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Abstract—Monitoring and better understanding of sediment 
flux and processes in coastal environments are important to 
maintain water quality and geomorphologic balance.  This 
study describes the development and validation of an algorithm 
to estimate total suspended sediment (TSS) based on remote 
sensing reflectance (Rrs) and MODIS/Terra band 1 data.  Two 
image processing methods, based on two image analysis 
packages predefined routines, were evaluated and compared in 
order to determine the most suitable method for this study.  
Analyses of in situ data showed a significant relationship 
between TSS and Rrs at 645 nm (R2=0.73) indicating positive 
response of this parameter in the interested region of the 
spectrum.  Developed algorithms were evaluated by applying 
resultant equations to two MODIS images from which in situ 
data were available.  In the validation analysis the lower error 
was encountered when using an exponential equation, however 
linear equations estimations followed better the tendency of 
measured values.  TSS estimations of all three algorithms 
presented values within the range of in situ observations and 
spatial patterns characteristic of coastal environments.  
Additional data and pre-processing parameters will be 
evaluated in order to improve validation results and produce 
TSS operational products for tropical coastal waters.  
 

Keywords— Total Suspended Sediments (TSS), Remote 
Sensing Reflectance (Rrs), MODIS, coastal waters, Mayagüez 
Bay.  

I. INTRODUCTION 
ay
Pu

agüez Bay is an open bay located at the west part of 
erto Rico between latitude N 18° 09’ to 18° 18’ and 

longitude W 67° 09’ to 67° 15’ (Fig. 1).  This area provides 
exceptional resources to study inshore processes and coastal 
dynamics that can be used as baseline for the development of 
biogeo-optical algorithms in tropical coastal waters.  As many 
other coastal environments this bay is highly affected by 
inland processes including sediment and nutrients fluxes and 
anthropogenic derived discharges.  The concentration of total 
suspended sediment (TSS) is considered one of the most 
important water quality parameters [1] and can produce non-

point source pollution.  For instance, high concentrations of 
suspended sediment reduce light penetration through the water 
column affecting primary production of an ecosystem.  
Therefore distribution and abundance of TSS is of great 
importance when evaluating the condition of a coastal system.  
However, it is a great challenge to develop methods that assist 
in the monitoring and assessment of these processes especially 
at broad scales [2].  This limitation is reduced by 
incorporating remote sensing techniques where desire 
information can be retrieved from spectral data collected using 
a remote platforms.  Satellite technologies are widely used to 
quantify and monitor water quality parameters in coastal 
waters.  Empirical algorithms are used to derive satellite 
estimations of water constituents (e.g. Chl-a, CDOM and 
TSS) which reduce field work and help covering large areas.  
The development of these algorithms normally involves the 
establishment of empirical relationships between the satellite 
derived data and in situ measurements.  This is based on the 
principle that variations in spectral response can be associated 
to specific water constituents.  Several studies have used 
satellite derived data to estimate TSS to monitor water 
turbidity [3], sediment resuspension [4] and other novel 
applications such as the estimations of deposition rates [5]. 
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Numerous sensors have been developed for different ocean 
color applications, including water turbidity assessments, 
sensors such as AVHRR, SeaWiFS, MODIS, IKONOS, 
Landsat TM and ETM+.  Variations in temporal and spectral 
resolutions, data availability, calibration issues and temporal 
coverage are some of the most important factors determining 
the selection of the best instrument for a particular study [6].  
MODIS provides a good temporal resolution (1 day) for 
monitoring purposes; however, the spectral sensitivity of this 
sensor decreases as the spatial resolution increases.  It is well 
known that in Case 2 waters the leaving signal is highly 
dependant of TSS concentration specially in wavelengths 
longer than 500 nm [7-8-9].  Therefore MODIS band 1 (250 
m), which covers the range between 620 to 670 nm, contains 
potential data to estimate TSS.  Although this band was 
originally created for land applications, previous studies have 
validated it used for water quality studies in coastal and 
estuarine waters [10-2-11-12].  The application of previously 
formulated ocean color algorithms for the estimation of water 
constituents is generally limited by site-specific factors [13], 
and presently there is no uniform remote sensing based model 
to estimate TSS [1].  Limiting factors in Mayagüez Bay are 
primarily the combination of working in a relatively small 
area (~95 Km2), the presence of optically complex waters [14] 
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and a relatively small range of TSS values.  On the other hand, 
one of the most determinant aspects when using satellite 
images to retrieve water quality parameters is the atmospheric 
correction.  In this study we have compared and evaluated the 
results of two atmospheric correction methods available in 
two different image analysis packages: ENVI (Dark Subtract) 
and SeaDAS (l2gen command).  The present study is focused 
in the development, evaluation and validation of site-specific 
algorithms to estimate TSS based on MODIS reflectance band 
1. 

II. METHODOLOGY 
This study aimed to establish empirical relationship between 
in situ measurements of TSS concentration, MODIS band 1 
reflectance and in situ remote sensing reflectance (Rrs) as 
measured with a field spectroradiometer. This approach will 
show the potential of MODIS sensor for TSS estimations and 
determine the best method to develop an algorithm for this 
purpose. 

A.   In situ measurements 
All in situ data were collected during research cruises 

between January 2004 and October 2006 in a set of stations 
distributed along the bay (Fig. 1).  Table 1 shows the dates 
included in this analysis which correspond to research cruises 
where MODIS data were available.  Rrs was computed with 
measurements collected with the GER-1500 field 
spectroradiometer and using the following equation: 
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Where ƒ is the Fresnell coefficient equal to 0.028 at 45o [15].  
The curves were corrected for sky-light reflection subtracting 
the minimum measured value between 900-920 nm, and in a 
few cases using lower spectral regions (730-900 nm).  It was 
not possible to select a specific wavelength because sampled 
stations include both clear and turbid waters and these 
conditions affect the determination of the most appropriate 
wavelength for this correction [16].  Water samples were 
collected at approximately at the depth of 1 meter deep in six 
stations to measure TSS, which corresponded to all the 
material larger than 0.7 μm.  Concentration of TSS (in mg/l) 
was determined using the standard weight difference method 
[17]. 

B.   MODIS Data 
Two different processing methods were used to generate 
functional MODIS products.  One was based on pre-
processing routines available in ENVI software and the 
second used SeaDAS commands (Fig. 2).   Images collected 
by the Moderate Resolution Imaging Spectroradiometer 
(MODIS) during the same sampling dates were downloaded 
through two NASA Internet servers: LAADS Web and 
OceanColor Web.  For the first method the product selected at 
LAADS Web was MOD02QKM, which includes reflectance 
and radiance values 

Figure 1. Study area (Mayagüez Bay at western Puerto Rico) 
showing the location of sampling stations. Stations colored in 
white indicate specific sites that were sampled only during 
special missions, while six stations in gray are permanent 
stations. 
  
of MODIS/Terra band 1 and 2.  All these images were 
processed using ENVI (v. 3.4) processing routines: MODIS 
Georeference and Dark Subtract.  The spatial reference system 
was defined as UTM NAD83 for Puerto Rico region. The dark 
subtract atmospheric correction consists in the selection of the 
darkest value in band 2 and subtract it to all band 1 data.  This 
value was manually identified in each image and then defined 
in the “User Value” option of this routine. For the second 
method, L0 data were downloaded at the OceanColor Web 
browser. This data were processed using SeaDAS MODIS 
commands from level 0 to level 2.  The program L2gen uses 
as input L1b data and generates level 2 products by applying 
atmospheric corrections and bio-optical algorithms [18].  
Conditions in these waters suggested that the best algorithm 
for atmospheric correction available in SeaDAS is the one that 
performs multiscattering switching between Near Infrared 
(NIR) and Short Wave Infrared (SWI) bands (J. Trinanes, 
personal communication).  However, additional algorithm 
corrections, available within L2gen command, were evaluated 
in order to improve the results.  After generating L2 products, 
the data were projected as UTM NAD83 using SeaDAS Map 
Projection command. 
 

C.   Algorithm Development and Validation 
A The algorithm consisted in the combination of two 
equations, one defining the relationship between field Rrs and 
TSS, and other establishing the relationship between field Rrs 
at 645 nm and MODIS band 1.  Data collected during thirteen 
sampled days were used to develop the first equation, while
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Figure 2.  Schematic illustration of two methods used to 
process MODIS data.  Method 1 is based in ENVI image 
processing software and Method 2 uses SeaDAS specialized 
commands. 
 
this number was limited to five for the second equation.  This 
difference was mainly due to the lack of good quality images 
suitable for analyses, which affected the development of the 
second equation.  MODIS reflectance values were extracted 
from pixels corresponding to stations monitored for Rrs.  
Developed equations were applied to two images (February 
12, 2004 & March 8, 2008), which were not incorporated in 
the previous analysis and in situ data were available in order 
to validate developed algorithms.  Application of the 
equations was possible using ENVI band math tool, which 
contains easy to use options to ingrate image bands in 
mathematical equations.   
 
Proficiency of the algorithms was evaluated by comparing 
estimated and observed values in a root mean square error 
(RMSE) analysis.  Additionally, obtained TSS products were 
visually analyzed in order to evaluate and identify spatial 
patterns associated to this type of environment.  Finally, 
resultant values corresponding to Mayagüez Bay area were 
extracted for statistical analyses.  The Mayagüez Bay area was 
digitalized by visual interpretation using orthorectified aerial 
photograph (2006) and saved as a polygon shapefile (ArcGIS 
9.3, ESRI).  This shapefile was then imported to ENVI using 
its vector files menu options and converted to a Region of 
Interest (ROI), from which was very simple to extract the 
information of all pixels in the area of interest.  
 
 

III. RESULTS AND DISCUSSION 

A.   MODIS Products 
 The first method resulted on seven reflectance products at 
645 nm (band 1), one for each research cruise dates.  Three 
different products for each date were generated using the 
second method: Remote sensing reflectance (Rrs), Leaving 
Water Radiance (Lw) and Normalized Leaving Radiance 
(nLw).  For purposes of this study the target product was Rrs at 
645 nm, however resultant values in this and the rest of 
generated products were mostly negative and with flagged 
values.  This suggested that the standard method for 
processing MODIS data in SeaDAS is not suitable for 
application in this type of waters characterized by high 
concentrations of TSS and other water constituents in 
comparison to oceanic waters.  Low and negative values 
indicated that the applied atmospheric correction it removed 
also part of the water leaving signal while flag values in the 
coast suggest that the algorithm is identifying as errors highly 
contrasting reflectance values.  Variations between Case 1 and 
Case 2 water limits generation of standard satellite products 
[19].  These processing algorithms are mainly developed for 
oceanic waters applications, therefore they are not able to 
recognize as good values, patterns that are typical in coastal 
waters.  One potential option to minimize the number of flag 
values is to adjust the different parameters available in the 
flags menu option within the L2gen command, but this 
approach is not included in this analysis. Table 2 shows 
reflectance values and in situ Rrs 645 nm values obtained in 
locations of sampling stations during October 19, 2005.  The 
satellite derived reflectance is considerably lower than in situ 
Rrs suggesting a significant effect of atmospheric scattering in 
the signal.  

 

Table 2.  Pixel values obtained in permanent sampling stations 
using two different image processing methods and in situ Rrs 
at 645 nm.     
 

B.   Total Suspended Sediment Algorithm  
A significant relationship (R2=0.73; n=72) was defined 
between TSS (mg/l) and in situ Rrs at 645 (Fig. 3a).  This 
result suggests that this region of the spectrum is suitable for 
TSS estimation using remotely sensed data in these waters. 
However, a large unknown variability was detected in this 
equation that could be reduced by the incorporation of more 

Stat. 
ID 

Latitude 
(N) 

Longitude 
(W) 

Method 1  
Reflectance 
at 645 nm  

in situ 
Rrs at 

 645 nm 

I1 18º 16.00’ 67º 12.00’ 0.047406 0.0130 

O1 18º 16.00’ 67º 15.20’ 0.018792 0.00118 

I2 18º 14.40’ 67º 11.40’ 0.027528 0.0041 

O2 18º 14.40’ 67º 11.40’ 0.019948 0.0007 

O4 18º 12.20’ 67º 12.95’ 0.016265 0.0005 

I6 18º 10.25’ 67º 11.10’ 0.027037 0.0081 

O6 18º 10.25’ 67º 14.80’ 0.014844 0.0005 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 1, Volume 3, 2009

38



 

 

(a)                             (b) 

 
(c) 

y = 0.0007e47.755x

R2 = 0.5904

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12

MODIS band 1 reflectance

R
rs

 6
45

 (s
r^

-1
)

Figure 3. Data used to develop a TSS algorithm for Mayaguez Bay; (a) Relationship between in situ Rrs at 645 nm and TSS, (b) 
Two linear equations and (c) one exponential equations defining the relationship between in situ Rrs at 645 nm and MODIS band 
1 reflectance. 
 
observations.  Two linear equations were defined to establish 
the relation between TSS (mg/l) and Rrs at 645 nm (Fig. 3b) 
because of the presence of an extreme value.  The higher 
square correlation coefficient (R2=0.88; n=30; P<0.0001) was 
observed when incorporating such extreme value.  The strong 
relationship between these two parameters indicates a high 
correspondence between MODIS reflectance and in situ Rrs.  
A decrease in both, slope and square correlation coefficient 
(R2=0.69; n=29; p< 0.0001) is observed when the extreme 
value is excluded.  This value could be representative of rare, 
but real conditions; therefore, more sampling associated to 
high river discharge is necessary to validate this relationship. 
It was observed that when working with low reflectance 
values resultant estimations tended to be negative or 
extremely low, therefore an exponential equation was 
incorporated in this analysis in order to minimize this effect 
(Fig. 3c).  The square correlation coefficient of this equation 
was lower (R2=0.59) than when using linear equations.  Based 

on these analyses the following algorithms were implemented 
and tested: 
 

3.1481+0.0089)-1) band (MODIS*(0.5157*602.63=TSS   (1) 
 

3.1481+0.0036)-1) band (MODIS*(0.3043*602.63=TSS   (2) 
 

3.1481+  (0.0007*602.63= 1 band MODIS *47.755eTSS        (3) 

 

C. Total Suspended Sediment Algorithm Validation 
For validation purposes, equations (1), (2) and (3) were 
applied to two images corresponding to cruises dates (Feb 12, 
2004 and March 8, 2006) not included in the development of 
the equations.  The first two algorithms resulted in RMSE 
higher than 5 mg/l (Fig. 4a-b) while the lower RMSE (4.8 
mg/l) was encountered when using equation 3 (Fig. 4c).  
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Comparison between these validation results indicated that 
equation 3 was able to better estimate TSS in lower 
concentrations, but during higher concentrations it tended to 
underestimate this parameter.  Although equation 1 showed a 
higher RMSE, estimated values followed better the tendency 
of observed values.   The limitations of these algorithms can 
be attributed to various factors: (i) limited data representative 
of high TSS concentrations, (ii) MODIS band 1 is not capable 
of detecting TSS signal under low concentrations conditions, 
(iii) the atmospheric correction method is not appropriate, and 
(iv) the presence of sea-bottom effect in the signal.  Another 
problem that could be affecting the results is the mixing pixel 
phenomenon; which is a common and highly influence 
problem when trying to derive information from  satellite  
imagery   [20].  In the case of TSS estimations, the mixing 
pixel occurs when variations in TSS concentrations or land 
and water areas are combined within the 250 m cover area of a 
pixel.  Occurrence of this phenomenon can be reduced by 
using images with higher spatial resolution, but this alternative 
is limited by current ocean color sensors. 
 

D. Total Suspended Sediment Products 
Estimations of TSS were generated using the three developed 
algorithms in order to spatially analyze results and compare 
efficiency of the equations.  Figure 5 shows spatial variations 
associated to TSS concentration in Puerto Rico surroundings 
areas and Mayagüez Bay for the dates used in the validation 
analysis.  The spatial variability observed in these products 
appeared to respond by inshore processes showing higher 
concentrations in areas closer to the shoreline which are 
typical characteristics of coastal environments.  In the case of 
Mayagüez Bay the majority of high values are concentrated in 
the northern part of the bay where the Añasco River plume is 
located.  Comparison between all three different algorithms 
does not indicate any significant difference between them; the 
main difference resides in algorithm 3 which range of values 
is considerably higher than the algorithm 1 and 2.  Therefore, 
application of algorithm 3 resulted on sharper spatial 
variations when comparing values in inshore and offshore 
areas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

 
 

(b) 

 
 

(c) 

  
 
Figure 4.  Validation results when applying (a) equation 1, (b) 
equation 2 and (c) equation 3. 
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Algorithm 1 

 
Algorithm 2 

 
Algorithm 3 

 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 1, Volume 3, 2009

41



b) March 8, 2006 
Algorithm 1 

 
Algorithm 2 

 
Algorithm 3 

Figure 5.  TSS products generated using three developed algorithms based on MODIS band 1 data for two dates (a) 
February 12, 2004 and (b) March 8, 2006.  Mayagüez Bay indicated with the red box and a close up is shown on the right 
side.  Note the differences in scale values of the color palettes.
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TSS estimated values corresponding to Mayagüez Bay area 
were extracted and analyzed using basic statistics.  Figure 6 
illustrates the distribution of TSS values using both field 
data (Study Period: January 2004-October 2006) and 
generated TSS products for February 12, 2004.  Direct 
comparison between these data sets has been made 
considering the following statements:  (i) sampling stations 
are distributed along the bay covering inshore and offshore 
areas (ii) TSS measurements used in this analysis includes 
only surface samples (iii)  selected date for this analysis 
(February 12, 2004) presents commonly occurrence 
conditions in this bay.  Mean values for all products (4.6, 

5.0, 5.6 mg/l) were highly comparable to in situ mean value 
(5.9 mg/l) and all showed positive skewed distributions 
(Fig. 6).  Minimum values of algorithms 2 and 3 (> 3.0 
mg/l) indicates that these results can be overestimated 
considering that this analysis includes areas where TSS 
concentrations are normally lower than 2.0 mg/l (e.g. 
offshore in the southern part of the bay).  Algorithm 1 
presented the higher similarity with the distribution of in 
situ TSS measurements (Fig. 6b). However, in order to 
determine which estimations better followed real 
conditions, spatial analysis of in situ measurement of that 
particular day should be incorporated.  

 
 
         (a) (b) 

    
             (c)        (d) 

 
Figure 6.  Descriptive statistics and histograms illustrating TSS values distribution for (a) in situ measurements collected within 
the study period (January 2004-October 2006) and TSS products generated using (b) algorithm 1, (c) algorithm 2 and (d) 
algorithm 3. 
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IV. CONCLUSION 
\Geometric and radiometric corrections utilized during 
image pre-processing routines are crucial for this type of 
analysis.  Atmospheric correction included in L2gen 
command (SeaDAS) is not suitable for application in 
Mayagüez Bay waters.  This same result is expected to find 
in other tropical bays.  Fairly good empirical relationship 
were defined between in situ Rrs, TSS and MODIS band 1 
data using linear and exponential equations.  Application of 
developed equations resulted on TSS products able to 
detect spatial variations associated to typical patterns of 
coastal environments.  Algorithm 3 showed the higher 
correspondence between observed and estimated values 
(RMSE 4.76 mg/l).  However, all three algorithms resulted 
in reasonable TSS pixel values when compared with data 
from in situ measurements therefore at this point none of 
the algorithms is excluded for future application.   Using an 
exponential equation resulted in a more suitable approach 
for this study purpose, since the algorithm including this 
equation was more effective estimating low values which 
are the dominant conditions in the studied bay.  Validation 
results can be improved by addressing limiting factors such 
as lacking of data corresponding to high concentrations, 
and contamination by the remaining atmospheric effect in 
the derived reflectance of the sensor.  The results obtained 
in this study provide a baseline to develop TSS operational 
products for tropical coastal waters by developing 
preliminary products and identifying potential errors and 
limiting factors in the process. 
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