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Abstract—Integral sliding mode control has the potential to solve 

some of the drawbacks of simple sliding mode but the design of the 

integral sliding surface for nonlinear systems having  unmatched 

uncertainty is a difficult task. In this paper, a design method using 

genetic algorithm is proposed and its effectiveness is tested using 

highly nonlinear system having unmatched uncertainty. The design of 

the integral nonlinear sliding surface is formulated as an optimization 

problem which minimizes the error between the nominal and 

perturbed system and an optimal gain is found using genetic 

algorithm. Then the problem of trajectory tracking control of Stewart 

platform manipulator is employed as a test bed. The controller is 

implemented in task space and joint space/task space hybrid and 

performances were compared. Simulations showed that the genetic 

algorithm based integral sliding mode controller has superior 

performance than existing controllers. Furthermore joint/task space 

hybrid implementation gives slightly bigger mean square error value 

in some directions but needs a smaller control effort compared to the 

pure task space implementation. 

 

Keywords—Genetic algorithm, Integral sliding mode control, 

Nonlinear control, Robust control, Sliding mode control, Stewart 

platform manipulator   

I. INTRODUCTION 

ntegral sliding mode control (ISMC) is an mprovement to 

conventional sliding mode control that uses a nonlinear 

sliding surface having an integral term[1][2]. The integral 

sliding surface is designed to constrain the system states to be 

on sliding mode from initial time and by that it gets rid off the 

reaching phase problem of simple sliding mode control. 

Moreover, integral sliding surface improves the stability of 

sliding dynamics and hence enables to enhance robustness 

against unmatched uncertainties [3][4]. Like any other sliding 

mode control design, the design of the controller involves two 

basic steps: the deisgn of stable sliding surface and design of a 

control law. The controller law in ISMC consists of a nominal 

controller used to stablize the nominal system and a 
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discountinous one which will be used to reject the 

uncertainties. The nominal controller can be designed by 

various design methods [3]. On the other hand, the design of 

the integral sliding surface is very important and is not a 

simple task, specifically when the system to be controller is 

nonlinear and has unmatched uncertainties.  

In the literature, methods such as equivalent transfer 

function, matrix fraction description and Lyapunov’s direct 

method [5] have been proposed for the design of integral 

sliding surface for systems having matched uncertainty.  

However, there are no established methods for systems having 

unmatched uncertainty. A recently proposed method is to make 

use of linear matrix inequalities(LMI) [4]. Though, the authors 

have shown the effectiveness of the method, formulating the 

design of integral sliding surface in to LMI for complex 

system like the Stewart platform manipulator is not an easy 

task.  

Stewart platform manipulator is a parallel kinematics 

manipulator having high structural rigidity and stiffness which 

makes it much more preferable than serial robots for precision 

applications such as machining, robotic surgery, pointing and 

so on [6][7][8]. To effectively utilize the structural advantages 

of the manipulator to the above mentioned applications, a 

robust and high performance controller is necessary. But, the 

dynamic model of this manipulator, the relationship between 

the forces/torques which have to be given at the legs and the 

acceleration of the center of the platform, is highly nonlinear 

and coupled making the design of controller 

challenging.Various authors have proposed simple sliding 

mode controller for robust control of the manipulator [7][9]. 

However, drawbacks of simple sliding mode control, namely 

chattering, nonrobustness of its reachng phase and lack of 

robustness to unmathced uncertainties have prevented the 

practical applicability of simple sliding mode controller to this 

manipulator[10][11][12]. Hence integral sliding mode control 

is a promising solution for high performance control of this 

manipulator[13].  

Therefore the main objectives of the paper are: to show how 

genetic algorithm can effectively be used to design an integral 

sliding manifold for multiple input multiple output systems 

like Stewart platform manipulator and to compare joint space 

and task space implementations of integral sliding mode 

controllers in Stewart platform manipulator. Genetic algorithm 

is a multidimenstionsal search algorithm and has been used for 

design of various controllers [14][15]. In our proposed 

Genetic Algorithm based Integral Sliding 

Surface Design and Its Application to Stewart 

Platform Manipulator Control 

S. Dereje, Mahantesh K. Pattanshetti, Anamika Jain and R. Mitra  

I 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 4, Volume 5, 2011

518

mailto:dnderejesh@gmail.com
mailto:geudoon@gmail.com
mailto:anamikajain2829@gmail.com
mailto:rmtrafec@iitr.ernet.in


 

 

controllers, integral sliding surface is designed using genetic 

algorithm. To apply genetic algorithm for the design of 

integral sliding surface, first the integral sliding surface is 

formulated as a parameter which shows the mismatch between 

nominal and actual systems and then genetic algorithm is used 

to select gain values which minimize the mismatch in the 

presence of bounded uncertainties. The fitness function used in 

the genetic algorithm is designed to achieve multiple 

objectives: to constrain system states on sliding surface, to 

reduce effect of unmatched uncertainty and to reduce 

chattering. In applying the designed integral sliding surface for 

trajectory control of Stewart platform manipulator, a nominal 

controller which is designed using equivalent control approach 

is employed. The implementation of the nominal controller 

needs computation of the dynamic parameters and has to be 

carefully analyzed. Hence two different implementations, 

namely task space and joint space implementations, have been 

compared. Moreover, the comparison of the two 

implementations helps to analyse the effect of unmatched 

uncertainty, since it is very less in the second case. The 

simulation results have shown that, integral sliding mode 

controller designed using genetic algorithm reduces chattering 

and achieves high performance as compared to simple sliding 

mode control and PID. The control signals were smooth and 

practically realizable. The selection of range of values for the 

parameters and stability issues have also been discussed. 

The paper is organized as follows: section two gives 

background on integral sliding mode control and formally 

presents the problem statement. Section three discusses the 

kinematic and dynamic modeling of Stewart platform 

manipulator. Section four deals with the design of integral 

sliding surface using genetic algorithm. The task space and 

joint space designs of integral sliding mode controller for the 

Stewart platform manipulator is discussed in section five. 

Section six contains the simulation results and discussion and 

then conclusion follows.  

II. PROBLEM FORMULATION 

Consider an uncertain nonlinear system given as  

 
   x f x, t g x, t u d(t)  

 (1) 
 

 where x is nx1 dimensional state vector, f(x, t) and g(x, t)  are 

nX1 and nxm dimensional vector and matrix valued smooth 

nonlinear functions, d is nx1 dimensional vector of the 

uncertainties and u is mx1 dimensional vector of control 

inputs.  

The integral sliding surface s and the control signal u are  

given by  

        
t

0

t 0

s x, t C x x 0 f x, g x, u d



 
       
 
 


 (2) 

 0 1u u u 
 (3) 

Where   

x(0)  is the initial value of the states  

   u0   is the nominal control signal and  

u1   is a discontinuous control signal given by   

1 su Kf (s)                                           (4) 

   K   is the gain and fs(s) is switching function  

Then the problem in integral sliding mode control is to find 

control signal u (3), and matrix C such that the sliding surface 

given by (2) and its derivative remain zero for all time t>0.                                       

In the mathematical formulation of the integral sliding surface 

given in (2), the sliding variable s can be seen as the mismatch 

between the nominal and perturbed system. Hence the 

objective is to find the gain C and control law u which 

minimizes this sliding parameter. And hence we employ 

genetic algorithm for the design of C and u is designed using 

the equivalent control method. The above formulation can be 

drawn in block diagram as shown in Fig. 1.   

 
Fig.1 block diagram representation of ISMC 

III. MODELING THE STEWART PLATFORM MANIPULATOR 

A. Kinematic and geometric modeling  

For geometric and kinematic modeling, the following 

conventions are used. The centers of the universal and 

spherical joints are denoted by Bi (i =1, 2 … 6) and Pi (i = 1, 

2… 6) respectively. Reference frames Fb and Fp are attached to 

the base and the platform as shown in Fig.2. The position 

vector of the center of universal joints Bi in frame Fb is bi and 

the position vector of the center of spherical joints Pi in frame 

Fp is pi. Let r= [rx, ry, rz] be the position of the origin Op with 

respect to Ob and also let R denote the orientation of frame Fp 

with respect to Fb. Thus the Cartesian space position and 

orientation of the moveable platform or end effector is 

specified by X= [rx, ry, rz, α, β,   ] where the three angles α, β, 

 are three rotation angles that constitute the transformation 

matrix R.      

Then length of leg i is the magnitude of the vector BiPi which 

is given by  

 i i i i iB P Rp r-b  q  
 (5) 

 

This is the inverse geometric formula that gives the length of 

each leg for a given desired position and orientation of the end 

effector. The direct geometric model which gives the position 

r= [rx ry rz] and orientation angles α, β,  for a given measured 

value of qi, i=1, 2… 6 is nonlinear and is solved using 

numerical methods. 

The inverse kinematic model gives the velocity of the active 

joint q for a given end effector linear and angular velocity and 

is given as  
1X J q  

 (6) 
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Where J is the Jacobean matrix of the platform with respect to 

the base frame. 

B. Dynamic modeling  

The dynamic modeling of Stewart platform manipulator has 

been extensively studied by many researchers. The methods 

used are Lagrangian, Newton Euler and principle of virtual 

work [8][10]. Using Lagrangian method, the actuator torque  

is given in task space as  

      T
M X X V X, X X G X J τ


    (7) 

Where X=[rx, ry, rz,, α,  β,   ] is the task space position and 

orientation of center of movable platform, M(.) is the inertia 

matrix, V(.,.) is the coriolis/centrifugal force coefficient matrix 

and G(.) is the gravitational torque. 

 
Fig.2 Generalized Stewart platform manipulator 

 

In the above dynamic model, actuator dynamics and friction 

have been neglected. The system will have uncertainties 

because of inertia loading, unmodelled dynamics and friction 

from actuators. The uncertainties are assumed to have   bounds 

and each term can be expressed as nominal and deviation as in 

(8) below.  

 

M M ΔMN

V V ΔVN

G G ΔGN

 

 

 
 (8) 

     

The perturbations M, C and G are assumed to have the 

following bounds  

 

ΔM Mm

ΔV Vm

ΔG Gm






 (9)

 

Using (8) and (9), (7) can be rewritten in state space form as   

    T
d

X X
1 2

1
X M J τ V X ,X X G X

2 1 2 2 1







  

 (10)

 

Where X1 is (6x1) state vector of Cartesian space positions 

and orientations, X2 is (6x1) state vector of the Cartesian space 

velocities and d is the lumped uncertainty term given by  

 
 1d M MX VX G   

 (11)
 

Comparing (10) and (1),  

  
    

2

1
1 2 2 1

X
f

M V X ,X X G X

 
  

   

  (12) 

and  

  
1 T

0
g

M J 

 
  
    

(13) 

The following assumptions are taken. 

Assumption 1: The inertia matrix M is invertible  

Assumption 2: The mechanical system is designed so that the 

Jacobean matrix is nonsingular in the whole workspace 

Assumption 3: The uncertainties in the inertia, coriolis and 

centrifugal and gravitational matrixes are bounded as in (9).  

IV. DESIGN OF INTEGRAL SLIDING SURFACE 

In this section we will illustrate the application of genetic 

algorithm for the design of integral sliding surface. Before we 

give the details of the design of sliding surface, we will briefly 

revise the basics of genetic algorithm.  

A. Genetic algorithm  

Genetic algorithm is an evolutionary algorithm based on 

Darwin’s theory of selection of the fittest. It is a 

multidimensional search algorithm which solves the local 

minima problem of classical algorithms[15].  In the literature, 

the basic element of a genetic algorithm is known the 

chromosome as it is based on the evolutionary theory of 

Darwin. The chromosome contains the genetic information for 

a given solution and can be coded by using either binary or 

real string. The algorithm starts by generating some number of 

chromosomes randomly as candidate solutions to a given 

problem. A fitness function which in effect is a performance 

index is used to select the best solutions in the population to be 

parents to the offspring that comprises the next generation[15]. 

The more fit the parent is, it will have greater probability of 

selection.  

The selection of parent chromosomes is done using various 

methods including the roulette wheel method. Then offsprings 

are produced by selecting parent chromosomes for breeding 

and crossing over some of the genetic material. This process is 

known as crossover. Another operator which is used to 

introduce some element of randomness into the solution is 

mutation. In the process of mutation a randomly selected gene 

of an offspring is changed. Mutation occurs in not all 

offsprings but very few ones and it is used to introduce some 

randomness. This process continuous until a global solution is 

obtained. Figure 3 shows the algorithm described above.  

Therefore, in a GA optimization, parameters such as, the 
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initial population size, crossover rate and mutation rate, coding 

size of chromosomes and fitness function, have to be selected. 

The most important one which determines the problem at hand 

is the fitness function. 

 
Fig. 3 Flow chart for genetic algorithm based integral 

sliding surface design 

B. Fitness function and parameter selection 

The most important parameter in a GA optimization is the 

fitness function since it determines the objective of the 

optimization itself. A poorly selected objective function may 

give a completely wrong result. In [6], the main objective was 

to decrease chattering and obtain fast response and the authors 

used fitness function given by  

 
   

2 2
h 1 m 2t /w c /w

f e x e
 

  (10) 

where th is the time to hit the sliding surface, cm  is the amount 

of chattering and w1 and w2 are weight factors.  In the current 

discussion, the first term is not needed because the system is 

on the sliding surface from the initial time. The main objective 

here is to keep the system on the sliding surface from the 

initial time. Another objective is to minimize chattering and 

the effect of the unmatched uncertainty as shown in (9).  

Hence for the fitness function, the product of two terms is 

taken: the first one is used to constrain the states on the sliding 

surface and the second one is used to minimize the effect of 

unmatched uncertainty. The fitness function is formulated as in 

(11) below. 

   
2 2

s 1 m 2c /w u /w
ff e x e

 
  (11) 

Where cs is the term used to constrain the states to the sliding 

surface and is taken as  

 

N

s i

i 1

c s


  (12) 

si is the value of the sliding variable in iteration i. In the 

implementation, a chromosome which has an initial value of s 

greater than zero by some upper limit is given a big penalty. 

V. DESIGN OF CONTROLLER  

As stated above, Stewart platform manipulator is a parallel 

kinematics manipulator having high structural rigidity and 

stiffness which makes it much more preferable than serial 

robots for precision applications such as machining, robotic 

surgery, pointing and so on[6][7][8]. However, the relationship 

between the forces/torques which have to be given at the legs 

to drive the system in a desired trajectory and the acceleration 

of the center of the platform is highly nonlinear and coupled. 

Moreover, the dynamic model of the manipulator has matched 

uncertainties from parameter variation, actuator friction and so 

on. Furthermore, it also has unmatched uncertainties when 

control algorithms are implemented in the task space and 

forward kinematics is estimated using numerical algorithms 

[10]. All this makes the controller design very challenging. 

Therefore to effectively utilize the structural advantages of the 

manipulator to the above mentioned applications, a robust and 

high performance controller is necessary.  

A controller in Stewart platform manipulator has to generate 

torque signals which will be applied to the leg actuators such 

that the moveable platform moves in a desired trajectory at a 

desired speed. Generally, there are two approaches to the 

controller design problem. The first one is to convert the 

desired task space position, velocity and acceleration of the 

platform center to desired joint leg lengths and close the loop 

by using measured leg lengths as feedback. This approach is 

known as joint space. In this approach, the individual leg 

measurements and desired values are taken separately and 

control is single input single output(SISO). In the second 

approach, the desired task space position, velocity and 

acceleration is not converted to desired leg length rather it is 

used directly by taking measured or estimated task space 

position, velocity and acceleration as feedback. Hence in this 

approach, control signal is calculated in task space and then it 

will be converted to joint space using the Jacobian matrix. The 

manipulator control system in this approach is therefore a 

multiple input multiple output system(MIMO). Simplified 

block diagram of these two approaches is given in Fig.4 and 

Fig.5. Both of these two implementations have their own 

advantages and disadvantages. In the joint space approach, 

measured leg lengths which will be used for feedback can be 

obtained using readily available and less costly sensors and 

hence it results in less costly implementation. Moreover, the 

individual SISO loops can be implemented parallely resulting 

in a faster controller. However lack of synchronization puts a 

limit to its performance and hence joint space approach can 

not give high performance. Furthermore, the difficulty of 

computing dynamic parameters in joint space makes it 

unsuitable for model based controller implementation. On the 

other hand, in task space approach, the controller is MIMO 

and synchronization error is minimal. Hence it has a potential 

to give high performance. The drawback in this is getting the 

task space feedback signals. Either a complex estimation 

method or costly measurement is necessary. In this section, we 
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will design integral sliding mode controller in both joint space 

and task space and compare their performances in the next 

sections. Actually, the joint space implementations is not pure 

joint space, it is a kind of hybrid. The model based nominal 

controller is implemented in task space using desired task 

space positions, velocity and acceleration but the feedback 

signal used in the discontinous controller is obtained from 

measured leg lengths. 

 

 

 
Fig.4 Joint space trajectory tracking control approach for a Stewart platform manipulator 

 

 
Fig.5 Task space trajectory tracking control approach for a Stewart platform manipulator 

 
A. Task space integral sliding mode controller  

Let Xd be (6x1) vector of desired task space trajectories. Then, 

the task space tracking error vector and its rate vector are 

given as 
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e X X
d

 
 

 (13) 

d
e X X 

 
(14) 

In the case of the Stewart platform manipulator, in task space 

also the input matrix g is a function of the states as given by 

(35) and is not constant. The integral sliding surface for the 

Stewart platform manipulator is given as  

 t

0 0t
0

S C X X f(x, ) g(x,v) d 
 
 

        ,  (15) 

where X0 is the initial condition of the states and 0 is the 

nominal control torque.  Following a similar procedure as in 

joint space case, taking derivative of (37) and equating it to 

zero, the equivalent controller becomes  

 
1

eq 0τ =τ + Cg Cd


  (16) 
The nominal controller is obtained using the computed torque 

control method and is given by  

    T
0 N d p 1 d 2 N Nτ J M X K X K X V X,X X G    

(17)
 

Where Kp and Kd are 6x6 constant diagonal matrixes 

determined from stiffness of material and desired transient 

performance. 

Using this equivalent controller into (38), the sliding 

mode dynamics of the system in task space becomes  

  
   

T
s0 s

1
G g G d

1
d

d N 21
q q

N N

X X
1 2

X q M
2

V , q G q

J τ 



 








 
 
 
 

 

(18) 

Substituting for the nominal controller from (35), the sliding 

dynamics becomes 

  11 T
2 p 1 d 2 NX K X K X d M J Cg Cd21

     
 (19)

 

This shows that the uncertainty can be compensated and the 

sliding mode dynamics is stable if the gain matrix C is selected 

such that the last term in the bracket is made to be zero. 

However since the disturbance is not exactly known but only 

its bounds, the equivalent controller given by (34) cannot be 

realized. Moreover the value of the Jacobian matrix varies as 

the position of the manipulator varies. Therefore, the 

controller given by (34) is replaced by a switching function as 

follows  

T
0

s
J K

s
   


 

(20) 

Where  is a small positive boundary value and K is chosen 

such that  

 1
m m m mK d M m X C X G    

 (21)
 

The nominal control signal 0 is calculated from the 

unperturbed model of the system in a feed forward manner as 

given in (6.52) 

B. Joint/task space hybri integral sliding mode controller 

In this section we will show the design of the integral sliding 

mode controller in joint space. As stated above, the model 

based part of the controller is implemented in task space for 

ease of computation and hence the combined controller is joint 

space/task space hybrid controller.  

The joint space tracking error can be given as  

de q q 
  

(22) 

where qd is the desired joint elongation. Then, using (6) and 

the uncertainties given in (9), the error dynamics can be 

written in joint space as: 

 
    

1 2

1

2 N N N 21

e

D q q d
d

e

e q τ B , q Q q


 



  
 (23) 

Where  
T T

N ND J M J
  

(24) 

 T T T
N N NB J M J V J  

 
(25) 

T
NQ J G

 
(26) 

  1 T T T T 1
21 N N fd D J ΔMJ q ΔMJ ΔVJ q ΔG D f         

 
(27) 

Comparing (15) and (1), we have  

 
T

x e e

  

(28) 

    
2

1
N N ND q qd

e
f

q B ,q Q q
 

 
  
  

  (29) 

and  
T

1
Ng 0 D  

 
  

(30) 

and d is  

 
T

6x1 21d 0 d

  

(31) 

From (2), the integral sliding surface for the Stewart 

platform manipulator is given as  

   
0

t

0S C x x 0 f (x, ) g(x, ) d
 

        
   ,          (32) 

where 0 is the nominal control torque,  
T

x e e and x(0) is 

the initial condition of the error dynamics and f and g are as 

given in (23) and (24) above.  

Taking the derivative of S  

 
 0S C x f g   

         
(33) 

Substituting (17), (22) and (23) and setting it equal to zero, the 

equivalent controller becomes  

 eq 0 N 21D d   
 

 

(34) 

 If the nominal controller to be used is chosen as 

 
   0 N d p d N Nτ D q K e K e B q,q q Q    

 
(35) 

for some positive diagonal matrices Kp and Kd,  then the sliding 

dynamics of the system becomes,  

 

1

2

e

e K e
p d

e
2

e K 



 
  

(36) 

which shows a stable sliding dynamics. However, since the 

disturbance signal is not known, rather it’s bound; the control 

signal in (29) is replaced by  

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 4, Volume 5, 2011

523



 

 

 
 0 sτ τ Kf S 

  
(37) 

where 0 is the nominal control signal given by (29), K is gain 

of switching function, fs(S) is switching function. 

 The magnitude of K required to achieve stability is  

  1 T T T T
N

1
N f

K D J MJ q MJ VJ q G

D f

   



         

 (38) 

VI. SIMULATION RESULTS AND DISCUSSION 

For the simulation study of the performance of the proposed 

design of integral sliding surface and the controller, a typical 

6-6 geometry Stewart platform with the geometric parameters 

given in table I [1] is implemented using simmechanics tool 

box of MATLAB. 

 
The trajectory used to test the performance of the controllers 

is a fast trajectory having heave motion, circular motion in XY 

plane and angle twists as given below [8]. 

 

      x t 0.5 1 exp t cos 1.88 t   
 (39.1) 

      y t 0.5 1 exp t sin 1.88 t   
 (39.2) 

 
0.02 0.1 5.9t

z t 3 sin 2 t
1 0.9t 10.5 24

    
     

     (39.3) 
 t 0 

 (39.4) 

      t 0.5 1 exp t sin 0.86 t    
 (39.5)

 

      0t 1 exp t sin 0.74 t     
 (39.6) 

A. Task  space integral sliding mode controller 

The integral sliding surface (33) is implemented after it is 

rewritten as in (48) by substituting the nominal controller (34) 

and system dynamics functions into (32). The last expression 

after the substitutions is:    

 

   

t

2
011

t
22

p 1 d 2
0

e dωe 0e
s C

e 0e K e K e dω

  
           

        




(41) 

 

(6.57) 

where C is a 6x12 matrix to be determined using genetic 

algorithm and Kp and Kd are 6x6 diagonal matrixes used in the 

nominal control signal. To reduce the number of parameters to 

be optimized, C is partitioned into two sub matrices of each 

6x6 and is rewritten as in (41) below.   

  1 2C C C   (42) 

Using this form, the (41) can be rewritten as  

 
t

1 1 2 1 2 p 1 d 2

0

S C X X C X K X K X dω     
(43)

 

In (42) C2 is taken as a diagonal matrix of elements 1. This 

helps in reducing the number of parameters to be optimized by 

the genetic algorithm and also reduces the time required for 

computation. Moreover, it decouples the six sliding surfaces 

and speed up the computation of control signal. The range of 

values used for C1 in the genetic algorithm optimization is 

determined using step response of each dimension. The 

procedure followed is as followes.  

1. The controller is first used for single direction 

regulation control and the step response is observed.  

2. Then the controller gains are tuned until a desired step 

in terms of settling time, overshoot and steady state 

error is obtained.  

3. Then the controller parameters used to obtain the best 

and worst step responses are used as range of values 

in the genetic algorithm optimization.  

Using this procedure, the diagonal elements of C1 are allowed 

to vary between 100 and 400 and the gain value K1 of the 

switching function is allowed to vary between 5000 and 

15000. The parameters used in the genetic algorithm are 

default values of MATLAB and are as follows 

Initial population 20 

Crossover rate =0.8 

Mutation rate =0.01 

Maximum number of generations 20 

With these parameters, the optimal solutions obtained using 

the multi-objective genetic algorithm described in section three 

is given below.  

The parameters of the integral sliding surface are 

  1C diag 117 113 87 155 157 150
 

 (43) 

And the gain value used for the switching function are  

   k diag 7983 7218 13074 6563 8468 6739  (44) 

The Kp and Kd values used in the nominal controller are 

determined assuming a damping factor of 0.7 so that  

 
d pK 2 K

 
 (45) 

and hence the values used are chosen as 

   4
pK diag 4 4 4 4 4 4 x10   (46) 

  dK diag 400 400 400 400 400 400
 

 (47) 

The trajectory tracking performance of the above joint space 

TABLE I Geometric Specifications of Stewart platform  

Joint positions 

Base 
  

    

Platform  
 

     

Base radius 0.8m 

Platform radius 0.5m 

Mass of platform 32kg 

Mass of upper leg 4kg 

Mass of lower leg 4kg 

Initial Height 1.5m 

Platform Inertia Ixx=2,Iyy=2 and Izz=4 

Leg Inertia  upper Ixx=0.75,Iyy=0.75,Izz=0.018 

Leg Inertia lower Ixx=0.03, Iyy=0.03, Izz=0.002 

CG of upper leg 0.75m from top  

CG of lower leg 0.15m from base 
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controller is shown in Figure 3-Figure 9. The results are given 

in task space after the joint space measurements are 

transformed to task space using numerical forward kinematics. 

As can be seen from the results, the joint space integral sliding 

mode controller performance is much better than PID 

controller and simple sliding mode controllers. 

 

 
Fig. 4 Compariosn of tracking performances of task space 

ISMC, simple sliding mode and PID in x direction 

 
Fig. 5 Compariosn of tracking performances of task space 

ISMC, simple sliding mode and PID in y direction 

 
Fig. 6 Compariosn of tracking performances of task space 

ISMC, simple sliding mode and PID in z direction 

 
Fig. 7 Compariosn of tracking performances of task space 

ISMC, simple sliding mode and PID for roll angle 

 
Fig. 8 Compariosn of tracking performances of task space 

ISMC, simple sliding mode and PID for pitch angle 
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Fig. 9 Compariosn of tracking performances of task space 

ISMC, simple sliding mode and PID for yaw angle 

 
Fig. 10 Control forces of the task space ISMC for the first 

three legs 

 

Fig. 11 Control forces of the task space ISMC for the first 

three legs 

B. Joint/Task space hybrid integral sliding mode controller 

The integral sliding surface given in (24) is implemented after 

the expressions (21)-(23) are substituted. After simplification 

it becomes  

      p dS C e e 0 e e e 0 K e K e       
()

 

where C is 6x12 diagonal matrix Kp and Kd are 6x6 diagonal 

matrixes used in the nominal control signal. As in the task 

space case, the gain matrix C can be partitioned into two 6x6 

square matrices as C= [C1 C2] and C2 is assumed to be 

diagonal matrix with value of unity while C1 is determined 

using genetic algorithm. Again in this case also, the range of 

values of C1 are determined in a similar procedure as  in the 

task space case.  

The trajectory tracking results of the above integral sliding 

mode controller are given in Fig. 10-12. The results are given 

in task space after the joint space measurements are 

transformed to task space using numerical forward kinematics. 

As can be seen from the results, the joint space/task space 

hybrid integral sliding mode controller performance is also 

much better than simple sliding mode controller.  

C. Comparison of task space and hybrid implementations  

Comparing the tracking performances of task space and joint 

space implementations, the task space implementation shows 

better performance in most of the cases. This is because of the 

synchronization error problem of joint space implementation 

and the capacity of task space in handling synchronization 

error. However, when we consider the improvements obtained 

with respect to the need for the costly forward kinematics, it 

can be easily seen that joint space implementation is better. 

Hence it can be concluded that the joint space implementation 

of sliding mode control is better than task space 

implementation 

 

 

Fig. 12 Compariosn of tracking performances of task space ISMC 

with simple sliding mode in x direction 

 

  
Fig. 13 Compariosn of tracking performances of task space 

ISMC with simple sliding mode in y direction 
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Fig. 14 Compariosn of tracking performances of task space ISMC 

with simple sliding mode in z direction 

VII. CONCLUSION 

In this paper, we have shown how genetic algorithm can be 

used to design integral sliding surface in sliding mode control 

and we have compared two implementations of the designed 

controllers. The controllers were designed for the highly 

nonlinear 6DOF parallel robot of Stewart platform 

manipulator. The MATLAB simulation  results have shown 

that the designed integral sliding mode controller performs 

better than simple sliding mode controller and PID controller. 

With regard to the comparsion of task space and joint 

space/task space hybrid implementations, it was shown that the 

hybrid implementation results in a better controller as it gives 

reasonable performance with less control effort.  

 

 
Fig. 15 Comparison of x direction tracking performance of the 

task space ISMC and joint/task space  hybrid implementations  

 
Fig. 16 Comparison of y direction tracking performance of the 

task space ISMC and joint/task space  hybrid implementations 

 
Fig. 17 Comparison of z direction tracking performance of the 

task space ISMC and joint/task space  hybrid implementations 

 
Fig. 18 Comparison of roll angle tracking performance of the 

task space ISMC and joint/task space  hybrid implementations 

 
Fig. 19 Comparison of pitch angle tracking performance of the 

task space ISMC and joint/task space  hybrid implementations 
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Fig. 20 Comparison of yaw angle tracking performance of the 

task space ISMC and joint/task space  hybrid implementations 
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