
 

 

  
Abstract - The paper purpose is to present some aspects 
regarding the calculus model and technical solutions for small 
satellites attitude control. Mathematical model is put in 
nonlinear and linear form. The linear form is used for attitude 
control system synthesis. The attitude control system obtained 
is used in nonlinear form in order to maintain desired attitude. 
A few numerical simulations are made for standard input and 
the satellite behavior is obtained. The satellite model presented 
will be with six DOF and uses Cartesian coordinates. At this 
item, as novelty of the work we will use the rotation angles to 
describe the kinematical equations. Also this paper proposes a 
Fourier linearising of Trigger Schmidt element used for 
applying the command moment.  The results analyzed will be 
the rotation angles of the satellite as well the rotation velocity. 
The conclusions will focus the comparison between results 
obtained using different attitude control system, and the 
possibility to use such system for small satellite. 

 
Keywords— Automatic, Attitude control system, Mathematic 

model,  Simulation, Small satellite   

NOMENCLATURE 

ξ  - Rotation angle around body BX axis 

η  - Rotation angle around body BY axis 

ζ  - Rotation angle around body BZ axis 
ψ  - Attitude angle around z axis 
θ  - Attitude angle around y axis 
φ  - Attitude angle around x axis 

BIω -Angular velocity of the body frame relative to the inertial 
frame expressed in body frame; 

RIω -Angular velocity of the reference frame relative to the 
inertial frame expressed in relative frame; 

RIBω -Angular velocity of the reference frame relative to the 
inertial frame expressed in body frame; 
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BRω  -Angular velocity of the body frame relative to the 
reference frame expressed in body frame;  
 

ECBA ,,,  - Satellite inertia moments;  
m  - Satellite Mass;   
a  - Major semi axis of elliptical satellite orbit; 
e - Eccentricity of elliptical satellite orbit; 
t  - Time; 
r  - Position vector of satellite relative to origin of the inertial 
frame – center of the Earth; 
T -Orbital period; 
v  - Velocity;  

IzIyIx VVV ,,  - Velocity components expressed in inertial frame;   

BBB ZYX ,,  - Body frame;  

RRR ZYX ,,  - Reference frame;  

III ZYX ,, -Inertial frame 

III zyx ,, - Satellite coordinate expressed in inertial frame; 
 

I. INTRODUCTION 
 
t is indisputable that today, the use of satellites is the spatial 
program main goal, due to their importance in terms of 
telecommunications, remote sensing and navigation that they 

provide. During a satellite mission, the quality of Attitude 
Control System (ACS) is a basic element for achieving good 
functioning condition. For ACS completion is required to build 
a suitable mathematical model that allows both the synthesis of 
the control system and its simulation. 

Starting from this requirement the paper will introduce two 
novelties: 

-The use of the rotation angles for describing the kinematical 
equations; 

 -The linearising of Trigger Schmidt element used for 
applying the command moment, thru Fourier Transformation 

Unlike regular paper, which covers the regular aircraft 
cases, where the kinematical equations use Euler angles, in our 
case, when the satellite has a complex evolution, the papers 
[4],[5] and [10] recommends the quaternion vector or the 
rotation angles. Using kinematical equations written with Euler 
angles, in addition to benefits related to the significance of 
physical measurable sizes, the following drawback is involved: 
the use of trigonometric functions in program algorithms. 
Although complications related to solve the kinematical 
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equations, the rotation angles can be used for attitude control, 
as it will be shown next. 

II. GENERAL MOVEMENT EQUATIONS  

A. Used frames 
First of all, we must define a frame, call referance frame 

(RF), in which the satellite will be stabilized related to three 
axes. As we can see in figure 1 the frame origin of referance 
frame is in the mass center of the satellite and moves with it. 
Axis RZ   is orientated towards Earth mass center, RX  axis is 

in orbit plane, normal of  RZ  axis and orientated towards 

velocity direction. Axis RY is normal to the orbit plane, and 
completes an orthogonal right-hand system. In the same time 
we define an angular velocity RIω  which means angular 
velocity of the reference frame related to inertial frame. Inertial 
frame III ZYX ,, (IF) has its origin in Earth center being use 
for the description of orbital moving of the satellite. The body 
frame BBB ZYX  (BF) is an orthogonal frame heaving the axis, 
if is possible, along the principal inertial axis.  The attitude of 
the boy frame related to the reference frame is defined using 
attitude angles type Euler, or quaternion vector or, as we  will 
present later on, the rotation angles. 
 

 
Fig. 1 definition of the used frames 

 

B. The angular velocity of the body frame 
The two main terms of the kinematical orientation of the 

satellite are: 
- The angular velocity of the BF related the RF:  

kjiω BBBBR rqp ++=            (1) 
- The angular velocity of the RF related IF: 

 RkRjRiRI kjiω ωωω ++=     (2) 

The angular velocity of the RF related IF RIω : expressed in 
BF is:  

kjiω kBjBiBRIB ωωω ++=      (3) 

The link between this two expressions being on the rotation 
matrix: 

RIeRIB ωAω = ,       (4) 

where, the rotation matrix eA  will be further defined 

Finally we define the angular velocity of the BF related to the 
IF : 

   kjiω zyxBI ωωω ++=        (5) 

Between these three sizes there is the link:  

RIBBRBI ωωω +=       (6) 
Because all components are expressed in the body frame, it can 
be write immediately the scalar link: 
[ ] [ ] [ ]Tkjie

T
BBB

T
zyx rqp ωωωωωω A+=

(7) 
Because the RF are defined by unitary vectors: RRR k,j,i , 
their definition based  on position vector r and velocity v : 

rR
rk −=  ; 

rvR ×
×

=
rvj ; 

( ) ( )
rv

rvrv
rv
rvrkji

×
⋅⋅−

=
×
××

=×=
r

r
rRRR

2

  (1) 

Deriving in reference frame we obtain successive: 
 

r

V
iR

j R
kR

ZI

YIXI  
Fig. 2 definition of the unitary vectors for the reference frame 
 

( ) RjRkRRkRjRi
R

dt
d kjikjii ωωωωω −=×++= ; 

( ) RkRiRRkRjRi
R ωj

dt
dj ikkji −=×++= ωωωω ; 

( ) RiRjRRkRjRi
R

dt
d

jikkji
k

ω−ω=×ω+ω+ω= . 

(10) 
If we perform scalar product of each relation with unitary 
vectors RRR k,j,i , found that: 

R
R

R
R

i dt
d

dt
d jkkj

−==ω ; R
R

R
R

j dt
d

dt
d kiik

−==ω ;

 R
R

R
R

k dt
d

dt
d ijji

−==ω        (11) 

Taking into account by definition relations (8) and the features 
of mixed product we obtain successively: 
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( ) ( )
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=
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rrv
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vvr
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rvr
rv

rvv
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rv
rvrrjk

r
r

r

r
r

r

r
r

dt
d

rdt
d

R
R

i

&

&

&
ω

      (12) 

Similarly, we obtain: 
( )

( )[ ]222
2

2

2

1

1

vr
r

r
r

rr
r

dt
d

R
R

j

−⋅
×

=

=
×

⋅⋅−
⎟
⎠
⎞

⎜
⎝
⎛ −==

vr
rv

rv
rvrvvrik &

ω
  (13) 

Taking into account that [14]: 
βcosrv=× rv ; βsinrv=⋅ vr ,    (14) 

finally we obtain: 

2cos
r
h

r
v

j −=−= βω          (14) 

If the orbit is circular, obviously we have:  

r
v

j −=ω         (15) 

Finally for obtain kω , develop such: 

( ) [ ]

( ) R

RRR
R

k dt
d

dt
dj

irr
rv

irvrr
rv

irv
rv

i

×
×

−=

=×+×
×

−=×
×

−=−=ω

&&

&&&

1

11

 
(16) 

But, for Keplerian case we can write: 

3r
rr µ−=&&         (17) 

obtaining that:   

[ ] 03 =×
×

= Rk r
irr

rv
µω        (18) 

Obviously, for Keplerian movement, no acceleration outside 
from the orbit plan, so we can write: 

 [ ]TjRI 00 ωω =       (19) 

where: 

2r
h

j −=ω      (20) 

Taking into account of relation (4) finally we can write:  
[ ] [ ] [ ]Tje

T
zyx

T
BBB rqp 00 ωωωω A−=  

(21) 
This relationship is important because if we measure or 
calculate the angular velocity of the BF related to 
IF kjiω zyxBI ωωω ++= , then using (21) we can determine 

the angular velocity of the BF related with RF 

[ ]TBBBBR rqp=ω  and use it to control the vehicle 
attitude related to RF 
 
C. Kinematical equations   

Unlike paper [3], which covers the regular flight vehicles, 
where the kinematical equations use Euler angles, in our case, 
when we have unusual or unpredicted attitude,  the papers [5], 
[10] recommend quaternion or rotation angles. Using 
kinematical equations written with Euler angles the following 
drawback is involved: singularity of the connection matrix and 
the use of trigonometric functions in program algorithms. To 
outline this disadvantage, further we will compare the attitude 
Euler angles with rotation angles.  

For attitude angles case using partial rotation matrix:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0cossin
0sincos

ψψ
ψψ

ψA

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

θθ

θθ

θ

cos0sin
010

sin0cos
A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

φφ
φφφ

cossin0
sincos0

001
A    

                 
the complete rotation matrix becomes: 

      ,,, θψφθψφ AAAAA ==e          (22) 

If we denote: 
φφ cos=c ; φφ sin=s ; θθ cos=c ; θθ sin=cs ; 
ψψ cos=c ; ψψ sin=s  

the rotation matrix is:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−+
++−

−
=

θφθψφψφθφθψφ
θφθψφψφθφθψφ

θψψθψ

ccssscssccss
cssscccsscsc

scscc

eA

 
(23) 

The derivatives rotation matrix related the attitude angles 
are: 

 -The derivative related φ  angle: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−
+−−+=

∂
∂

θφθψφψφθφθψφ
θφθψφψφθφθψφ

φ
cssscccsscsc
ccssscssccsse

000
A

 

(24) 
- The derivative related θ  angle: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+−
−+

−−
=

∂
∂

θφθψφθφθψφ
θφθψφθφθψφ

θψθψ

θ
sccssccsss

sscsccsssc
ccsc

e

0
0
0

A
 (25) 

 
 
- The derivative related  ψ  angle: 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

∂
∂

θψφψφθψφ
θψφψφθψφ

θψψθψ

ψ
scsssccs

sccscccc
ssccs

eA
     (26) 

 

For the case where 0→φ ; 0→θ ; 0→ψ , the matrices 
obtained above are: 

,
100
010
001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=eA

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

010
100
000

∂φ
∂ eA

;   

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

001
000
100

∂θ
∂ eA

;

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

∂ψ
∂

000
001
010

eA
   (27) 

In order to obtain the connection between the derivatives of 
Euler angles and components of rotation velocity in the body 
frame, starting with relation:   

φ&&& ++= θψωBR ,           (28) 
we can write: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡φ
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψ
θ=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡φ
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψ
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
θ=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψφφψφθψφ

0
0

0

0
00

0

0

0

,,,,

&

&

&

&

&

& AAAA

B

B

B

r
q
p

. 
 
If we denote attitude vector: 

[ ]ψθφ=Aa       (29) 
we obtain:  

AABR aUω &= .    (30)  
where: 

       

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

φψφ
φψφ

ψ

ccs
scc

s

A

0
0

01
U    (31) 

 
Denoting AW  the connection matrix: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
== −

φφ
ψφψφ
ψψφψψφ

cs
cscc
csscsc

U AA

0
//0
//1

1W . (32) 

we can finally write: 
[ ]TBBBAA rqpWa =& ,   (33) 

Observation: The connection matrix AW  can be singular for 
case when  0=ψc . 

 
Considering (21) from (33) yield: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

0

jeA

z

y

x

A ω
ω
ω
ω

ψ
θ
φ

AWW
&

&

&

    (34) 

Considering (29) finally we can write matrix relationship:  

RIeABIAA ωAWωWa −=&       (35) 
The derivatives of the connection matrix are: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−=

∂
∂

φφ
ψφψφ
ψψφψψφ

φ
sc

cccs
csccss

A

0
//0
//0

W
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∂
∂

000
000
000

θ
AW

; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

=
∂

∂

000
//0

//0
22

22

ψψφψψφ
ψφψφ

ψ
csscsc

cscc
AW      

(36) 

For case 0→φ ; 0→θ ; 0→ψ , matrices obtained above 
are: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

AW ; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

∂
∂

010
100

000

φ
AW

; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∂
∂

000
000
000

θ
AW

;

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

∂
∂

000
000
010

ψ
AW

.  (37) 

Besides the kinematical relations with the attitude angles 
described above in the model we use the rotation angles that we 
will introduce next. 

In paper [10] a group of three angles, called the rotation 
angles, were first introduced.  The sizes were used to describe 
the aircraft movement.  

Angles of rotation have the advantage that they can be 
measured easily on board of the space vehicle. Furthermore 
they retain the advantages of quaternion, removing singularity 
from kinematical equations written with the attitude angles 
(32). Also, allow the polynomial expression of the kinematical 
equations, an important advantage in building high-speed 
algorithms and easily implemented on hardware support. 
Angles of rotation retain the advantage of angles Euler type, 
that of being quantities directly measurable with a concrete 
physical meaning. 

   
It is well known that a sequence of rotations of a rigid body 

with a fixed point can be replaced by a single rotation σ around 
an axis through the fixed point. 
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Fig. 3 Single rotation from fixed frame to mobile frame 

 In order to build kinematical equations we will use two 
frames: 

 000 ZYOX - The fixed frame with unitary vectors: KJI ,,  ; 
 Oxyz – The mobile frame, linked by body with unitary 
vectors kji ,,  ; 

 We suppose that the body has angular velocity BRω  with the 

components ( BBB rqp ,, ) in mobile frame Oxyz: 

BBBBR rqp kjiω ++= .      (38) 
Axis E is the axis around which a single rotation σ  is 

necessary to overlap frame 000 ZYOX  over frame Oxyz (fig. 3).   
The unitary vector for axis E is σe :  

  nml KJIe ++=σ ,      (39) 
 

Considering the notations from figure 3, we can write: 
 BRCReeBReA −=⋅⋅=×= σσσ 000 );(; .     (40) 

     In this case, the relation between the position vectors of the 
point P and the point 0P  became successively: 

;cossin σσ CABR ++=    
;cos)]([sin)()( 0000 σ⋅⋅−+σ×+⋅⋅= σσσσσ ReeRReReeR  

.sin)()cos1)((cos 000 σσσ σσσ ReReeRR ×+−⋅⋅+=   
(41) 

 
 If the point 0P  is located initially on the axis 0X , the point P 
will be finally on-axis x. 
 Because the vectors R  and 0R  are equal in module, we can 
substitute in relation (41): 

.; 0 IRiR →→  
 Similarly, if the point P  is located on the axis y or z, we can 
substitute: 

.;;; 00 KRkRJRjR →→→→  
 Finally we obtain the system:  

.sin)()cos1()(cos
;sin)()cos1()(cos

;sin)()cos1()(cos

σσσ
σσσ

σσσ

KKJIKJIKk
JKJIKJIJj

IKJIKJIIi

×+++−+++=
×+++−+++=

×+++−+++=

nmlnnml
nmlmnml

nmllnml

 (42) 
 If we note σσ sin;cos == sc , we obtain the relation:  

[ ] [ ]Te
T KJIAkji = , 

where, eA  is the direct rotation matrix: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−−+−
+−−+−−

−−+−−+
=

)1()1()1(
)1()1()1(

)1()1()1(

2

2

2

cnclscmnmscln
lscmncmcnsclm

msclnnsclmclc

eA

 (43) 
which coincides with that defined by the relation (23) using 
attitude angles. 

Thus, the overall rotation angle can be expressed by the 
superposition of three simultaneous rotations along the mobile 
frame axes: 

nml σζσησξ === ;;        (44) 
The sizes are called the rotation angles: 
  ξ - Rotation angle around x  axis; 
  η - Rotation angle around y  axis;         
  ζ - Rotation angle around z  axis. 
The angles verify the relation:  

 2222 ζηξσ ++=  .      (45) 
Using rotation angles, from (43) the rotation matrix 

becomes:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+
++−
−++

=
cababa

bacaba
babaca

e
2

2

2

ζξηζηξζ
ξζηηζξη
ηζξζηξξ

A   (46) 

where: 

σσ
σσ

sin;cos;;1
2 ===

−
= scsbca     (47) 

 
From (45) we obtain derivatives:  

  
σ
ζ

∂ζ
∂σ

σ
η

∂η
∂σ

σ
ξ

∂ξ
∂σ

=== ;; ,            (48) 

with which we obtain derivatives matrix eA : 

σ
ξ

∂σ
∂

ζ
η

ζηξ

∂ξ
∂ ee

ba
ba

aaa
AA

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

0
0

2
;

σ
η

∂σ
∂

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ζ
ζηξ

−ξ
=

∂η
∂ ee

ab
aaa

ba
AA

0
2

0
 

σ
ζ

∂σ
∂

ζηξ
η
ξ

∂ζ
∂ ee

aaa
ab
ab

AA
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

2
0

0
 (49) 

where: 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−′′−′′+′
′+′−′′−′
′−′′+′−′

=
sababa

basaba
babasa

e

2

2

2

ζξηζηξζ
ξζηηζξη
ηζξζηξξ

∂σ
∂A

 (50) 

 

where we noted  

;22
3σ

−+σ
=

σ
=′ cs

d
daa  ;2σ

σ
σ

sc
d
dbb −

==′    (51) 

An interesting case is 0→σ . 

For this situation we have: 

2
1lim

0
=

→
a

σ
; 1lim

0
=

→
b

σ
; 0lim

0
=′

→
a

σ
 0lim

0
=′

→
b

σ
;   (52) 

and matrix derivatives are: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

eA ; 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
000
000

∂σ
∂ eA ; 

⎥
⎥
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

000
001
010

∂ζ
∂ eA        (53) 

Because the rotation matrix (23) and (46) is the same 
regardless of the variables used, we obtain the following 
relationships between different variables (Euler angles, rotation 
angles) 

The attitude angles from the rotation angles are given by: 

ca
ab

a
a

+
−

=−= 2
2,2

2,3tan
η

ζηξφ ;
ca

ab
a
a

+
−

== 2
1,1

3,1tan
ξ

ζξηθ  

ηξζψ aba +=−= 2,1sin ; 

   (54) 
Also, we can obtain the rotation angles from attitude angles 
using the relations: 

b
aa

2
2,33,2 −

=ξ ; 
b
aa

2
3,11,3 −

=η  
b
aa

2
1,22,1 −

=ζ    (55) 

where: 

σ
σ

=
sinb  ; carccos=σ  ( ) 2/13,32,21,1 −++= aaac .    

(56) 
Next, we will try to obtain the connection between the 

derivatives of rotation angles and components of rotation 
velocity in the body frame. 
Thus, as rotation around axis E  is an equivalent 
transformation in terms of the two systems, it follows that the 
vector σe projections are identical:  

nmlnml kjiKJIe ++=++=σ  .     (57) 
 If this relationship is derived with respect to time we obtain: 

σ×+++=++ eωkjiKJI BRnmlnml &&&&&& ,        (58) 
where: 

),()()( lqmpnplrmrnq BBBBBBBR −+−+−=× kjieω σ

    (59) 
thus:

).()(
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(60) 
 If we multiply successively by kji ,,  results: 
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 , 
or otherwise: 
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Introducing the matrix eA  given by (46), the left member of 
the relationship becomes:  
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(62) 

where we noted )2/tg(σ=t  
 Since the projections of unitary vector σe  satisfying the 
relationship: 

,1222 =++ nml         (51) 
results from differentiation: 

0=++ nnmmll &&& ,       (63) 
making the last term of the previous development to be null. 
On the other hand reverse matrix of the first term of relation 
(62) is 
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(64) 
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Multiplying by inverse matrix thus defined, relation (62) 
becomes: 
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(65) 
which leads to algebraic relations: 
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σ
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     (66)    

where: 
nrmqlp BBB ++=⋅= σσ eΩ&  .       (67) 

By derivation of the definition relations (44) we obtain: 
)()1( BBB mtrntqphlh +−+−= σξ && ;

)()1( BBB ltrqntphmh −++σ−=η && ; 

)()1( BBB rltqmtphnh ++−+−= σς && ,    (68) 
where derivatives of the angles of rotation can be put in the 
form: 

[ ] [ ]T
BBBR

T
rqpW=ζηξ &&&         (69) 

 
in which, with local notations: 

,1;
2 2σ
σ hf
t

h −
==        (70) 

connection matrix RW  is given by: 

IW hfR +
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or, in compact form:  
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W        (72) 

If we denote: 

[ ]T
R ζηξ=a  

we can write relation (69) in following form: 

BRRR ωWa =&              (73) 

Relation (73) represents kinematical equations written using 
rotation angles, being equivalent with relation (33) which is 
written using attitude angles.  

Using notations: 

;
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(74) 

we can determinate the derivatives of the matrix RW : 
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where: 
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   (76) 
An interesting case is when 0→σ . 

For this situation we have: 
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and the derivatives are: 
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Beside equations (33) or (73) which describe vehicle 
orientation there are still three equations that starting from 
dynamic Newton equation, linear coordinates of the vehicles 
will produce:    

  IxI Vx =& ; IyI Vy =&  IzI Vz =&       (79) 
 

D. Dynamical  equations 
Developing vector equations presented in the paper [4], and 
considering that the satellite has no moving parts and weight is 
constant, we can write two matrix equations  
- Force equations in the Earth frame 
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 IIx x
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V 3
µ

−=& ; IIy y
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V 3
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−=& ; IIz z
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V 3
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−=& ;   (80) 

where:  
222
III zyxr ++=      (81) 

- Moment equations in the body frame, relations  
known as Euler dinamic equations: 
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(82) 
where two inertial products are null:   

D F= = 0       (82) 
The inverse matrix for the inertia moment is given by: 
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⎡
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1 2
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1J   (84) 

a 
nd the inertial moments are given by: 
 
 

∫∫∫ +=+=+= myxCmxzBmzyA d)(;d)(;d)( 222222  

∫= ;d mzxE    (86) 

 
 
The moment applied to vehicle has two terms: 
- Gravitationally moment term: 

[ ]TGGGG NML=M    (87) 
- 
 Command term which is performed using micro-jet: 

[ ]TCCCC NML=M   (88) 
 
State vector for these equations is: 

 
[ ]TzyxBI ωωω=ω ,      (89) 

 
and means the rotation speed of the body frame related to the  
inertial frame, heaving components along body frame.  These 
nonlinear differential equations have no closed analytical 
solution.  
 

 

F. Gravitational Moment 
Space vehicle has a asymmetric body,  situation where there 

is a tendency to align its principal axes of inertia according to 
the direction of the gravitational field. 

OI

r

R

dm

cm

i R
j R

k R

B

ZI

YIXI
 

 
Fig. 4 gravitational moment of mass element 

 
If we assume that we have a vehicle, whose center of mass (cm) 
is positioned at a distance r  from Earth’s center, and a mass 
element md  belonging to the vehicul positioned at a distance 
ρ from the vehicul center of mass and a distance R from the 
center of the Earth  we can write the link between them: 

ρrR +=            (90) 
In the reference frame, the position vector for the center of mass 
has the form: 

rRkr −=            (91) 
If we wish to express this vector in the body frame we have: 

[ ] [ ]T
A

T
zyx rrrr −= 00A ,      (92) 

from which: 
    3,1rarx −= ; 3,2rary −= ; 3,3rarz −=        (93) 

The position vector for the mass element is given by: 
kjiρ zyx ++=         (94) 

Mass element involve following elementary gravitational 
moment: 

rρRρGρM ×−=×−=×= 33
dddd
R

m
R

m
G

µµ
     (95) 

For 3−R , taking into account that: R<ρ  and r<ρ , 
we can successively write: 
 

⎟
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⎜
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2222 212
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from where: 
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⎜
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⎛ −≅ 233 3111
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       (97) 

In this case, gravitational moment becomes: 

dm
rrR

m
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⎠
⎞

⎜
⎝
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mm

rρρrrρM 233 31d µµ    (98) 
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m

rρρrM 5
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     (99) 

Scalar product becomes: 
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)( 332313 zayaxar ++−=ρr     (100) 
and vectorial product is: 
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  (101) 

and integral expression, neglected inertial products becomes: 
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(102) 

In order to evaluate the coefficient size we can express the 
coefficient 33 rµ using angular velocity jω : 
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In this case, the gravity gradient moment components become: 
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     (104) 

If we consider attitude angles, the relations are: 
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If we consider rotation angles we will obtain: 
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(106) 

III. AUXILIARY EQUATIONS  
 For guidance command we need integrals term defined 
hereby:  
 

[ ] [ ]ψθφ=ψθφ III &&& .    (107) 
or, if we use rotation angles: 

[ ] [ ]TTIII ζηξζηξ ∆∆∆=∆∆∆ &&&       (108) 
Because the satellite’s orientation control by means of 

engines is due by their symmetrical arrangement about the 
rotation axis, applying torque in either direction can not be 
done only by switching between two motors. For it is necessary 
that the chain of command to contain a switching element to 
achieve a discrete output, constant amplitude, modulated in 
duration. As shown in [7], the control system can be described 
by a Schmidt trigger type element, whose functional diagram is 
given in Figure 5.  It is noted that this element is composed of a 
nonlinear block, relay with hysteresis and insensitivity zone 
and a linear integrator block that allows additional tuning of the 
system. To control the output, this is turned to the entry, 
forming a feedback loop. 

 

      
 

Fig. 5 command type trigger Schmidt with nonlinear element 
 
Nonlinear element is relay type, with insensitivity zone and 
hysteresis, as we can see in figure 6 
 

 
      Fig. 6 nonlinear element operating schedule (N) 
 
As we can see in figure 6 the size of insensitivity zone is a2 , 
the size of hysteresis zone is b , and saturation command is 

M± where Mτ  are time constants and u
Mk  gain  constants. 

IV. BALANCE MOUVEMENT 
The study of flight stability will be made accordingly to 
Liapunov theory, considering the system of movement 
equations perturbed around the balanced movement. This 
involves a disturbance shortly applied on the balance 
movement, which will produce deviation of the state variables. 
Developing in series the perturbed movement equations in 

CMu
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1
+τ sM
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relation to status variables and taking into account the first 
order terms of the detention, we will get linear equations which 
can be used to analyze the stability in the first approximation, as 
we proceed in most dynamic non linear problems. To determine 
basic movement parameters in equations we consider the 
vehicle stabilized with the body frame overlap reference frame. 
That means the attitude angles or the rotation angles are nulls: 

[ ]TA 000=a ; [ ]TR 000=a    (109) 
and also the angular velocity or body frame related reference 
frame are nulls.  

[ ]TBR 000=ω      (110) 
In this case the link between angular velocity, for balance 
movement becomes: 

RIBBI ωω = ,        (111) 
moreover, because the attitude or rotation angles are nulls, and 
rotation matrix eA is a unitary matrix, the previously relation 
becomes: 

RIBI ωω = ,           (113) 
or, in scalar form: 

0=xω ; jy ωω = ; 0=zω          (113) 
In order to have a stationary movement, we admit that the orbit 
is circular.  This hypothesis leads to a constant orbit range, 

ar = , and allows us to have a constant value for orbital 
angular velocity: 

r
v

j −=ω          (114) 

V. LINEAR FORM OF THE GENERAL EQUATIONS  
Considering base general equation due by Kepler model we can 
obtain linear form.  
From dynamic Euler equation we obtain following linear form: 

MJaMωMω ∆+∆+∆=∆ −1
RRBIBI ω&     (115) 

where: 
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(116) 
 
Taking into account balance movement established above, the 
matrix becomes: 
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[ ]TCCCC NML ∆∆∆=∆M        (118) 

 
Starting from gravity gradient moment components, for small 
attitude angles we obtain the following relations: 

φω ∆−=∆ )(3 2 CBL jg  

θω ∆−=∆ )(3 2 CAM jg  

0=∆ gN               (119) 
or, if we use rotation angles: 

ξω ∆−=∆ )(3 2 CBL jg  

ηω ∆−=∆ )(3 2 CAM jg  

0=∆ gN                (120) 
Matrix form becomes in both cases: 
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000
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3 12 CA
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jR JM ω       (121) 

or: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦
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⎢
⎢
⎢
⎢
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=

00)(
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00)(

3

2

2

2

EAC
CBE

B
CA

EAC
CBC

jR ωM    (122) 

From kinematical equation (33), if we use altitude angles we 
obtain: 

AABRAA aWωWa ∆+∆=∆ ω&     (123) 
where: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦
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=
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A

ω
ω

ω
WWWW

00
00
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ψθ ∂
∂

∂
∂

∂φ
∂

ω  

(124) 
For the base movement, because we consider 0=BRω , that 
lends to a nulls matrix: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=ω

000
000
000

AW       (125) 

Taking into account that RIω is base movement, it leads to  

0=∆ RIω .       (126) 
In this case, the relation in perturbations between angular 
velocity becomes: 

AAeBIBR aAωω ∆−∆=∆ ω       (127) 
where: 
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For the base movement we have: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

00
000

00

j

j
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From relation (123) it results: 

AABIAA aAωWa ∆+∆=∆&        (130) 
where: 

AeAAA ωω AWWA −=       (131) 
 

For the base movement we have: 

⎥
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⎡ −
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Similarly, if we use rotation angles, the kinematical equation 
(73) in linear form becomes: 

 
       RRBIRR aAωWa ∆+∆=∆&     (133) 

where: 
 

ReRRR ωω AWWA −=     (134) 
whereabouts: 
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(135) 
 
 
Finally, using relations (115) , (133), rotation angles cases  we 
can outline the stability and the command matrices: 
 
 
 
 
 

 
Table 1 stability matrix 

RRR

RBI

RBI

AWa

MMω

aω

ω

 

 
      Table 2 command matrix 

R

BI

BI

a

Jω

ω

1−

 

In this case the system can be put in standard form: 
BuAxx +=&          (136) 

where: 
[ ]T

ABI aωx = ; [ ]T
CCC NML=u     (137) 

Observation. For balance movement described above, where 
body frame coincide with reference frame, stability and 
command matrix are identically for attitude angles and 
rotation angles.    
Next we found an analytical solution of the equations. For this 
purpose we put matrix relations in scalar form. 
From kinematical equation we obtain: 

ψ∆ω−ω∆=φ∆ jx
& ; 

yωθ ∆=∆ &    

 φωωψ ∆+∆=∆ jz&  
(138) 

From dynamic equations we can write: 

C
n
xC

l
x

jxzj
z
xxj

x
xx

NbLb

aaa

∆+∆+

+∆+∆+∆−=∆ φωωωωωω φ 23&

Mba m
yjyy ∆+∆=∆ θωω θ 23&  

C
n
zC

l
z

jzzj
z
zxj

x
zz

NbLb

aaa

∆+∆+

+∆+∆−∆−=∆ φωωωωωω φ 23&
(139) 

where we denoted: 

2

)(
EAC

CABEa x
x −

−−
= ; 2
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ECCBaz

x −
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B
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Deriving equations (138) and substituting in (139) we obtain: 
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(141) 
Similarly, for rotation matrix we obtain: 
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(142) 
First, we observe that the second equation can be analyzed 
separately.  
For first and third equations, considering value of Jω  
constant, we can apply Laplace transformation, and put these 
relations in matrix form: 

buxA =)(s         (143) 
where: 
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(144) 
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(145) 
Easily we can obtain inverse of )(sA  matrix: 
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(146) 
where characteristic polynomial is: 
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(147) 
 Using these results we put previously relations in form 

         buAx )(1 s−=         (148) 
which represents analytical solution for commanded linear 
equations. 
Observation. For balance movement described above, the 
stability matrix A , defined by relation (144) are identically for 
attitude angles and rotation angles.    
 

VI. EXTENDED SATABILITY AND CONTROL MATRICES 
Besides the general motion equations in linear form as outlined 
above, S/C needs other relationships to be added. Among them, 
the most important and which can not be neglected are the 
actuator equations and the guidance equations. For the 
autonomous flight, as is case of S/C ‘s, the guidance equation is 
necessary to introduce integrated terms specific to PID-type 
controllers. 
 
 
For linearization to the Trigger Schmidt type command 
system,, we applied the method given by paper [7], using 
Fourier transform. Thus, by first harmonic approximation, we 
obtain a linear transfer function of the form: 

s
sksN Mu

M
Ω+

≅)(          (149) 

where we denoted: 

0
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x
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where: 
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bMb M

π
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where Mba MM ,,  define non linear function from figure 7, 

and sizes 0x and ω  means amplitude , respectively the 
pulsation of the input signal.  
In this case, considering the integrator element and feedback 
loop, the linear transfer function of the command system for a 
channel is: 

 ( ) M
u
M

u
MM

M
u
M

ksks
sksH

Ω+++τ
Ω+

=
1

)()( 20        (152) 

or, if you neglect the pulse term MΩ , we obtain the following 
simplified linear relationship: 
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Starting from the previously relation, the linear form of the 
command equation became:  
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where: 
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Similarly, linear form of auxiliary equation (108) became: 

 

 [ ] [ ]TTIII ζηξζηξ ∆∆∆=∆∆∆ &&&  (156) 
 
 
Using linear relation (154) and (156) we can build extended 
stability and control matrixes.  
 

Table 3 extended  stability  matrix A  
 

MC

RRR

RBI

CRBI

DM

II

AWa

JMMω

MIaω

3

1−
ω

 

 
 

 
Table 4 extended control matrix B 

u

R

BI

nml uuu

DM

I

a

ω

 

 
Observation. For balance movement described above, where 
body frame coincide with reference frame, extended stability 
and extended command matrix are identically for attitude 
angles and rotation angles.   
In this case the system can be put in standard form: 

BuAxx +=&        (157) 
where: 

[ ]TRBI MIaωx = ; [ ]Tnml uuu=u       (158) 
 

VII. GUIDANCE COMMAND SYNTHESIS 

A. Optimal control using uncoupled state vector  
Resuming papers [4],[7] , the guidance commands for 
uncoupled state vector are the simple form: 

 
[ ]TR uuu ζηξUu =     ,  (159) 

where the main control signals are PID structure:  

)~~~( ξ
ξξξ

ξ ξξ Ikkku I
uuu ++−= &&  

)~~~( η
ηη

η
ηηη Ikkku I

uuu ++−= &&  

)~~~( ζ
ζζ

ζ
ζζψ Ikkku I

uuu ++−= &&  , 
 (160) 

The matrix AU , were previously presented. 

The parameters relative ζηξ ~;~;~
 are given by: 

;~;~;~
ddd ζζζηηηξξξ −=−=−=    (161) 

where ddd ζηξ ,,  are input reference values, and  
the integrals term are defined hereby:  
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[ ] [ ]ζηξζηξ
~~~~~~ =III &&& .    (162) 

 
First, we will try to obtain a simplified solution for the guidance 
command defined previously in PID form. For this purpose we 
will start from scalar equations established for commanded 
linear equations: 
Moreover we will neglect cross influence introduced by 
angular velocity jω  and also we will considerate inertial 
product moment null: 

0=E  
In this case all angular equations have a similar form: 

   
A
L∆

=∆ξ&& ; 
B
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=∆η&& ; 
C
N∆

=∆ζ&&     (163) 

 
If we neglect actuator delay time  

0=Mτ  
from guidance command form established previously we can 
write following linear forms: 
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(164) 
Separating angular inputs and applying Laplace 
transformation, from previously relation will obtain: 
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(165) 
Admitting proportionality between coefficients and inertial 
moment we can write: 
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(166) 
 
Using these new coefficients, transfer function for angular size 
has the form:  

32
2

1
3

32
2

1
0 )(

ksksks
ksksksH
+++

++
= ,       (167) 

Next we use pole-zero allocation method [4]. For this purpose 
we use an optimal function quite similarly with the previously 
obtained: 

3
0

2
0

2
0

3

3
0

2
0

2
0

0 7.67.6
7.67.6)(

Ω+Ω+Ω+
Ω+Ω+Ω

=
sss

sssH , (168) 
with rr tτ=Ω0 , where 5.1=rτ , and response time is 
choose.   
Identifying between functions coefficients, we obtain 
following useful relations: 

01 7.6 Ω=k ; 2
02 7.6 Ω=k ; 3

03 Ω=k       (169) 

Finally, choosing response time str 5=   we obtain: 

01.21 =k ; 603.02 =k ; 027.03 =k  
 

B. Optimal control using coupled state vector  

 
Supposing to have access to extend state vector x , we can 
obtain directly the controller K  for optimal command: 

Kxu −=          (170) 
In order to satisfy the linear quadratic performance index (cost 
function): 

tJ TT d)(min
0

RuuQxx += ∫
∞

,   (171) 

where the extended pair ( )BA,  is controllable and the state 
weighting matrix Q  is symmetric and quasi positive: 

;0≥Q TQQ = .    (172) 
while the control weighting matrix R  is symmetric and 
positive: 

;0>R TRR = ;       (173) 
In this case, the following relation gives the optimal controller 

PBRK 1 T−=       (51) 
where the matrix P  is the solution of the algebraic Riccati 
equation: 

0QPBPBRPAPA T1T =+−+ −    (174) 
 

C. Optimal control using Kalman filter 
Using the optimal controller designed above requires access 

to all system states, very difficult in view of the limited number 
of sensors. In this case, for a complete description of the system 
we use a linear state estimator constructed as a Kalman filter. 
For this purpose we start from the regular relations: 

  
vDuCxy
GwBuAxx

++=
++=&

        (175) 

where w is the external noise and v is the internal noise 
introduced by the sensors, where the matrixes  DC,G,  are 
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considerate corrected with the stability matrix with 
non-stationary variables  1A  

[ ] 0GAIG 1
1

−−= ; [ ] 0CAIC 1
1

−−= ; [ ] 0DAID 1
1

−−= , 
(176) 

The idea of estimator operation is: if the deliver system 
)(:1 DC,B,A,Σ  with state x, can be "predicted" by system 

)(:2 DC,B,A,Σ  that uses state z, which is accessible in this 

case to be controlled. In order that the system 2Σ  follows the 

system 1Σ  we calculate a regulator L which brings the 

difference between actual read states 1y  and estimated states 

2y  as a correction into the system 2Σ . In this case we can 
write: 
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     (177) 
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2

210
2

)(
:
&     (178) 

where initial conditions are introduced by 0x , respectively 

0z . Tracking error, including the initial conditions, is given 
by: 

 zxx −=~ ;   000
~ zxx −=        (179) 

If we decrease 2Σ  from 1Σ  and neglect the noise is obtained: 

  0
LCA xx ~~ )( the −= .       (180) 

Hence if L is dimensioned such that A-LC has eigenvalues 
with negative real part, the estimation error tends to zero.  
Since z is provided by the estimator, we have access to all states 
to make control of the form: 

Kzu −=             (181) 
In this case the system 1Σ  is described by the equation: 

δδ oo xxBKBK)x(AxBKzAxx ++−=+−= ~&  
(182) 

which has the solution: 
)~( )()(

0
LCA

0
BKA xBKxx tt ehhe −− +δ=     (183) 

The process of calculating the estimator is similar to that 
described above for the optimal regulator. This is based on the 
dual system: 

uCxAx TT +=&      (184) 
for which is considered performance index: 

∫
∞

+′=
0

dmin tJ TT ]uPux)GQ(Gx[       (185) 

By solving the matrix Riccati equation: 
0GQGCRPRCRAAR 1 =+−+ − TTT     (186) 

matrix estimator is obtained: 
1PRCL −= T        (187) 

where R is the solution of Riccati equation. 
 

VIII.  INPUT DATA, CALCULUS ALGORITHM AND RESULTS 

 A. Input data for the model 
As input data for application we considered: 
The eccentricity 3.0=e  
The orbital period  hT 24=  
The inertial moments: 

][1 2kgmA = ; ][2 2kgmB = ; ][3 2kgmC =  

The product of inertia ][02.0 2kgmE =  
Parameters of the Schmidt Trigger element 

1.0=Ma ; 3.0=Mb ; ][1.0 sM =τ ; 2=u
Mk . 

 

 B. Calculus algorithm 
The calculus algorithm consists in multi-step method 

Adams' predictor-corrector with variable step integration 
method: [2] [16]. Absolute numerical error was 1.e-12, and 
relative error was 1.e-10.  

 

  C. Results 

First we highlight the influence of gravitational moment on the 
uncontrolled satellite orientation. Figure 7 presents the 
rotational velocity around the y axis of the mobile frame related 
inertial frame 
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Fig. 7 Angular velocity for uncontrolled vehicle. M1 - with 
gravitational moment terms; M2- without gravitational moment 
terms  
 
We can see that the gravitational influence leads to an 
additional angular velocity. 
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Fig. 8 angular diagram for uncontrolled vehicle. M1 - with 
gravitational moment terms; M2- without gravitational moment 
terms  
 
Consequently, it influences the angle around the y axis, as we 
can see from Figure 8 
 
Next we analyze the three types of orientation control systems 
described above. For starters, thrust control using a trigger 
Schmidt element is presented.  
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Fig. 8 command moment for controlled vehicle. M1-  Optimal 
control using uncoupled state vector ; . M2-  Optimal control 
using coupled state vector ;  
 
Note that after achieving control system synthesis, the model 
uses nonlinear switching element. Because at the beginning we 
have an angular velocity jump, the command is more active in 
this moment.    Applying the above presented control systems, 
the absolute angular velocity is stabilized at the base, which 
provides on the satellite a rotation velocity around its y axis 
synchronous with the motion around Earth, as we can see in 
figure 9. 
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Fig. 9 angular velocity diagram for controlled vehicle. M1-  
Optimal control using uncoupled state vector ; . M2-  Optimal 
control using coupled state vector ;  M3 – Kalman filter; 
 
Finally, figure 10 shows the rotation angle around the y axis, 
which is stabilized at null value, and providing the  
overlap of the  mobile frame over reference frame. 
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Fig. 10 angular diagram for controlled vehicle. M1-  Optimal 
control using uncoupled state vector ; . M2-  Optimal control 
using coupled state vector ; M3 – Kalman filter; 
  

IX. CONCLUSIONS  
The paper presents synthesis aspects of the simulation model, 
developed for the calculation of Attitude Control System- 
ACS of the small satellite which uses as command a micro jet 
engine. The application is made for three ACS variants first 
using control system for uncoupled state and the second using a 
control system for coupled state an third using Kalman filter . 
From the results obtained one can observe that the last two 
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solutions, although there are more complicated, are better than 
the previous ones,   providing an ACS with the shortest 
response time and a smaller override.  
As a general conclusion we must underline two novelty aspects 
introduced by the paper: 
-We achieved the description of the model by using the rotation 
angles, which lead to polynomial forms for the rotation and 
connection matrix and which eliminate the singularities of the 
connection matrix in case of Euler’s angles. On the other hand, 
these 3 values are independent and on the same time they have 
an angular dimension, and so they are measurable. This creates 
a great advantage on opposition to the usage of the Hamilton 
quaternion. 
-By the linearization of the Trigger-Schmidt element we have 
constructed homogenous linear system and we made the ACS 
synthesis. With all the simplifications introduced by the Fourier 
transformation, the result obtained is valid, this being verified 
by testing the system in it’s non-linear form. 
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