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Abstract— In this contribute we propose an application of a new 

algorithm for least squares matching of overlapping 3D surfaces that 
we sampled point by point using a terrestrial laser scanner. The 
studies on the absolute orientation of stereo models using DEMs as 
control information are known as DEM matching.  The proposed 
method estimates the transformation parameters between two (or 
more) fully 3D surface patches and minimizes the Euclidean 
distances instead of Z-differences between the surfaces by least 
squares. The application in question is aimed, in the study of 
deformations of mountain areas, as well as test the TLS applied to a 
hilly area. For this purpose, it was also tested using the algorithm 
LS3D “Least squares 3D surface matching” that allows both the 
registration of point clouds produced by scans carried out without 
using targets but, overall, the estimate of deformations that in this 
case, compared to other methods, is done directly on the basis of the 
two data sets acquired in two different eras. 
 

I. INTRODUCTION AND STUDY AREA  
HE Faculty of Agriculture of the University 
"Mediterranea" of Reggio Calabria is built on a hill that 
offers a specific geomorphology. In fact, after the 

construction of the Faculty building some problems arose, 
regarding its stability, the possible deformations through time 
also because of poor vegetation. 
The Laboratory of Geomatics Engineering Faculty of the 
University "Mediterranea" of Reggio Calabria, used Terrestrial 
Laser Scanner for monitoring the hill, doing the scans after 
three years and examining the results obtained. Every era we 
made two scans, that we found to be sufficient to cover the 
entire study area. 

In photogrammetry, the problem statement of surface patch 
matching and its solution method was first addressed by Gruen 
(1985a) as a straight application of Least Squares Matching.  

The Least Squares Matching concept had been applied to 
many different types of measurement and feature extraction 
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problems due to its high level of flexibility and its powerful 
mathematical model.  

If 3D point clouds derived by any device or method 
represent an object surface, the problem should be defined as a 
surface matching problem instead of the 3D point cloud 
matching. This method, Least Squares 3D Surface Matching 
(LS3D), estimates the 3D transformation parameters between 
two or more fully 3D surface patches, minimizing the 
Euclidean distances between the surfaces by least squares. 

An observation equation is written for each surface element 
on the template surface patch, i.e. for each sampled point. The 
geometric relationship between the conjugate surface patches 
is defined as a 7-parameter 3D similarity transformation. This 
parameter space can be extended or reduced, as the situation 
demands it. The constant term of the adjustment is given by 
the observation vector whose elements are Euclidean distances 
between the template and search surface elements. 
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Fig. 1 study area 

 
Fig. 2 a view of the scanner 
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II. REGISTRATION OF THE SCANS 
  The first operation performed after the relief phase was 

therefore recording different scans with a procedure based on 
the algorithm of "Least Squares 3D surface matching". 
 

 
Assume that two different surfaces of the same object are 

sampled point by point, at different times (temporally) or from 
different viewpoints (spatially). f(x,y,z) and g(x,y,z) are 
conjugate regions of the object in the left and right surfaces 
respectively. 

 The mathematical model used considers the reflection that, 
at every point of the first surface f(x,y,z) has an exact match 
with g(x,y,z).  

The functional model is: 
 

f(x,y,z)=g(x,y,z)                                   (1) 
 

According to Eq. (1) each surface element on the template 
surface patch f(x,y,z) has an exact correspondent surface 
element on the search surface g(x,y,z), or vice-versa, if both of 
the surfaces would analytically be continuous surfaces without 
any deterministic or stochastic discrepancies. In order to 

model the stochastic discrepancies, which are assumed to be 
random errors, and may stem from the sensor, environmental 
conditions or measurement method, a true error vector e(x,y,z) 
is added as: 

 
 f(x,y,z)-e(x,y,z)=g(x,y,z)                         (2) 

 
Eq. (2) are observation equations, which functionally relate 

the observations f(x,y,z) to the parameters of g(x,y,z). The 
matching is achieved by least squares minimization of a goal 
function, which represents the sum of squares of the Euclidean 
distances between the template and the search surface 
elements: 

 
∑||d||²=min                                         (3) 

 
and in Gauss form: 
 
                                [dd]=min 
 
where d  stands for the Euclidean distance. 
The final location is estimated with respect to an initial 

position of g(x,y,z), the approximation of the conjugate search 
surface g0(x,y,z). 

To express the geometric relationship between the conjugate 
surface patches, a 7-parameter 3D similarity transformation is 
used: 

 
 [x y z]T=t+mRx0                                         (4) 

 
   x=tx+m(r11x0+r12y0+r13zo)                                  (5) 

                y=ty+m(r21x0+r22y0+r23zo) 
                z=tz+m(r31x0+r32y0+r33zo) 
 
where rij = R(ω,φ,κ) are the elements of the orthogonal 

rotation matrix, [tx ty tz]T  is the translation vector, and m is 
the central dilation. 

In order to perform least squares estimation, Equation (2) 
must be linearized by Taylor expansion, ignoring 2nd and 
higher order terms. 

 
 f(x,y,z,)-

e(x,y,z)=g0(x,y,z)+ dx+ dy+ dz    (6) 
 
with 
 

 dx= dpi      ,      dy= dpi     ,     dz= dpi          (7) 

 
where piϵ{tx,ty,tz,m,ω,φ,κ} is the i-th transformation 

parameter in Eq. (5). Differentiation of Eq. (5) gives: 
 

dx=dtx+a10dm+a11dω+a12dφ+a13dκ                 (8) 
dy=dty+a20dm+a21dω+a22dφ+a23dκ 
dz=dtz+a30dm+a31dω+a32dφ+a33dκ 

 
Fig. 3 some views of the scans 

 
Fig. 4 Schematization of the surface matching with LS3D 
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where aij are the coefficient terms, whose expansion are 

trivial. Using the following notation 
 

      gx=        ,       gy=         ,     gz=    (9) 
 
and substituting Eq. (8), Eq. (6) results in the following: 
 

  -e(x,y,z)=gxdtx+gydty+gzdtz+                                        (10) 
+(gxa10+gya20+gza30)dm+(gxa11+gya21+gza31)dω+ 
+(gxa12+gya22+gza32)dφ+(gxa13+gya23+gza33)dκ-(f(x,y,z)-

+g0(x,y,z)). 
 

In the context of the Gauss–Markoff model, each 
observation is related to a linear combination of the 
parameters, which are variables of a deterministic unknown 
function that constitutes the functional model of the whole 
mathematical model. 

The terms {gx, gy, gz} are numeric 1st derivatives of this 
function g(x,y,z). 

Eq. (10) gives in matrix notation 
 

          –e=Ax-l , P                                      (11) 
   
where A is the design matrix, xT=[dtx dty dtz dm dω dφ dκ] 

is the parameter vector, and l =f(x,y,z)-g0(x,y,z) is the constant 
vector that consists of the Euclidean distances between the 
template and  correspondent search surface elements. 

In our implementation the template surface elements are 
approximated by the data points. 

In general, both surfaces (template and search) can be 
represented in any kind of piecewise form.  

With the statistical expectation operator E{} and the 
assumptions 

 
      e∼N(0,σ0

2Qll)    ,    σ0
2Qll=σ0

2Pll
-1=Kll=E{eeT}        (12)   

 
the system (11) and (12) is a Gauss–Markoff estimation 

model. Qll, P=Pll and Kll stand for a priori cofactor, weight 
and covariance matrices respectively. 

The unknown transformation parameters are treated as 
stochastic quantities using proper weights. This extension 
gives advantages of control over the estimating parameters [7]. 

In the case of poor initial approximations for unknowns or 
badly distributed 3D points along the principal component 
axes of the surface, some of the unknowns, especially the scale 
factor m, may converge to a wrong solution, even if the scale 
factors between the surface patches are same. We introduce 
the additional observation equations regarding the system 
parameters as 

 
        -eb=Ix-lb    ,    Pb                                                 (13) 

 

where I is the identity matrix, lb is the (fictitious) 
observation vector for the system parameters, and Pbis the 
associated weight coefficient matrix. The weight matrix Pb has 
to be chosen appropriately, considering a priori information of 
the parameters. An infinite weight value ((Pb)ii→∞) excludes 
the i-th parameter from the system assigning it as constant, 
whereas zero weight ((Pb)ii =0) allows the i-th parameter to 
vary freely assigning it as unknown parameter in the classical 
meaning. 

The least squares solution of the joint system Eqs. (11) and 
(13) gives as the Generalized Gauss–Markoff model the 
unbiased minimum variance estimation for the parameters 

=(ATPA+Pb)-1(ATPl+Pblb) solution vector          (14)      

       o=    variance factor                (15) 
       v=A -l   residual vector for surface observation   (16) 

       vb -lb   residual vector for parameter observation  
(17) 

 
where ˆ stands for the Least Squares Estimator, r =n-u is the 

redundancy, n is the number of observations that is equivalent 
to the number of elements of the template surface, and u is the 
number of transformation parameters that is seven here. When 
the system converges, the solution vector converges to 

→0). Then the residuals of the surface observations vi 
become the final Euclidean distances between the estimated 
search surface and the template surface patches. 

 
        vi (x,y,z)i-f(x,y,z)i   ,   i{1,…,n}.                  (18) 

 
 
The function values g(x,y,z) in Eq. (2) are actually 

stochastic quantities. This fact is neglected here to allow for 

 
Fig. 5 global cloud of points cleaned after the recording with LS3D of 

the scan at the time t1 

 
Fig. 6 global cloud of points cleaned after the recording with LS3D of 

the scan at the time t2 
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the use of the Gauss–Markoff model and to avoid unnecessary 
complications, as typically done in LSM [6].  

This assumption is valid and the omissions are not 
significant as long as the random errors of the template and 
search surfaces are normally distributed and uncorrelated. In 
the extreme case when the random errors of both surfaces 
show systematic and dependency patterns, which is most 
probably caused by defect or imperfectness of the 
measurement technique or the sensor, it should be an 
interesting study to investigate the error behaviour using the 
Total Least Squares (TLS) method [3]. The TLS is a relatively 
new adjustment method of estimating parameters in linear 
models that include errors in all variables [10]. 

The functional model is non-linear. The solution iteratively 
approaches a global minimum. With the solution of linearized 
functional models there is always a danger to find local 
minima. A global minimum can only be guaranteed if the 
function is expanded to Taylor series at such a point where the 
approximate values of the parameters are close enough to their 
true values ( ) in parameter space. We 
ensure this condition by providing of good quality initial 
approximations for the parameters in the first iteration: 

 

                            (19)    
 
After the solution vector (14) has been solved for, the search 

surface is deformed to a new state using the updated set of 
transformation parameters, and the design matrix A and the 
constant vector l are reevaluated. 

The iteration stops if each element of the alteration vector
 in Eq. (14) falls below a certain limit: 
 
           ,                                                              (20) 

 
 
where i={1,2,…,7}. 
Adopting the parameters as stochastic variables allows 

adapting the dimension of the parameter space in a problem-
specific manner. In the case of insufficient a priori information 
on the geometric deformation characteristics of the template 
and search surfaces, the adjustment could be started employing 
a high order transformation, e.g. 3D affine. However, this 
approach very often leads to an over-parameterization 
problem.  

Therefore, during the iterations an appropriate test 
procedure that is capable to exclude non-determinable 
parameters from the system should be performed.  

The terms {gx , gy , gz} are numeric derivatives of the 
unknown surface patch g(x,y,z). Its calculation depends on the 
analytical representation of the surface elements. As a first 
method, let us represent the search surface elements as plane 
surface patches, which are constituted by fitting a plane to 3 
neighboring knot points, in the implicit form: 

 

                      (21) 
 
where A, B, C, and D are parameters of the plane. Using the 
mathematical definition of the derivation, the numeric 1st 
derivation according to the x-axis is 
 

                         (22) 
 
where the numerator term of the equation is simply the 

distance between the plane and the off-plane point (x+Δx,y,z). 
Then using the point-to-plane distance formula, 

 

                             (23) 
 
is obtained. Similarly gy and gz are calculated numerically. 
 

              ,                                           (24) 

                   
 
Actually these numeric derivative values {gx , gy , gz} are 

x-y-z components of the local surface normal vector at that 
point. 

 

                           (25) 
In the case of representation of search surface elements as 

parametric bi-linear surface patches, which are constituted by 
fitting the bi-linear surface to 4 neighboring knot points Pi,j : 

 

       (26) 
where u,w ϵ[0,1]2 and G, Pi,j ϵ ℛ3. Again the numeric 

derivative terms {gx , gy , gz} are calculated from components 
of the local surface normal vector on the parametric bi-linear 
surface patch: 

 

                                (27) 
 
With this approach a better a posteriori sigma value could 

be obtained due to a smoothing effect. In the case of 
insufficient initial approximations, the numeric derivatives 
{gx, gy , gz} can be calculated on the template surface patch 
f(x,y,z) instead of on the search surface g(x,y,z) in order to 
speed-up the convergence. 
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TABLE I - Numerical results of the "surface matching" LS3D with 
the two clouds of point at the time t1 

 
 
 
No 

TMP 
scan 
 no 
 (#) 

SRC 
scan 
 no 
 (#) 

No.of 
TMP 
points 
 (K) 

No.of 
 SRC 
points 
  (K) 

No. of 
COR 
points 
 (K) 

 
 
Inter. 
 

 
Time 
(sec) 

 
Sigma 
naught 
 (cm) 
 

  
 1 

 
   1 

 
   2 

 
2063 

 
2008 

 
1376 

    
   3 

 
1324 

  
 0,3 

 
TABLE II - Numerical results of the "surface matching" LS3D 

with the two clouds of point at the time t2 

 
 
 
No 

TMP 
scan 
 no 
 (#) 

SRC 
scan 
 no 
 (#) 

No.of 
TMP 
points 
 (K) 

No.of 
 SRC 
points 
  (K) 

No. of 
COR 
points 
 (K) 

 
 
Inter. 
 

 
Time 
(sec) 

 
Sigma 
naught 
 (cm) 
 

  
 1 

 
   1 

 
   2 

 
1978 

 
2043 

 
1412 

    
   3 

 
1342 

  
 0,3 

 
The matching for the registration of the whole cloud at the 

epochs t1 and t2 presupposes the selection of three points in 
common on the scans to be joined; by applying the matching 
several times using different homologous points, the results 
were validated using the statistical test . 

The variable χ2 measures the overall difference between 
observed and expected data according expression: 

 

 
 

The test  for a risk error α equal 
to 5% is verified result. 

III. SUBSEQUENT PROCESSING - CONTROL OF 
DEFORMATION 

Once registered scans for the generation of clouds at two 
times t1 and t2, the "global matching" is re-applied to monitor 
the deformation. 

The procedure involves three steps: 
• global matching of the two point clouds over the area 

selected as stable; 
• global matching of all points of the clouds over an area 

already found stable and searching for areas of 
possible movement; 

• local matching of selected areas to estimate the 
deformation. 

In the first step the algorithm LS3D is applied to areas that 
we assume as stable, eliminating areas with possible 
movements; the two clouds (registered) at the two epochs are 
traced thus in a common reference system. 

 
 
 
 
 

 

TABLE III - Numerical results of the “global matching" of the 
clouds of point at the time t1 and t2 

 

 
    The second step is based on the same matching technique, 

but drawing the two point clouds, already traced in the same 
reference system, and considering whole clouds, therefore not 
only stable areas but also the areas with possible movements. 

 
TABLE IV- Global matching" considering the stable areas and 

those with possible movements 
 

 
To improve the reliability of the results obtained have been 

made more cycles of local "matching" and validating the 
results obtained through statistical tests. 

 The value of the Student's t test is calculated as the ratio of 
the observed mean difference and its standard error: 

 
where: 

  with  difference between the pairs of results 
obtained 

 
 
 
The last stage of the method consists in the estimation of 

relative movement to some portions of the hill using the same 
method but using LS3D local matches in a “local matching”. 

Selected portions for analysis for each “patch” on the cloud 

at the time  is automatically detected by the subset 

corresponding LS3D the cloud at the time , thus obtaining 

 
 
No 

TMP 
scan 
 no 
 (#) 

SRC 
scan 
 no 
 (#) 

No.of 
TMP 
points 
 (K) 

No.of 
 SRC 
points 
  (K) 

No. of 
COR 
points 
 (K) 

 
 
Inter. 
 

 
Time 
(sec) 

 
Sigma 
naught 
 (cm) 
 

   
1 

   
 1 

   
 2 

 
487 

 
486 

 
486 

   
 2 

 
303 

  
 0,3 

 
 
No 

TMP 
scan 
 no 
 (#) 

SRC 
scan 
 no 
 (#) 

No.of 
TMP 
points 
 (K) 

No.of 
 SRC 
points 
  (K) 

No. of 
COR 
points 
 (K) 

 
 
Inter. 
 

 
Time 
(sec) 

 
Sigma 
naught 
 (cm) 
 

   
1 

   
 1 

   
 2 

 
2695 

 
2609 

 
2543 

   
 3 

 
1793 

  
 0,25 

 
Fig. 7 stable area chosen for the global “matching” 
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the seven transformation parameters that describe the 
deformation and in particular the three translations and the 
three rotations. 

 
TABLE V - Results of monitoring of deformations of the two 

regions examined with LS3D (shifts measured in centimeters and 
rotations in gons (1 circle 400gons) 

 
 
  Deformation 
   parameters 

 
      Unit 

 
    Cockpit 

 
      Rock 

 
cm 0,11 0,32 

 
cm 0,32 0,29 

 
cm -0,26 -0,52 

      ω gon 0,2 0,1 

      ϕ gon 0,1 0,05 

      k gon 0,09 0,07 

      m Pure 
number 

1 1 

 
 

The results obtained with the LS3D are shown in the figure 
where  various models are represented with the aid of the 
cloud of points. 

 
 
 
 

IV. VALIDATION RESULTS 
The validation was based on the comparison of the six 

parameters estimated from the topographic data with those 
coming from the proposed TLS approach. 

The points measured by total station have a standard 
deviation, estimated through repeated measurements, of about 
1 mm in the depth direction Y, and of about 3 mm in the 
horizontal and vertical directions. Using 15-20 points to 
estimate the 6 transformation parameters of each panel the 
estimated standard deviation is below 1 mm for the 
translations, and below 0.1 gons for the rotations. 

Therefore, for the purpose of this validation experiment, the 
topographic estimates can be used as the reference values, and 
the differences between the TLS estimates and those coming 
from topography directly represent the TLS errors. 

As can be observed, the differences between two techniques 
are in most of the cases below one centimeter. Taking into 
account the non optimal characteristics of the used targets, 
from the point of view of the LS3D, these are promising 
results. 

 
 
 
 
 

 
Fig. 8 the areas chosen for the control of the deformations 

 
 
 

 
Fig. 9 3D model of the cloud of points 

 
Fig. 10 3D model of the cloud of points 

 
Fig. 11 texture of the model 
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V. CONCLUSION 
Thanks to the obtained results we can say that the real 

deformation is almost zero. This is probable due to that the 
observed period coincides with the dry season, where the 
landslide is inactive. However there is no reason for expecting 
a degradation of the accuracy having bigger deformations.  
The experience carried out has highlighted the benefits of 
LS3D than other methods. The first is to exploit all the 
information provided by the geometry of the 3D cloud of 
points to be able to measure strain with a magnitude less than 
the accuracy of the instrument. The second is to implement a 
flexible procedure that can be applied with any type of scenes 
including a wide range of applications of deformation. The 
third is to measure movement in three dimensions, not only 
along a preferred direction. 
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Fig. 12 spherical target in polystyrene 12 cm 

 
Fig. 13 monumentation of the target 

 
 

Fig. 14 map of the area with views of the positions of the instrument 
and the targets 
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