A Polyvalent Coplanar Coupler on the Ferrite Thin Films with Improving the Dimensioning and Performance

Rahmouna EL Bouslemti, Faouzi Salah-Belkhodja

Abstract. Couplers are widely used as combiner or power dividers. A different form of CPWG coplanar coupler structures is proposed in this work with a wideband performance. The HFSS is used to optimize the device and to check the transmission characteristics at operating frequency. In this analysis, the coupler studied is a co-directional (COD) at a 2.8 GHz and a transdirectional (TRD) at 2 GHz. The proposed couplers demonstrate novel operating characteristics and non-reciprocal of a classic coupler which have not been demonstrated before. In this operating mode, the operating frequency of the proposed polyvalent coupler can be selected as desired. All coupler ports can be adapted to a load impedance of 50 Ohm. In addition, the best impedance match on all ports is maintained at all center frequencies. The coupler demonstrates a coupling level of 3 dB with a reflection level of 22 dB and a non-reciprocal isolation level as 20 dB. The polyvalent CPWG coupler have compact sizes of 19×23 mm, with impedance Z0 is 49 Ω.

Keywords: Microwaves, Microwave Theory, Ferrite Thin Films,

I. INTRODUCTION

All During the eighties; a miniaturization of civilian and military devices has imposed itself, particularly in the field of aeronautics and telecommunications, and has continued ever since. The devices must therefore be developed miniaturized, low-cost products, while operating at higher frequency ranges and multiple-band operation mode [1]-[2].

Many researchers have studied the transmission characteristics of the CPW couplers whose work [3]-[4], and other authors have given a general baseline for all models of the directionel coupler shape microstrip [5, 6, 7] and coplanar couplers [8]-[9]-[10].

In this analysis the Polder tensor is used to describe the tensor permeability of the ferrite. Though, a coupler with coplanar waveguide (CPWG) structure is well suited to microwave integrated circuits because line and ground (GND) are located in the same plane and are easily patterned. Wen in [8] is the first who has studied and developed the theory of coplanar waveguide (CPWG). A few researchers have been studied and realized the coupler with a CPWG structure. recently, M. A. Abdlla in [9] and [10] was studied and developed this device with a ferrite substrat.

In our previous paper, a new CPWG coupler was proposed and its transmission characteristics were analyzed using Ansoft HFSS.

The main purpose is to create a meander coupler with YIG (ferrite of 1mm thick), which works as a co-directional (COD) at an frequency and contra-directional (CTD) at another frequency. The component that will be used to develop must be having a low insertion loss, a high isolation and reflection levels at all ports.

II. THEORY

The device type is determined according to the relative location of the isolated port to the input port, directional couplers are categorized to three types, as shown in Fig. 1, namely, co-directional (COD), contra-directional (CTD), and transdirectional (TRD) [5]-[11].

![Fig. 1. Three types of directional couplers. (a) COD coupler. (b) CTD coupler. (c) TRD coupler with input, through, isolation and coupled port.](image)

\[S_{41} = \frac{\sqrt{1-k^2}}{\sqrt{1-k^2} \cdot \cos \theta + j \sin \theta} \] (1)

Rahmouna EL Bouslemti is with the CaSICCE Laboratory, ENPO.B.P. 1523 El M’Naouar31000, Oran, Algeria, Faouzi Salah-Belkhodja is with the TTNS Laboratory, Djillali Liabes University, Sidi Bel Abbes, Algeria
\[S_{31} = \frac{jk \sin \theta}{\sqrt{1-k^2} \cos \theta + j \sin \theta} \]
(2)

\[\theta = \frac{\beta l}{c} \]
denotes the electrical length of the coupler and k is given by:

\[k = \frac{Z_{oe} - Z_{oo}}{Z_{oe} + Z_{oo}} \]
(3)

where \(Z_{oe} \) and \(Z_{oo} \) denote the characteristic impedance of the even-mode and odd mode of symmetrical coupled lines respectively, which verify this condition [7]:

\[\frac{Z_{oe}}{Z_{oo}} = Z_0^2 \]
(4)

We can write \(\frac{Z_{oe}}{Z_{oo}} \) in terms of a voltage coupling coefficient \(k \) as [7]:

\[\frac{Z_{oe}}{Z_{oo}} = \frac{1+k}{1-k} \]
(5)

If the coupling from port 1 to port 3 is given as \(C \) dB (where \(C \) is a positive quantity), then \(k \) is related to \(C \) as [7]:

\[k = 10^{-C/20} \]
(6)

III. STRUCTURE’S CHARACTERISTICS

The design parameters are the characteristics of the magnetic material, the polarization and the circulation frequency of the device, these characteristics are given in Table 1.

<table>
<thead>
<tr>
<th>Ferrite « YIG »</th>
<th>Relative dielectric « (\varepsilon_f) »</th>
<th>15.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dielectric loss tangent « (\tan \delta) »</td>
<td>(10^{-4}) at 9.8 GHz</td>
</tr>
<tr>
<td></td>
<td>Saturation magnetization « (M_s) »</td>
<td>178 mT</td>
</tr>
<tr>
<td></td>
<td>Internal field « (H_i) »</td>
<td>447 kA/m</td>
</tr>
<tr>
<td>Copper</td>
<td>Conductivity « (\sigma) »</td>
<td>41,106 S/m</td>
</tr>
<tr>
<td></td>
<td>Relative permeability « (\mu) »</td>
<td>0.999991</td>
</tr>
</tbody>
</table>

A magnetic bias field (\(H_i \)) must be applied in a direction perpendicular to the solid layer of ferrite to assure the transmission characteristic of the coupler; the signal is transmitted in one direction and attenuated in the reverse direction.

We can also determine the resonant frequency, given in [12]:

\[f_{mn} = \frac{c}{2 \sqrt{\varepsilon_r}} \left(\frac{m}{w_g} \right)^2 + \left(\frac{n}{l_g} \right)^2 \right)^{0.5} \]
(7)

Where \(c \) is the velocity of light, \(w_g \) and \(l_g \) are the width and the length of the ground patch, respectively, and \(m \) and \(n \) are integers, the mode indexes.

IV NUMERICAL STUDY OF CPWG COUPLER

IV.a. STRUCTURE

In this paper, we have specified the CPWG topology (Coplanar Waveguide with Lower Ground Plane) to design a novel waveguide polyvalent coupler, shown in Fig. 2.

The principle of operation of our proposed coupler is to utilise the dispersive onset of high permeability and the Low electrical connectivity to set up the upper cutoff frequency of a magnetic component based on a ferrite rearward to get an TRD operation and forward to get un COD operation with almost equal power division in its operation bandwidth. Low coercivity of the ferrite is exploited to reverse their magnetic characteristics and their magnetic field.

![Fig. 2](image)

Table 1. Characteristics of the Coupler’s Parts

<table>
<thead>
<tr>
<th>Ferrite « YIG »</th>
<th>Relative dielectric « (\varepsilon_f) »</th>
<th>15.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dielectric loss tangent « (\tan \delta) »</td>
<td>(10^{-4}) at 9.8 GHz</td>
</tr>
<tr>
<td></td>
<td>Saturation magnetization « (M_s) »</td>
<td>178 mT</td>
</tr>
<tr>
<td></td>
<td>Internal field « (H_i) »</td>
<td>447 kA/m</td>
</tr>
<tr>
<td>Copper</td>
<td>Conductivity « (\sigma) »</td>
<td>41,106 S/m</td>
</tr>
<tr>
<td></td>
<td>Relative permeability « (\mu) »</td>
<td>0.999991</td>
</tr>
</tbody>
</table>

a/ Details of the CPWG and rectangle ferrite : \(0.5 \lambda_g = 19 \) mm, \(L=3 \) mm, \(W=0.5 \) mm, \(G=0.5 \) mm
b/ Details of the meandered pole : \(S_D=2 \) mm, \(L_D=4.5 \) mm
c/ Details of the meandered line : \(S_L=1 \) mm, \(m_L=2 \) mm, \(X_L=0.5 \) mm, \(C_L=4 \) mm.

where \(\lambda_g \) is the guide wavelength of the TEM wave in the transmission line medium at the design frequency \(f_0 \) and \(\varepsilon_r \) is the dielectric constant of the substrate [7], \(\lambda_g = 38.34 \text{mm} \) at 2.8 GHz.
Fig. 3. Electromagnetic configuration of the CPWG coplanar line.

The CPWG proposed coupler is symmetrical in design. The dimensions of these specific elements with the dimensions of the CPWG are chosen to satisfy the desired design objective. The dimensions of the CPWG are chosen in such a way that the input impedance of the feeding of each port becomes equivalent to 49 Ω.

The final desired design was obtained through optimisation of geometrical parameters for different ferromagnetic resonance (FMR) line width ΔH values to develop in order to improve the performance of the coplanar coupler and achieve an almost 3 dB backward coupling level for all the studied cases.

IV.b NUMERICAL RESULTS

The theoretical calculation result was confronted to the value obtained by numerical simulations of static mode of the coupler using the Ansoft HFSS. These simulations allowed to calculate the coupling, isolation, directivity, and the reflection coefficients.

The applied magnetic field polarization $H_i=477KA/m$ is assumed to be uniform in all the studied cases and it must be applied in a direction perpendicular to the solid layer

The characteristics of the CPWG coupler was simulated for different ΔH magnetic values of 45, 100, and 150 Oe.

Although the proposed coupler was designed to achieve a 3 dB power division for both operating frequencies at 2 GHz and 2.8 GHZ, representing a matched and lossless coupler. The high lossy nature of the ferrite can be influence the dispersive characteristics of a transmission line. Consequently, the equal power division level is around 4 dB at 2 GHz and 3 dB at 2.8 GHz.

For the case of $\Delta H=45$ Oe, the difference between S_{31} and S_{21} is 4.03 dB at 2 GHz and phase difference is 89.88°, that for a TRD operation; the difference between S_{31} and S_{41} is 0.25 dB at 2.8 GHz and phase difference is 92.25°, that for a COD operation, this simulated result are shown in Fig. 4. a.

For the case of 100 Oe, The coupling and through results, shows those values are 6.04 dB and 1.80 dB, respectively, the return loss is 22.82 dB and isolation performance is 19.81dB at 2 GHz, for a TRD operation; and The values of these same parameters are given respectively 3.55 dB, 3.65 dB, 24.33 dB and 19.42 dB, at 2.8 GHz, that for a COD, this resultant scattering parameters shown in Fig. 4.b.

Finally, the last case of 150 Oe, The coupling and through results, shows those values are 6.15 dB and 1.82 dB, respectively, the return loss is 26.72 dB and isolation performance is 19.11dB at 2 GHz, for a TRD operation; and The values of these same parameters are given respectively 3.58 dB, 3.43 dB, 35.95 dB and 22.74 dB, at 2.8 GHz, that for a COD, this resultant scattering parameters shown in Fig. 4.b.

The phase differences of simulated result for the three cases studied the is shown in Fig. 5.
Analyzing the Table 2 above, the CPWG proposed coupler fulfill the essential conditions of coupler design. This device can operate at 2 GHz or 2.8 GHz as a transdirectional (TRD) coupler or a co-directional (COD) coupler, with a coupling level around the 3 dB and 4 dB successively. We can say that this coupler has a polyvalent function.

So the input at port 1 is equally divided at port 2 and port 3 with a phase difference of 89.88° for the first case and it achieves a 3 dB power division for the second case.

From the simulation results, the proposed 3 dB CPWG coupler has a better result with a reduced size for different operation but it has a disadvantage of a bandwidth becomes narrower, it is calculated from this formula [5]-[7].

\[
\text{relative bandwidth} = \frac{f_2-f_1}{f_0} \times 100\% \tag{9}
\]

Bandwidth percentage of TRD coupler at is approximately 5% and 6.07 % for the COD coupler.

V. CONCLUSION
A new polyvalent 3 db coupler is presented in this work. The structure, the geometric dimensions and the different characteristics transmissions were presented. The results obtained from the simulation in HFSS show the functioning of the coupler. The 3D simulations made it possible to demonstrate the overall magnetic behavior of the component.

These studies have shown that the coupler under the proposed conditions can function as a TRD and COD coupler for different frequencies. This work made it possible to highlight the feasibility of a device.

From the above analysis, we can conclude that the use of the ferrite substrate material can improve the performance of the component. A practical study will be put in place to verify the veracity of this model.

References

Fig. 5. Phase of proposed coupler for (a) of S_{31} and S_{31} at 2 GHz, (b) of S_{21} and S_{31} at 2.8 GHz.

Table 2. S Parameters of Proposed CPWG Coupler for ΔH=150 Oe.

<table>
<thead>
<tr>
<th>Parameter (dB)</th>
<th>Operating frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 (GHz)</td>
</tr>
<tr>
<td>S_{31}</td>
<td>1.82</td>
</tr>
<tr>
<td>S_{41}</td>
<td>19.11</td>
</tr>
<tr>
<td>S_{21}</td>
<td>6.15</td>
</tr>
<tr>
<td>S_{11}</td>
<td>22.82</td>
</tr>
</tbody>
</table>

Phase difference: 89.88° (first case), 92.25° (second case)

Size (mm): 19×23
