:

x:[mB, a, I M]T;u:[u, u un]r

(158)

m

VII. GUIDANCE COMMAND SYNTHESIS

A. Optimal control using uncoupled state vector

Resuming papers [4],[7] , the guidance commands for
uncoupled state vector are the simple form:

u=Uplu, u, u.] . (59

where the main control signals are PID structure:
~ s~ £
u; = _(kf§ + kff + kuélf)
~ 5 L 1,5
u, ==k, +k/iT+k,'1,)
. ) 1.~
ug :_(kfl/j-i_kfé/ +ku51§) H
(160)
The matrix U ,, were previously presented.

The parameters relative f 7] ;E are given by:
§=C-Cin=n-1n;¢=¢-Cs

where &,, 17, ,4, are input reference values, and

(161)

the integrals term are defined hereby:
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[15 1, Ich [65 1 §]~ (162)
First, we will try to obtain a simplified solution for the guidance
command defined previously in PID form. For this purpose we
will start from scalar equations established for commanded
linear equations:

Moreover we will neglect cross influence introduced by

angular velocity @; and also we will considerate inertial

product moment null:

E=0
In this case all angular equations have a similar form:
AE=="; Afj==— Al="—" (163)
A B C

If we neglect actuator delay time

7, =0
from guidance command form established previously we can
write following linear forms:

AL =—(kiAE + kEAE +KEAT KL Ikl +1);
AM = —(kIA7] + KIATT + kAT Y /(e +1);

AN = (kS AZ +KEAE + kAT kY /(K +1)
(164)

Separating  angular inputs and applying Laplace

transformation, from previously relation will obtain:

Aﬁk_;; +1)S2 ks’ +kfs+kfjg_ kEs® +kis+ k"

ky, s s <

u 7,2 n In 72 n In
B(kM+1)S2+kus ks + k! jn:kus PRI HR
ky, s s
u o2 4 bt e o2 4 bt s
C(kM+1)S2+kus +kEs+k! };:kus PRk,
ky, s s
(165)
Admitting proportionality between coefficients and inertial
moment we can write:
kK Rk KK,
VoAlky +1) Bley +1) Cley +1)
L A 1.
> oAkl +1) Bl +1) ey +1)
__kiky KKy kSKy
3 u - u - u
A(ky, +1)  B(k,, +1) C(k,, +1)
(166)

Using these new coefficients, transfer function for angular size
has the form:
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kis® +k,s + k,
s +ks*+ks+k,
Next we use pole-zero allocation method [4]. For this purpose

we use an optimal function quite similarly with the previously
obtained:

H(s)=

(167)

6.7Q,5° +6.7Q%s + Q)
§7+6.7Q,5> +6.7Q0s + Q)

with Q) =7, / t, ,where 7, = 1.5, and response time is

Hi(s)= (168)

choose.
Identifying between functions coefficients, we obtain
following useful relations:

2 3
k, =6.7Q; k, =6.7Q; ky; =Q,
Finally, choosing response time ., =5 § we obtain:

k, =2.01; k, =0.603; k, =0.027

(169)

B. Optimal control using coupled state vector

Supposing to have access to extend state vector X, we can
obtain directly the controller K for optimal command:

u=-Kx (170)
In order to satisfy the linear quadratic performance index (cost
function):

minJ=J.(xTQx+uTRu)dt, (171)
0

where the extended pair (A,B) is controllable and the state
weighting matrix Q is symmetric and quasi positive:
O —O7
Q20;Q=Q".
while the control weighting matrix R is symmetric and
positive:

(172)

R>0;R=R"; (173)
In this case, the following relation gives the optimal controller
K=R'B'P (51)

where the matrix P is the solution of the algebraic Riccati
equation:

ATP+PA-PBR'B'P+Q=0 (174

C. Optimal control using Kalman filter

Using the optimal controller designed above requires access
to all system states, very difficult in view of the limited number
of sensors. In this case, for a complete description of the system
we use a linear state estimator constructed as a Kalman filter.
For this purpose we start from the regular relations:

x = Ax+Bu+Gw
(175)
y=Cx+Du+v

where w is the external noise and v is the internal noise
introduced by the sensors, where the matrixes G,C,D are
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considerate corrected with the stability matrix with
non-stationary variables A,

G=[1-A,]"'G,;C=[1-A,]'C,;D=[1-A,]"'D,,

(176)
The idea of estimator operation is: if the deliver system

2, 1 (A,B,C,D) with state x, can be "predicted" by system
%, :(A,B,C,D) that uses state z, which is accessible in this
case to be controlled. In order that the system 2, follows the
system X, we calculate a regulator L which brings the
difference between actual read states Yy, and estimated states

Y, as a correction into the system 2, . In this case we can
write:

{X:Ax+Bu+x06+Gw
P (177)

y,=Cx+Du+v
g Z=Az+Bu+z,56+L(y, -y,) (178)
y, =Cz+Du
where initial conditions are introduced by X, , respectively
Z, . Tracking error, including the initial conditions, is given
by:
X=x-12;

X, =X,—-2z, (179

If we decrease 2, from X, and neglect the noise is obtained:
X = he* O3, . (180)

Hence if L is dimensioned such that A-L.C has eigenvalues
with negative real part, the estimation error tends to zero.
Since z is provided by the estimator, we have access to all states
to make control of the form:

u=-Kz (181)
In this case the system X, is described by the equation:
x=Ax-BKz +x,=(A-BK)x + BKX +x,0
(182)

which has the solution:
x = he P (x,8 + iBKe“ 9'X,)  (183)

The process of calculating the estimator is similar to that
described above for the optimal regulator. This is based on the
dual system:

x=A'x+C'u (189
for which is considered performance index:
minJ = j [X(GQGT)x+u’Pu]dr (185
0
By solving the matrix Riccati equation:
AR+RA" —RC'P'CR+GQG" =0 (186)
matrix estimator is obtained:
L=RC'P"' (@87

where R is the solution of Riccati equation.

VIII. INPUT DATA, CALCULUS ALGORITHM AND RESULTS

A. Input data for the model
As input data for application we considered:
The eccentricity e = 0.3
The orbital period 7' =24h
The inertial moments:

A=1[kgm®]; B =2[kgm’];C =3[kgm’]

The product of inertia £ = 0.02[kgm”]
Parameters of the Schmidt Trigger element

a, =0.1;b,,=03; 7,, =0.1[s]; k,, =2.

B. Calculus algorithm

The calculus algorithm consists in multi-step method
Adams' predictor-corrector with variable step integration
method: [2] [16]. Absolute numerical error was 1.e-12, and
relative error was 1.e-10.

C. Results

First we highlight the influence of gravitational moment on the
uncontrolled satellite orientation. Figure 7 presents the
rotational velocity around the y axis of the mobile frame related
inertial frame

o
(@]
()
S — = M1
> M2
38

RNV
- Y.

60000

40000 80000

tlsl

0.01 20000

Fig. 7 Angular velocity for uncontrolled vehicle. M1 - with
gravitational moment terms; M2- without gravitational moment
terms

We can see that the gravitational influence leads to an
additional angular velocity.
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Fig. 8 angular diagram for uncontrolled vehicle. M1 - with

gravitational moment terms; M2- without gravitational moment

terms
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Consequently, it influences the angle around the y axis, as we
can see from Figure 8

Next we analyze the three types of orientation control systems
described above. For starters, thrust control using a trigger
Schmidt element is presented.

6
5 E o q q [j\
4
3 H 1
N2
© 2 3
(e
p—
> 1
‘e of el N | ekl
£ 4
> o
-3
-4
-5 e e
_60 25 50 75 100 125 150 175
t[s]

Fig. 8 command moment for controlled vehicle. M1- Optimal
control using uncoupled state vector ; . M2- Optimal control
using coupled state vector ;

Note that after achieving control system synthesis, the model
uses nonlinear switching element. Because at the beginning we
have an angular velocity jump, the command is more active in
this moment. Applying the above presented control systems,
the absolute angular velocity is stabilized at the base, which
provides on the satellite a rotation velocity around its y axis
synchronous with the motion around Earth, as we can see in
figure 9.
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o
\
— \
o i)
2 -0.005 H
k=3 | = M1
> ‘ M2
3 . M3
0.01
00153 25 50 75 100 125 150 175

t[s]
Fig. 9 angular velocity diagram for controlled vehicle. M1-

Optimal control using uncoupled state vector ; . M2- Optimal
control using coupled state vector ; M3 — Kalman filter;

Finally, figure 10 shows the rotation angle around the y axis,
which is stabilized at null value, and providing the
overlap of the mobile frame over reference frame.
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Fig. 10 angular diagram for controlled vehicle. M1- Optimal

control using uncoupled state vector ; . M2- Optimal control

using coupled state vector ; M3 — Kalman filter;
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IX. CONCLUSIONS

The paper presents synthesis aspects of the simulation model,
developed for the calculation of Attitude Control System-

ACS of the small satellite which uses as command a micro jet
engine. The application is made for three ACS variants first
using control system for uncoupled state and the second using a
control system for coupled state an third using Kalman filter .
From the results obtained one can observe that the last two
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solutions, although there are more complicated, are better than
the previous ones, providing an ACS with the shortest
response time and a smaller override.

As a general conclusion we must underline two novelty aspects
introduced by the paper:

-We achieved the description of the model by using the rotation
angles, which lead to polynomial forms for the rotation and
connection matrix and which eliminate the singularities of the
connection matrix in case of Euler’s angles. On the other hand,
these 3 values are independent and on the same time they have
an angular dimension, and so they are measurable. This creates
a great advantage on opposition to the usage of the Hamilton
quaternion.

-By the linearization of the Trigger-Schmidt element we have
constructed homogenous linear system and we made the ACS
synthesis. With all the simplifications introduced by the Fourier
transformation, the result obtained is valid, this being verified
by testing the system in it’s non-linear form.
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