
 

 

 

Abstract— To control the large scale systems is important. In this 

paper, a multi variable non-linear system (two inverted pendulum 

coupled by a spring) is output feedback linearized and the system is 

generalized in two subsystems and decentralized dynamic output 

feedback basis on Lyapunov equation is applied. Using this model, 

the large scale system can be formulated, designed and generalized to 

be controlled. 
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I. INTRODUCTION 

ower systems and multimachine systems are modeled as 

large nonlinear highly structured systems [1]. Despite the 

importance and potentials of large-scale systems, it seems that 

impact of the research in this area is not as great as it could be. 

There are indeed many successful applications of large-scale 

systems control, for example to electrical power systems [2]. 

However, these applications are mainly developed by domain 

experts. All applications in this area are ''large-scale'', i.e. the 

number of state variables is very big and special knowledge is 

normally required for the formulation of the problem. In the 

general control communities, due to lack of simple meaningful 

examples, the interests in this area are not matched with its 

importance and potentials [3]. Conventional linear control for 

large-scale systems is limited since it can only deal with small 

disturbances about an operating point. Since differential 

geometric tools were introduced to nonlinear control system 

design, various stabilizing control results based on nonlinear 

power system models have been obtained for single machine 
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 systems and for multimachine systems. Two important issues 

for power systems control are robustness and a decentralized 

structure. However, other method such as Genetic Algorithm 

and Neural Network Method are used to model multimachine 

systems [4]. The robustness issue arises to deal with sources of 

uncertainties which mainly come from the varying network 

topology and the dynamic variation of the load. Since physical 

limitation on the system structure makes information transfer 

among subsystems unfeasible, decentralized controllers for 

multimachine systems must be used [1]. Therefore, 

decentralized control is considered as an effective method to 

deal with large-scale interconnected systems. In addition, it is 

often used to utilize the system structural characteristics, such 

as symmetric structure [4], cascaded structure [5] or similar 

structure [6] to study special large-scale systems as a first step 

toward general large-scale systems [7]. Decentralized dynamic 

output feedback basis on Lyapunov equation is an effective 

method to study the stability of a complex system [8]. Also, it 

can be used to analyze the behavior of design process and 

stability analysis of the system [9]-[10]. A double system 

pendulums coupled by a spring (Fig 1) was used in [3] to 

demonstrate some important theoretical results achieved in 

decentralized control. This system is used in this paper to be 

studied using dynamic output feedback. A character for 

modeling this system is that by simply adding more 

pendulums and springs to the existing system, this can be 

extended to a system of n-inverted-pendulums coupled by (n-

1)-springs. Such a system can be observed as an attractive 

example for the current research on ''characterization of 

problems in decentralized control'' [3].  

  

II. NOTATION AND PRELIMINARIES [11] 

 

For a given matrix A, let AT  denote its transport; let σ  A  
denotes the maximum singular values of A; when A is real 

symmetric, let λ A  and λ A  denote its minimum and 

maximum eigenvalues, respectively; let A > 0 denotes that A 

is positive define. Let L denotes Lipschitz constant of the 

function F x  in its domain of definition; also, let  .   denote 

the Euclidean norm or its induced norm. 

Consider the following two systems: 

(ΣI)
               x = f1 x + g1 x u

y1 = h1 x 
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(ΣII ) 
               x  = f2 x  + g2 x  u

y2 = h2 x  
 

 

Where x, x ∈ ℝn , y1, y2 ∈ ℝl and u ∈ ℝm  are the state 

vectors, outputs, and inputs of systems. 

Definition 2.1. ΣI is said to be similar to . ΣII  in the domain 

E if there exists a diffeomorphism T: x → x  defined in E such 

that in the coordinate x  defined by T, the system ΣI possesses 

the same form as ΣII . In this case, T x  is called a similarity 

transformation from ΣI to ΣII . 

Remark 2.1. Similarity between systems is an equivalence 

relationship. That is, similarity possesses the properties of 

reflectivity, symmetry and transitivity; it is an extension of 

equivalence between linear systems. 

Definition 2.2. the system ΣI is said to be output feedback 

linearizable in the domain E if there exists a diffeomorphism 

T: x → z, α(y) ∈ ℝm  and a nonsingular matrix β(y) ∈ ℝm×m  

such that in the coordinate z defined by T, the closed-loop 

system resulting from the input u = α y + β(y)v to ΣI is 

described by 
 z = Az + Bv

y = Cz
 

 

With the realization  A , B, C  both controllable and 

observable. 

Remark 2.2. It should be noticed that output feedback 

linearizability defined above does not imply static output 

feedback stabilizability. However, the fact that a system is 

output feedback linearizable. It should be mentioned that static 

output feedback stabilizability is a very strong condition and it 

remains an open problem even for linear systems. 

Lemma 2.1. Suppose that ΣI is similar to ΣII  in the domain 

E. Then, ΣI is output feedback linearizable if and only if  ΣI is 

output feedback linearizable. 

Proof. Necessity, by output feedback linearization of ΣI, it 

follows that there exists a similarity transformation T: x → z, 

α(y) ∈ ℝm  and a nonsingular matrix β(y) ∈ ℝm×m  such that 

in the coordinate z defined by T1, the closed-loop system  

x = fI x + gi x  α yI + β yI v                                       (2) 

yI = hI x                                                                                (3) 

Has the following form 

z = Az + Bv                                                                         (4)   

y = Cz                                                                                    (5) 

 

It is obvious that the systems (2)-(3) is similar to (4)-(5) 

with similarity transformation T1. Now, suppose that ΣI is 

similar to ΣII  with similarity transformation T2. Then, it is 

observed that the system 

 x  = fII x  + gII x   α y II + β y II v                                  (6) 

yII = hII x                                                                            (7) 

 

 Is similar to (2)-(3) with similarity transformation T2
−1. By 

the properties of similarity, it follows that (6)-(7) is similar to 

(4)-(5) with similarity transformation T2
−1 to T1. Therefore, for  

ΣII , there exists a composition of transformation given by T2
−1 

to T1 and output feedback u = α y II + β y II v such that the 

resulting closed-loop system is linearizable. 

Sufficiently, it may be obtained directly from the necessity 

proof and the symmetry property of the similarity 

transformation. Hence, the result follows. 

 

III. SYSTEM DISCRIPTION 

Consider a nonlinear large-scale interconnected system 

described by 

x i = fi xi + gi xi  ui + ∆Ψi(xi) +  Hij (xj)
N
j=1
j≠i

+ ∆Hi(x) (8) 

 yi = hi xi                    i = 1, 2, … , N                                      (9) 

 

Here xi ∈ Ωi ∈ ℝn(Ωi is a neighborhood of xi = 0), 

ui , yi ∈ ℝm  are the state vector, input and output vector of the 

ith subsystems, respectively; fi xi  ,  gi xi  are both smooth 

vectors, hi is a smooth function in Ωi, ∆Ψi(xi) is the matched 

uncertainty of the ith isolated subsystem;  Hij (xj)
N
j=1 , j=i  is 

the known interconnection, the uncertain interconnection 

∆Hi(x) includes all unmatched uncertainties, and they are all 

continuous in their arguments. Without loss of generality, it is 

supposed that fi 0 = 0 and hi 0 = 0. Also, we write 

x = col x1, x2, . . , xN ∈ Ω1 × Ω2 × …ΩN = Ω 

Definition 1. consider the system (8)-(9). The systems  

  x i = fi xi + gi xi ui                                                         (10) 

yi = hi xi                         i = 1, 2,… , N                                 (11) 

 

are called nominal subsystems of the system (8)-(9); the 

systems 

x i = fi xi + gi xi  ui + ∆Ψi(xi)                                       (12) 

yi = hi xi                         i = 1, 2,… , N                                 (13) 

    

are called isolated subsystems of the system (8)-(9). 

Definition 2. The system (8)-(9) is said to be a similar 

interconnected large-scale system or to posses a similar 

structure if all its nominal subsystems are similar to one 

another. 

Remark 1. It should be noticed from remark 2.1 that there 

exists one system such that each nominal subsystem of the 

system (8)-(9) is similar to the system, if (8)-(9) is a similar 

interconnected large-scale system.  

Assumption A1. The system (8)-(9) possesses a similar 

structure and there exists one output feedback linearizable 

nominal subsystem. 

It should be noticed from Definition 2.2 that Assumption 

A1 does not imply output feedback linearizability of the 

nominal subsystem (10)-(11) of the system (8)-(9). In fact, we 

do not require that the nominal subsystem (10)-(11) of the 

system (8)-(9) is output feedback stabilizable in this paper; on 

the other hand, the nominal subsystem is required to be linear 

and output feedback stabilizable in ref 8. 

By Lemma 2.1, it is observed that, under Assumption A1, 

all nominal subsystems of the system (8)-(9) are similar. 

Therefore, there exists diffeomorphisms Ti: xi → zi and output 

feedback 

 ui = α yI + β yI v                                                            (14) 
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In Ωi, for i = 1, 2, … , N such that, in the new coordinate 

z=col z1, z2 , … , zN , the system (8)-(9) is described by  

z i = Azi + B vi + ∆Φi(zi) +  Mij (zi , zj)
N
j=1
j≠i

+ ∆Mi(z)    (15) 

yi = Czi  ,                    i = 1, 2,… , N                                       (16) 

 

where the realization  A, B, C  is controllable and observable 

and where 

 ∆Φi zi =  βi
−1(yi)∆Ψi(xi) xi =Ti

−1(zi )                                (17) 

∆Mi z =  
∂Ti xi 

∂xi
 

xi =Ti
−1 zi 

. ∆Hi(T−1(z))                      (18)                  

Mij zi , zj =  
∂Ti xi 

∂xi
 

xi =Ti
−1 zi 

. Hij  Tj
−1 zj  , i ≠ j           (19) 

 

with i, j = 1,2, … , N and 

z = T x = col T1 x1 , T2 x2 , … , TN xN   

 

Assumption A2. Mij zi , zj , i ≠ j is Lipschitz in Ti(Ωi) ×

Tj(Ωj) with Lipschitz constants    L 
i

M ij
 and L 

j
M ij

. That is, for 

any zi , z i ∈ Ti Ωi  and zj , z j ∈ Tj Ωj , 

 Mij zi , zj − Mij z i , z j  ≤ L 
i

M ij
 zi − z i + L 

j
M ij

 zj −

z j ,     j ≠ i 

 

and Mij zi , zj  has the following description: 

  Mij zi , zj = Πij yi , yj zj ,     j ≠ i                                (20) 

 

with Πij ∈ ℝn×n  for all i = 1, 2, … , N. 

Assumption A3. There exist known continuous functions 

ρi .   and γi .  , defined in their domains of definition, such 

that, for i=1, 2, …,N, 

 ∆Φi zi  ≤ ρ
i
  yi   yi  

 ∆Mi z  ≤ γ
i
 y  z  

 

IV. DYNAMIC OUTPUT FEEDBACK CONTROLLER DESIGN 

 

Consider the system (15)-(16). From the controllability and 

observability of the realization  A, B, C , it follows that there 

exist K, L such that, for any Q > 0 and S > 0, the following 

Lyapunov equations: 

 A − BK TP + P A − BK = −Q                                        (21) 

 A − LC TR + R A − LC = −S                                         (22) 

 

have unique solutions P > 0 and R > 0, respectively.  

Assumption A4. There exists matrix F such that BTP = FC, 

with P defined by (21). 

Consider the system (8)-(9). Construct the controller 

described by  

 x  i = fi x i + gi x i ui +  
∂Ti x i 

∂x i
 
−1

L yi − hi x i  +

 Hij (x j)
N
j=1
j≠i

                                                                        (23)  

 yi = hi xi                                                                         (24) 

ui = α
i
 yi + β

i
 yi  −KTi x i + ηi ηi yi   ,    

i = 1,2, … , N                                                                         (25) 

 

where K satisfies (21) and ηi .   is defined by, for 

i=1,2,…N,   

 ηi yi =  
−  

Fyi

 Fyi 
 ρ

i
  yi   yi ,         Fyi ≠ 0  

0,                                              Fyi = 0

                  (26) 

 

with ρi  yi  , for i=1,2,…N and F defined respectively by 

assumptions A3 and A4. Now, we have the following result. 

Theorem 1. Under assumptions A1-A4, the system (8)-(9) 

is stabilized by the controller (23)-(25) if there exists a 

neighborhood about the origin Ω′ ⊆ Ω such that  W + WT > 0 

in Ω′\ 0 , where W =  wij  2N×2N
 is defined by  

wij = λ Q − 2λ P γi y , 

1 ≤ i ≤ N, i = j 

wij = λ S − 2λ R  LM i−k  k−N  

i−N ,2N
k=N+1,k≠i    

N + 1 ≤ i ≤ 2N, i = j 
 

wij = −2  σ  PΠij yi , yj  + λ P γi y   

1 ≤ i, j ≤ N, i ≠ j 

wij = −2λ R  LM i−N  j−N  

j−N
, 

N + 1 ≤ i, j ≤ 2N, i ≠ j 

wij = −σ RB σ C ρi  yi  − σ PBK − λ R γi y , 

j − i = N, 1 ≤ i ≤ N 

wij = −σ RB σ C ρj  yi  − σ PBK − λ R γj y  

i − j = N, 1 ≤ j ≤ N 

wij = −λ R γj−N y , 

j − i ≠ N, 1 ≤ i ≤ N, N ≤ j ≤ 2N 
wij = −λ R γi−N y , 

j − i ≠ N, 1 ≤ j ≤ N, N ≤ i ≤ 2N 
 

Where P, Q, R, S are defined by (21)-(22) [7]. 

 

Proof: It is obvious that the closed-loop system obtained by 

the controller (23)-(25) to the system (8)-(9) is described by 

 

𝑥 𝑖 = 𝑓𝑖 𝑥𝑖 + 𝑔𝑖 𝑥𝑖  𝛼𝑖 𝑦𝑖 + 𝛽𝑖 𝑦𝑖  −𝐾𝑇𝑖 𝑥 𝑖 + 𝜂𝑖 𝑦𝑖  +

Δ𝜓𝑖 𝑥𝑖     +  𝐻𝑖𝑗  𝑥𝑗  + Δ𝐻𝑖 𝑥 
𝑁
𝑗=1
𝑗≠𝑖

,                                   (27)    

 

𝑥 𝑖 = 𝑓𝑖 𝑥𝑖 + 𝑔𝑖 𝑥𝑖  𝛼𝑖 𝑦𝑖 + 𝛽𝑖 𝑦𝑖  −𝐾𝑇𝑖 𝑥 𝑖 + 𝜂𝑖 𝑦𝑖   + 

 𝜕𝑇𝑖 𝑥 𝑖 /𝜕𝑥 𝑖 
−1𝐿 𝑦𝑖 − 𝑖 𝑥 𝑖  +  𝐻𝑖𝑗  𝑥𝑗  ,𝑁

𝑗=1
𝑗≠𝑖

                  (28) 

 

𝑦𝑖 = 𝑖 𝑥𝑖 ,           𝑖 = 1, 2, … , 𝑁,                                          (29) 

 
where K, L are denoted by (21)-(22) and 𝜂𝑖 .   is denoted by 

(26). 

For the system (27)-(29), we construct a Lyapunov function 

candidate as 

𝑉 =    𝑇𝑖 𝑥𝑖  
𝑇
𝑃𝑇𝑖 𝑥𝑖 +  𝑇𝑖 𝑥𝑖 − 𝑇𝑖 𝑥 𝑖  

𝑇𝑅 𝑇𝑖 𝑥𝑖 −𝑁
𝑖=1

𝑇𝑖 𝑥 𝑖                                                                                    (30) 
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where P, S are defined by (21)-(22). It follows from 

Assumption A1 that, in the new coordinates 𝑧, 𝑧 , system (27)-

(29) is described by  

 

𝑧 𝑖 = 𝐴𝑧𝑖 − 𝐵𝐾𝑧 𝑖 + 𝐵 𝜂𝑖 𝑦𝑖 + ΔΦi zi   

+  𝑀𝑖𝑗  𝑧𝑖 , 𝑧𝑗  + Δ𝑀𝑖 𝑧 ,𝑁
𝑗=1
𝑗≠𝑖

                                               (31) 

           

𝑧 𝑖 =  𝐴 − 𝐵𝐾 𝑧 𝑖 + 𝐵𝜂𝑖 𝑦𝑖 + 𝐿 𝑦𝑖 − 𝐶𝑧 𝑖 +  𝑀𝑖𝑗  𝑧𝑖 , 𝑧𝑗  ,𝑁
𝑗=1
𝑗≠𝑖

   

                                                                                              (32) 

𝑦𝑖 = 𝐶𝑧𝑖                  𝑖 = 1, 2, … , 𝑁                                          (33) 

 

where the realization (A, B, C) is the same as (15)-(16), and 

where Δ𝛷i , ΔMi , Mij  are defined by (17)-(19). Let 

𝑒𝑖 : 𝑇𝑖 𝑥𝑖 − 𝑇𝑖 𝑥 𝑖 = 𝑧𝑖 − 𝑧 𝑖          for 𝑖 = 1, 2, … , 𝑁. 
 

We have, for 𝑖 = 1, 2, … , 𝑁, 
 

 
𝑧 𝑖
𝑒 𝑖
 =  

𝐴 − 𝐵𝐾 𝐵𝐾
0 𝐴 − 𝐿𝐶

  
𝑧𝑖

𝑒𝑖
 +  

𝐵 ΔΦi zi + η yi  

𝐵ΔΦi zi 
  

+  
 𝑀𝑖𝑗  𝑧𝑖 , 𝑧𝑗  + Δ𝑀𝑖 𝑧 

𝑁
𝑗=1,𝐽≠𝑖

  𝑀𝑖𝑗  𝑧𝑖 , 𝑧𝑗  − 𝑀𝑖𝑗  𝑧 𝑖 , 𝑧 𝑗  + Δ𝑀𝑖 𝑧  
𝑁
𝑗=1,𝐽≠𝑖

                (34) 

 

The time derivative of 𝑉 along the trajectories of the system  

(27)-(29) is given by  

 
 𝑉   27 − 29 =

−  𝑧𝑖
𝑇 , 𝑒𝑖

𝑇 diag  𝑄, 𝑆  
𝑧𝑖

𝑒𝑖
 + 2𝑁

𝑖=1   𝑧𝑖
𝑇 , 𝑒𝑖

𝑇 diag  𝑃, 𝑅 𝑁
𝑖=1      

×   
𝐵 ΔΦ𝑖 𝑧𝑖 + 𝜂𝑖 𝑦𝑖 + 𝐾𝑒𝑖  

𝐵ΔΦ𝑖 𝑧𝑖 
   

+  
 𝑀𝑖𝑗  𝑧𝑖 , 𝑧𝑗  + Δ𝑀𝑖 𝑧 

𝑁
𝑗=1,𝐽≠𝑖

  𝑀𝑖𝑗  𝑧𝑖 , 𝑧𝑗  − 𝑀𝑖𝑗  𝑧 𝑖 , 𝑧 𝑗  + Δ𝑀𝑖 𝑧  
𝑁
𝑗=1,𝐽≠𝑖

                 (35) 

                                                                               

 

By the structure (26) of 𝜂𝑖 𝑦𝑖  and Assumption A4, it is 

observed that: 

 

(i) if 𝐹𝑦𝑖 = 0, then for 𝑖 = 1, 2, … , 𝑁 

𝑧𝑖
𝑇𝑃𝐵 ΔΦ zi + η𝑖 𝑦𝑖  =  𝐹𝐶zi 

𝑇ΔΦ zi =  𝐹𝑦𝑖 
𝑇𝛥𝛷𝑖 𝑦𝑖 

= 0; 
 

(ii)  if 𝐹𝑦𝑖 ≠ 0, then for 𝑖 = 1, 2, … , 𝑁 

𝑧𝑖
𝑇𝑃𝐵 ΔΦ zi + η𝑖 𝑦𝑖   

≤  𝑧𝐼
𝑇 𝐹𝐶 𝑇 𝜌𝑖  𝑦𝑖   𝑦𝑖 −  

𝑧𝐼
𝑇 𝐹𝐶 𝑇𝐹𝑦𝑖

 𝐹𝑦𝑖 
 𝜌𝑖  𝑦𝑖   𝑦𝑖  

≤  𝐹𝐶𝑧𝑖 𝜌𝑖  𝑦𝑖   𝑦𝑖 −  
 𝐹𝐶𝑧𝑖 

𝑇𝐹𝐶𝑧𝑖

 𝐹𝐶𝑧𝑖 
 𝜌𝑖  𝑦𝑖   𝑦𝑖  

= 0 

 

 

 

Therefore, for 𝑖 = 1, 2, … , 𝑁, 
             
𝑧𝑖
𝑇𝑃𝐵 ΔΦ𝑖 z𝑖 + ηi yi  ≤ 0                                               (36)                                                         

 

Then, by Assumption A3, it follows that, for 𝑖 = 1, 2, … , 𝑁, 
 

𝑒𝑖
𝑇𝑅𝐵ΔΦi zi + z𝑖

𝑇𝑃𝐵𝐾𝑒𝑖  

≤  𝑒𝑖  𝑅𝐵 𝜌𝑖  𝑦𝑖   𝑦𝑖 +  z𝑖
𝑇𝑃𝐵𝐾𝑒𝑖  

≤ 𝜌𝑖  𝑦𝑖  𝜎  𝑅𝐵 𝜎  𝐶 + 𝜎  𝑃𝐵𝐾  𝑧𝑖  𝑒𝑖                        (37) 

 

From Assumptions A2-A3 and fact that  

 
 𝑧 ≤  𝑧1 +  𝑧2 + … +  𝑧𝑁   

 

It is observed that  

 

𝑧𝑖
𝑇𝑃   𝑀𝑖𝑗  𝑧𝑖 , 𝑧𝑗  

𝑁
𝑗=1
𝑗≠𝑖

+ ΔMi z    

=  𝑧𝑖
𝑇𝑃Π𝑖𝑗  yi , yj zj + zi

T𝑃Δ𝑀𝑖 𝑧 
𝑁
𝑗=1
𝑗≠𝑖

  

≤  𝜎  𝑃Π𝑖𝑗  yi , yj  
𝑁
𝑗=1
𝑗≠𝑖

 𝑧𝑖  𝑧𝑗 + 𝜆  𝑃 𝛾𝑖 𝑦  𝑧𝑖  𝑧𝑗   

≤  𝜎  𝑃Π𝑖𝑗  yi , yj  
𝑁
𝑗=1
𝑗≠𝑖

 𝑧𝑖  𝑧𝑗 +  𝜆  𝑃 𝛾𝑖 𝑦  𝑧𝑖  𝑧𝑗 
𝑁
𝑗=1   

                                                                                              (38) 

Also, Assumptions A2-A3 give 

 

𝑒𝑖
𝑇𝑅    𝑀𝑖𝑗  𝑧𝑖 , 𝑧𝑗  − 𝑀𝑖𝑗  𝑧 𝑖 , 𝑧 𝑗   + Δ𝑀𝑖 𝑧 

𝑁
𝑗=1
𝑗≠𝑖

   

≤
 𝜆 𝑁

𝑗=1
𝑗≠𝑖

 𝑅  𝑒𝑖  𝑀𝑖𝑗  𝑧𝑖 , 𝑧𝑗  − 𝑀𝑖𝑗  𝑧 𝑖 , 𝑧 𝑗    +

𝜆  𝑅 𝛾𝑖 𝑦  𝑒𝑖  𝑧   

 𝜆 𝑁
𝑗=1
𝑗≠𝑖

 𝑅  𝑒𝑖  𝐿𝑀𝑖𝑗

𝑖  𝑧𝑖 − 𝑧 𝑖    

+𝐿𝑀𝑖𝑗

𝑖   𝑧𝑗 − 𝑧 𝑗  +  𝜆  𝑅 𝛾𝑖 𝑦  𝑒𝑖  𝑧𝑗 
𝑁
𝑖=1   

= 𝜆  𝑅  +  𝐿𝑀𝑖𝑘

𝑖𝑁
𝑘=1
𝑘≠𝑖

  𝑒𝑖 
2 + 𝜆  𝑅  𝐿𝑀𝑖𝑗

𝑗𝑁
𝑗=1
𝑗≠𝑖

 𝑒𝑖  𝑒𝑗    

+  𝜆 𝑁
𝑗=1  𝑅 𝛾𝑖 𝑦  𝑒𝑖  𝑧𝑗                                                  (39) 

 

Substituting (326)-(39) into (35) yields 

 
 𝑉  

 27 − 29 
 

≤ −  𝜆 𝑄  𝑧𝑖 
2 + 𝜆 𝑆  𝑒𝑖 

2 𝑁
𝑖=1   

+2   𝜌𝑖 𝑦𝑖 𝜎  𝑅𝐵 𝜎  𝐶 + 𝜎  𝑃𝐵𝐾   𝑧𝑖  𝑒𝑖 
𝑁
𝑖=1   

+2     𝜎  𝑃Π𝑖𝑗  𝑦𝑖 , 𝑦𝑗  + λ  𝑃 γ𝑖  𝑧𝑖  𝑧𝑗 +𝑁
𝑗=1
𝑗≠𝑖

𝑁
𝑖=1

𝜆  𝑃 𝛾𝑖 𝑦  𝑧𝑖 
2    

+2  𝜆  𝑅   𝐿𝑀𝑖𝑘

𝑖𝑁
𝑘=1
𝑘≠𝑖

  𝑒𝑖 
2𝑁

𝑖=1 +

2   𝜆  𝑅 𝐿𝑀𝑖𝑗

𝑖𝑁
𝑗=1
𝑗≠𝑖

 𝑒𝑖  𝑒𝑗 
𝑁
𝑖=1   

+2   𝜆  𝑅 𝑁
𝑗=1
𝑗≠𝑖

𝛾𝑖 𝑦  𝑧𝑖  𝑒𝑗 
𝑁
𝑖=1   

= − 1 2  𝑌𝑇 𝑊𝑇 + 𝑊 𝑌                                                   (40)   
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where 

 

𝑌 =   𝑧1 ,  𝑧2 , …   𝑧𝑁 ,  𝑒1 ,  𝑒1 , … ,  𝑒𝑁  𝑇  

   

  It is obvious that 𝑌 = 0 if and only if 𝑥𝑖 = 𝑥𝑖 = 0 for           

𝑖 = 1, 2, … , 𝑁. then, from the positive definiteness of 𝑊𝑇 +
𝑊, it follows that the system (27)-(29) is asymptotically stable 

at origin. Hence, the result follows. 

It should be emphasized that the proof of Theorem 4. 1 is 

constructive. The robustness is enhanced greatly compared 

with existing results in which all the uncertainties are 

estimated or not considered in the control design. 

In addition, from the continuity of 𝜌𝑖(. ), it is observed that 𝑢𝑖  

is continuous if F is nonsingular. From the proof above, it 

should be emphasized that Assumption A4 is unnecessary if 

the matched uncertainties Δ𝛹𝑖 , with 𝑖 = 1, 2, … , 𝑁, do not 

appear in (8). 

Corollary 4. 1. Under the conditions of Theorem 4. 1, (23) is 

an asymptotic observer of the system (8)-(9). 

In other words, under certain conditions, the system (8)-(9) is 

stabilized by the controller (25), based on the system output 

and estimated states given by (23). 

 

V. MODELING 

A system of two inverted pendulum coupled by a spring is 

shown in figure1. The variables of the system are: 

θ
i
: angular displace ment of pendulum I (i=1, 2) 

τ
i
: torque input generated by the actuator for pendulum I   

(i=1, 2) 

F: spring force 

ϕ: angular of the spring to the earth 

and the constants are: 

mi: mass of pendulum 

L: distance of two pendulums 

κ: spring constant 

 

 

 

 

Fig 1. Two inverted pendulum coupled by spring 

 

 

 

The mass of each pendulum is uniformly distributed. The 

length of spring is chosen so that F=0 when θ1 = θ2 = 0, 

which implies that  θ1 θ 1 θ2 θ 2 
T

= 0 is an equilibrium of the 

system if τi = 0. For simplicity, we assume that the mass of 

spring is zero. 

The dynamic equations for the system of fig.1 are given as  

 m1 l1 
2/3 θ 1 = τ1 + m1g l1/2 sinθ1 + l1Fcos θ1 − ϕ            

                                                                                          (41) 

 

 m1 l2 
2/3 θ 2 = τ2 + m2g l2/2 sinθ2 + l2Fcos θ2 − ϕ                               

                                                                                              (42) 

 

where g = 9.8m/s2  is the constant of gravity and 

  F = κ ls −  L2 +  l2 − l1 
2 1/2                                        (43) 

 

ls =   L + l2sinθ2 − l1sinθ1 
2 +  l2cosθ2 − l1cosθ1 

2 1/2                             

                                                                                              (44) 

               

  ϕ = tan−1  
l1cosθ1 − l2cosθ2

L + l1cosθ1 − l2cosθ2
                          

                                                                                             (45) 

 

The following variables are used: l1 = 1m ،l2 = 0.8m، 

 m1 = 1kg ، m2 = 0.8kg ، L = 1.2m and  κ = 0.04N/m [3]. 

 

VI. CONTROLLER DESIGN 

Now, the system of two inverted pendulum coupled by 

spring with governing equations (1)-(2) is set decentralized 

nonlinear control using dynamic output feedback. First, the 

state equations can be written considering the definition of 

state variables: 

 

x1 = θ1, x2 = θ 1, x3 = θ2, x4 = θ 2                                      (46)  

 

then  
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Then we classify the states in two classes 

z1 =  
x1

x2
 ,    z2 =  

x3

x4
                                                       (48)  

 

So, the equation (47) is converted to the following 

equations: 

 Z 1 =  
0 1
0 0

 z1 +  
0

14.70 sin x1 
 +  

0
3.0

 τ1 +

 
0

3F cos x1 − ϕ   

y1 =  1 1 z1                                                                      (49)  

 

    z 2 =  
0 1
0 0

 z2 +  
0

18.37 sin(x3)
 +  

0
5.86

 τ2 +

 
0

3F cos(x3 − ϕ)
                  

y2 =  1 1 z2                                                                      (50) 

 

Considering the theorem 4.1, we study the assumption A1 

to A4. To define the equivalent terms of system (3) in 

pendulum system, we have 

  f1 z1 =  
z2

14.70 sin(x1) 
x1= 1 0 z1

,   g1 z1 =  
0

3.0
 ,

h1 z1 =  1 1 z1                                                               (51) 

 

  ∆Ψi z1 = 0,  Hij zj 
2
j=1
j≠i

= 0,      

 ∆H1 z =  
0

3F cos(x1 − ϕ)
 ,                                              (52) 

 

Similarity for subsystem 2, we have 

 f2 z2 =  
z2

18.37 sin(x3) 
x3= 1 0 z2

,   g2 z2 =  
0

5.86
 ,

h2 z2 =  1 1 z2                                                               (53) 

 

∆Ψi z2 = 0,

 Hij zj 
2
j=1
j≠i

= 0,      ∆H2 z =  
0

3F cos(x3 − ϕ)
               (54) 

 

It is clear that the system has the same structure and can get 

output feedback linearization. So, the first assumption is 

achieved. System is suitable for feedback linearization, so no 

transformation is needed to a new system. The matrices of 

equation (3) considering equations (20) to (23) will be: 

A =  
0 1
0 0

 , B =  
0
1
 , C =  1 1                                     (55)   

 

∆Φi zi = 0, Mij zi , zj = 0, ∆Mi z = ∆Hi z                 (56) 

 

The second assumption is confirmed by becoming zero of 

interconnection terms. Control inputs ( applied torque) is 

achieved by equation (14). Consider as ρ
i
  yi   is zero, so 

ηi yi = 0. 

  τ1 = (−Kz1 + 14.7 sin x1 )/3                                        (57) 

 

  τ2 = − Kz2 + 18.37 sin x3  /5.86                                (58) 

 

in which K is defined by equation (7). Also, consider that K 

must be chosen in order to have asymptotic stability for 

matrix A − BK. So, K =  3 6  is defined. In Lyapunov 

equation, by considering the fourth assumption and choosing 

S =  
2 0
0 2

   and Q =  
2 0
0 2

 , the response of equations are as 

follows: 

P =  
3 1
1 1

 , R =  
0.0859 0.0312
0.0312 0.0859

                            (59) 

 

To satisfy assumption A4, F=1 is chosen. To satisfy 

assumption A3, γ
1
 y = 0.075, γ

2
 y = 0.075 and ρ

i
 .   is 

set zero, too. 

So, theorem 4.1 can be applied by mentioned data for the 

system of two inverted pendulum coupled by spring. Thus, 

matrix W must be constructed and related condition must be 

tested in the theorem.  

 

W ≅  

1.4885
0.2557
−1.6440
−0.2340

0.2557
1.7443

 −0.2340
−1.6440

−1.6440
−0.2340
2.0000
0.0000

 −0.2340
 −1.6440

0.0000
2.0000

               (60) 

 

That the condition W+ WT > 0 is satisfied. 

 

VII. SIMULATION RESULTS 

The MATLAB/Simulink model and programmes used for 

the simulation can be obtained by corresponding to the 

authors. The program of coupled-pendulums, as a sample, is 

presented in appendix. By changing the values of parameters 

in the ''data file'' and other *.m files, various simulation results 

can be obtained. The results obtained by applying control to 

the system using output feedback decentralized control are 

shown in figures 2-5. These figures present the response of the 

model to a pulse disturbance. Figures 2-3 present the values of 

angle of each pendulum and figures 4-5 present the values of 

angular velocities of each pendulum. Despite of existing the 

variation in values at the first steps, the system is stable. This 

is due to conditions used in the design are sufficient 

conditions. 

 
Fig 2. angle θ1 
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Fig 3. angle θ2 

 

 

 
Fig 4. angular velocity of pendulum 1 

 

 

 
Fig 5. angular velocity of pendulum 2 

 

VIII. CONCLUSION 

We have presented a dynamic output feedback control 

scheme to stabilize a class of nonlinear interconnected 

systems. A system of two inverted pendulum coupled by 

spring is controlled using output feedback decentralized 

control.. As shown in figures, the variation of angle  θ  and 

angular velocity is stabilized. We mention that this method 

may be extended to the case where the dimensions of each 

subsystem are different by introducing a new similar structure. 

Last, but not the least, it is demonstrated that the system 

structure plays an important role in reducing the computation 

effect for the Lyapunov equation. 
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dteta 2

function dx = coupled_pendulums(t,x) 

dx = zeros(4,1);    % a column vector 

l1=1;    % lenth 
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% pendulum 2 
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%L is the distance of two penduli 
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kappa = 4.0; 

 

%g is the gravity constant 
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%%%%%%%%%%%%%%%%%%%%%%%% 
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dx(2) = u(1)+(m1*g*(l1/2))*sin(x(1))+(l1)*F*cos(x(1)-phi); 

dx(3) = x(4); 

dx(4)= u(2)+(m2*g*(l2/2))*sin(x(3))-(l2)*F*cos(x(3)-phi); 
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