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Abstract—We develop a testing theory for real-time systems.
We keep the usual notion of success or failure (based on finite
runs) but we also provide a mechanism of determining the success
or failure of infinite runs, using a formalism similar to the
acceptance in Büchi automata. We present two refinement timed
preorders similar to De Nicola and Hennessy’s may and must
testing. We then provide alternative, behavioural and language-
based characterizations for these relations to show that the new
preorders are extensions of the traditional preorders. Finally we
focus on test generation, showing how tests can be automatically
generated out of a timed variant of linear-time logic formulae
(namely, TPTL), so that a process must pass the generated test if
and only if the process satisfies the given temporal logic formula.
Beside the obvious use of such an algorithm (to generate tests),
our result also establishes a correspondence between timed must
testing and timed temporal logic.

Index Terms—Formal methods, Real-time systems, Model-
based testing, May testing, Must testing, Testing preorders, Test
generation, Timed temporal logic, TPTL

I. I NTRODUCTION

How to guarantee validity and reliability of software and
hardware is one of the most pressing problems.Conformance
testing[1] is known in this area for its succinctness and high
automatization. Its aim is to check whether an implementation
conforms to a given specification.

In the context of conformance testing system specifications
can be mainly classified into two kinds: algebraic and logic.
The first favours refinement, where a single algebraic for-
malism is equipped with a refinement relation to represent
and relate both specifications and implementations [2]. An
implementation is validated if it refines its specification. Pro-
cess algebrae, labelled transition systems, and finite automata
are commonly used in this classification, with traditional
refinement relations being either behavioural equivalences or
preorders [3], [4]. A typical example is model-based testing
[3]. The second approach prefers assertive constructs. Differ-
ent formalisms describe the properties of specifications and
implementations; specifications are defined logically while
implementations are given in an operational notation. The
semantics of assertions is to determine whether an implemen-
tation satisfies its specification. A typical example is model
checking [5].

The domain of conformance testing consists in reactive
systems, which interact with their environment. Often such
systems are required to bereal time, meaning that in addition
to the correct order of events, they must satisfy constraints on
delays separating certain events. Real-time specifications are
then used as the basis of conformance testing for such systems.
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The aim of this paper is to develop a semantic theory for
real-time system specification based on timed transition sys-
tems modeling the behaviour of real-time processes. We first
develop a semantic theory for real-time system specification.
Using a theory of timedω-final states (inspired from the theory
of timed automata [6]) as well as a timed testing framework
based on De Nicola and Hennessy’s testing [4], we develop
timed may and must preorders that relate timed processes on
the basis of their responses to timed tests. Our framework
is as close to the original framework of (untimed) testing as
possible, and is also as general as possible.

While studies of real-time testing abound, they mostly re-
strict the real-time domain to make it tractable. We believe that
starting from a general theory is more productive than starting
directly from some practically feasible (and thus restricted)
subset of the issue, so our theory is general. Still, our general
approach is more practical than one might expect. Indeed,
the characterization of the timed preorders uses a surprisingly
concise set of timed tests.

To further address the practicality issue we then tackle now
automatic test generation. We show how to algorithmically
build tests starting from timed propositional temporal logic
(or TPTL) [7] formulae. This algorithm is also a first yet sig-
nificant step toward an integration of operational and assertive
specification styles in the area of real-time systems, to obtain
heterogeneous (algebraic and logic) specifications and tools.

The remainder of this paper is structured as follows. Prelimi-
naries such as preorders, timed automata, and timed transition
systems are presented in the next section. We formalize the
notion of timed processes and timed tests in Section III,
where we also introduce our timed preorders. Section IV
characterizes the timed preorders and Section V presents our
conversion of TPTL formulae into equivalent timed tests. We
conclude in Section VI.

II. PRELIMINARIES AND NOTATIONS

Preorders are reflexive and transitive relations. They are
widely used as implementation relations comparing specifi-
cations and implementations. Preorders are easier to construct
and analyze compared to equivalence relations, and once a
preorder is established, an associated equivalence relation is
immediate. The cardinality ofN is denoted byω.

Our constructions are based on some alphabetA represent-
ing a set of actions excluding the internal actionτ and on a
time alphabetL which contains some kind of positive numbers
(such asN or R

+). A set of clocksC is a set of variables over
L. We useA, L, andC in sans-serif face exclusively for this
purpose, so that their purpose is often consider understood
throughout the paper.

A clock interpretation for a setC of clocks is a mapping
C → L. If t > 0 andc is a clock interpretation overC, in the
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clock interpretationc′ = c + t we havec′(x) = c(x) + t for
all clocksx ∈ C. Clocks can also be reset to zero.

If x is a clock andr is a real thenx ∼ r is a time constraint,
∼∈ {≤, <,=, 6=, >,≥}. Constraints can be joined in conjunc-
tions or disjunctions, together with the special constraint⊤
(which is true in any interpretation).T(C) denotes the set of
all time constraints over a setC of clocks.

A. Timed Transition Systems

Labelled transition systems [3] are used to model the
behaviour of various processes; they serve as a semantic
model for formal specification languages. A timed transition
system is essentially a labelled transition system extended
with time values associated to actions. Timed automata [6],
[8] are based on the automata theory and introduce the
notion of time constraints over their transitions. In general
labelled transition systems model the execution of a process,
while timed automata are suitable for specifying processes or
defining tests upon processes. We find convenient to combine
the two concepts to obtain a unified model for real time, which
we call by abuse of terminology (and for lack of a better term)
timed transition system. We do not introduce any new concept
in this section; instead we unify existing constructions into
a convenient single construction. A timed transition system
is essentially a timed automaton (or more precisely a timed
transition table, since final states will be introduced later)
without the restriction of the number of states being finite.

For a setA of observable actions (τ 6∈ A), a setL of times
values, and a setC of clocks, a timed transition system is a
tuple((A×L)∪{τ},C, S,→, p0), where:S is a countable set of
states; every statep ∈ S has an associated clock interpretation
cp : C → L; →⊆ (S × (A × L) × S × T(C) × 2C) ∪ (S ×

{τ} × S) is the transition relation (we usep(a, δ)
−→t, C

p′ instead of
(p, (a, δ), p′, t, C) ∈→, omittingC wheneverC = ∅ and alsot whenevert = ⊤); p0 is the initial state.

Wheneverp(a, δ)
−→t, C

p′, the transition system performsa with
delay δ; the delay causes the clocks to progress so that
cp′(x) = cp(x) + δ wheneverx 6∈ C and cp′(x) = 0
otherwise; the transition is enabled only ift holds under
the interpretationcp; τ transitions do not affect clock inter-
pretations and cannot be time constrained. Normally a trace
is described as a sequence of the events or states (but not
the delays between them). To add time to a trace, we add
time information to the usual notion of trace (that contains
actions only). A timed trace overA, L, andC is a member of
(A × L ×T(C) × 2C)∗ ∪ (A × L ×T(C) × 2C)ω .

If both L andT(C) (or equivalentlyC) are empty the timed
transition system becomes an LTS, and its timed traces are
normal traces. One ofL or T(C) could be empty and we still
obtain a timed trace; we will use this to differentiate between
processes and specifications.

As usual we writep
(a, δ)
=⇒t, C

p′ if and only if p
τ
→ · · ·

τ
→

pn
(a, δ)
−→t, C

p′ andp
ε
⇒ p′ if and only if p = p0

τ
→ · · ·

τ
→ pn = p′,

for some n ≥ 0. Furthermorep
w

=⇒ q wheneverw =

(ai, δi, ti, Ci)0<i≤k andp
(a1, δ1)=⇒t1, C1

p1
(a2, δ2)
=⇒t2, C2

p2 · · ·
(ak, δk)
=⇒tk, Ck

pk = p′.

That a processp cannot evolve any further (via either internal
or external actions) is denoted byp 6→.

A timed path π of a timed transition systemM =
((A × L) ∪ {τ},C, S,→, p0) is a potentially infinite sequence
(pi−1, (ai, δi, ti, Ci), pi)0<i<k, wherepi−1

(ai, δi)=⇒ti, Ci

pi for all 0 <
i ≤ k; the length ofπ is k and is denoted by|π|. If |π| = ω,
π is infinite; otherwise (that is, if|π| ∈ N) π is finite. If
|π| ∈ N andp|π| 6→ (that is,p|π| is a deadlock state), then the
timed pathπ is called maximal. trace(π), the (timed) trace
of π is defined as the sequence(ai, δi, ti, Ci)0≤i≤|π|,ai 6=τ ∈
(A × L × T(C) × 2C)∗. Πf (p′), Πm(p′), ΠI(p

′) denote the
sets of all finite timed paths, all maximal timed paths, and all
infinite timed paths starting from statep′ ∈ S, respectively.
We also putΠ(p′) = Πf (p′) ∪ Πm(p′) ∪ ΠI(p

′). The empty
timed pathπ with |π| = 0 is symbolized by() and its (always
empty) trace byε.

Statep′ of transition systemp is timed divergent, denoted
by p′ ⇑p (or just p′ ⇑ when there is no ambiguity), if∃π ∈
ΠI(p

′) : trace(π) = ε. Statep′ is called timedw-divergent
(denoted byp′ ⇑p w) for somew = (ai, δi, ti, Ci)0<i<k ∈
(A×L×T(C)×2C)∗∪ (A×L×T(C)×2C)ω if ∃l ∈ N, p′′ ∈

S : l ≤ k, p′
w′

=⇒ p′′, p′′ ⇑p, with w′ = (ai, δi, ti, Ci)0<i<l.
Statep′ is timed convergent or timedw-convergent (p′ ⇓p

andp ⇓p w, respectively, again omitting the subscriptp when
there is no ambiguity) if it is not the case thatp′ ⇑p andp′ ⇑p

w, respectively. The set of initial actions ofp′ is initp(p′) =

{(a, δ, t, C) ∈ A × L ×T(C) × 2C : ∃p′′ : p′
(a, δ)
=⇒t, C

p′′}.
Definition 1: TIMED TRACE LANGUAGES. For a timed

transition system (state)p the timed finite-trace language
Lf (p), maximal-trace (complete-trace) languageLm(p),
infinite-trace languageLI(p), and divergence languageLD(p)
of p are

Lf (p) = {trace(π) : π ∈ Πf (p)}

Lm(p) = {trace(π) : π ∈ Πm(p)}

LI(p) = {trace(π) : π ∈ ΠI(p)}

LD(p) = {w ∈ (A × L ×T(C) × 2C)∗

∪(A × L ×T(C) × 2C)ω : p ⇑ w}

We defined timed languages slightly differently from the
original [6] to reflect their use for system specification and also
to simplify the presentation. However if we omit the clocks
and their constraints (which we will do for processes) there is
a natural bijection between our definition and the original.

Once more similar to the theory of timed automata [6] we
introduce a set of timedω-final states. Then:

Definition 2: TIMED ω-REGULAR TRACE LANGUAGE. The
timed ω-regular trace language of some timed transition sys-
temp is Lω(p) = {trace(π) : π ∈ Πω(p)} ⊆ (A×L×T(C)×
2C)ω , whereΠω(p) contains exactly all theω-regular timed
paths; that is,ω-final states must occur infinitely often in any
π ∈ Πω(p).

We exclude henceforth Zeno behaviours from all the lan-
guages that we consider; that is, no trace is allowed to show
Zeno behaviour. In other words, time progresses and must
eventually grow past any constant value (this property is also
called progress [6], [9]).
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B. Timed Propositional Temporal Logic

Timed Propositional Temporal Logic (TPTL) [7] is one of
the most general temporal logics with time constraints [10].
TPTL extends linear-time temporal logic (LTL) [5], [10] by
adding time constraints, so that its semantics is given with
respect to timed traces1, that is, timed words in(A × L)∗ ∪
(A× L)ω . We use TPTL without congruence, but we just call
it TPTL for short.

For presentation convenience we use a slightly modified
form of TPTL without congruence. However, it is immediate
that our form is equivalent to the original so we continue to
call our temporal logic TPTL without congruence—we will in
fact shorten this to just TPTL, the lack of congruence being
henceforth implied.

With φ, φ1, φ2 ranging over TPTL formulae,a ranging over
A, x ranging over a set of clocksC, andc ranging over positive
constants, the syntax of the termθ and the TPTL formulaφ
is the following:

θ = x+ c | c

φ = θ1 ≤ θ2 | ⊤ | ⊥ | a | ¬φ | φ1 ∧ φ2 |

X φ | φ1 U φ2 | x.φ

Let F be the set of all TPTL formulae. A timed trace
w = (ai, δi)0<i≤k ∈ (A × L)∗ ∪ (A × L)ω satisfiesφ if and
only if w �γ φ. The relation�γ⊆ ((A× L)∗ ∪ (A× L)ω)×F
is the least relation satisfying the conditions in the seman-
tics of TPTL formulae shown below, withwj standing for
(ai, δi)j≤i≤k for any 1 ≤ j ≤ k, andγ : C → L being some
clock interpretation.

• θ1 ≤ θ2 if and only if γ(θ1) ≤ γ(θ2),
• w �γ ⊤ andw 6�γ ⊥ for anyw,
• w �γ a if and only if w 6= ε anda1 = a,
• w �γ ¬φ if and only if ¬(w �γ φ),
• w �γ φ1 ∧ φ2 if and only if w �γ φ1 andw �γ φ2,
• w �γ X φ if and only if w2 �γ+δ1

φ,
• w �γ φ1 U φ2 if ∃0 < i ≤ k: (∀i ≤ r ≤ k:
wr �γ+

P

r
j−1

δj
φ2, ∀0 < s < i: ws �γ+

P

s
j−1

δj
φ1),

• w �γ x.φ if and only if w �γ[0/x] φ.

We denote byγ + c a clock interpretation in which(γ +
c)(x) = γ(x)+ c for all clocksx. We require thatγ(x+ c) =
γ(x) + c andγ(c) = c; γ[t/x] is the clock interpretation that
agrees withγ on all clocks exceptx, which is mapped to
t ∈ L. The occurrence of a free time variablex in a formula
“freezes” the moment in time, which can be checked later by
usingx in various expressions. These restrictions are sufficient
to model most phenomenae from other timed temporal logics
[7].

As usual one can also introduce the derived operatorsG

(“globally”) and F (“eventually”) asG φ = ⊥ R φ andF φ =
⊤ U φ, respectively. The operatorR (“releases”) is the dual of
the operatorU. A timed process2 p satisfies the TPTL formula

1Time traces as presented in the previous section also contain time
constraints; however, as we will see in Section III, the time constraints appear
only in tests and so the trace of processes are overA× L only.

2A timed process is a timed transition system without time constraints, as
detailed in Section III

φ, writtenp �γ φ, if and only if∀w ∈ Lf (p)∪Lm(p)∪Lω(p)∪
LD(p) : w �γ φ.

III. A T ESTING THEORY FORREAL TIME

We are now ready to extend the testing theory of De Nicola
and Hennessy [4] in two ways. For one thing, we adapt
this testing theory to timed testing. In addition, we are also
introducing the concept of Büchi acceptance to tests (or Büchi
success), so that the properties of infinite runs of a process can
be readily identified by tests. Timed testing has been studied
before in many contexts [8], [11], [12] but to our knowledge
never in such a general setting and never including Büchi
success. In addition, timed testing has never been considered in
conjunction with test generation from temporal logic formulae.
We note however that a somehow incipient consideration of
Büchi success for tests and also of temporal logic formulae as
test generators for untimed tests exists [13], though this theory
is not real time and to our knowledge has not been pursued
any further.

The traditional testing framework defines behavioural pre-
orders that relate labelled transition systems according to their
responses to tests [4], [14]. The tests are thus used to verify the
external interactions between a system and its environment.
We use timed transition systems as the formalism for both
processes and tests.

In our framework a test is a timed transition system where
certain states are considered to be success states. In order to
determine whether a system passes a test, we run the test in
parallel with the system under test and examine the resulting
finite or infinite computations until the test runs into a success
state3 (pass) or a deadlock state (fail). In addition, a set of
ω-final states is used to compartmentalize infinite runs into
successful and unsuccessful.

Definition 3: TIMED PROCESSES AND TESTS. A timed pro-
cess((A × L) ∪ {τ}, S,→, p0) is a timed transition system
((A× L)∪ {τ}, ∅, S,→, p0) with an empty set of clocks (and
thus with no time constraints). It follows that all the traces of
any timed process are in the set(A × L)∗ ∪ (A × L)ω.

A timed test(A∪ {τ},C, T,→t,Σ,Ω, t0) is a timed transi-
tion system((A × ∅) ∪ {τ},C, T,→, t0) with the addition of
Σ ⊆ T of success states andΩ ⊆ T of ω-final states. Note
thatL = ∅ for tests and therefore→t⊆ (T ×A×T(C)×2C ×
T ) ∪ (T × {τ} × T ).

The transition relation of a process and a test are restricted
(in different manners) because the test runs in parallel with
the process under the test4. This latter process (called the im-
plementation) features time sequences but no time constraints,
while the test features only time constraints. It is meaningless
to run the test by itself. IfT(C) = ∅ which means there is no
time constraint in the test, we call the test classical. The set
of all timed tests is denoted byT .

Definition 4: PARTIAL COMPUTATION . A partial computa-
tion c of a timed processp and a timed testt is a potentially

3Success states are deadlock states too, but we distinguish then as special
deadlock states.

4Note however that the difference is syntactical only, for indeed the
transition relation for a timed process allows for an empty setL.
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infinite sequence(〈pi−1, ti−1〉
(ai, δi)7−→Rti, Ci

〈pi, ti〉)0<i≤k, wherek ∈

N ∪ {ω}, such thatpi ∈ P and ti ∈ T for all 0 < i ≤ k;
and δi ∈ L is taken fromp, ti andCi are taken fromt, and
R ∈ {1, 2, 3} for all 0 < i ≤ k. The relation7→ is defined by
the following rules:

• 〈pi−1, ti−1〉
τ7−→1〈pi, ti〉 if ai = τ , pi−1

τ
−→p pi, ti−1 =

ti, andti−1 6∈ Σ,
• 〈pi−1, ti−1〉

τ7−→2〈pi, ti〉 if ai = τ , pi−1 = pi, ti−1
τ

−→t

ti, andti−1 6∈ Σ,

• 〈pi−1, ti−1〉
(ai, δi)7−→3ti, Ci

〈pi, ti〉 if (ai, δi) ∈ A× L, pi−1
(ai,δi)
−→ p

pi, ti−1
(ai, δi)−→tti, Ci

ti, andti−1 6∈ Σ.

The first two expressions in the definition of7→ indicate that
when the test or the process under test is executing an internal
action, the other process keeps its state. The third expression
indicates that when the action is not internal, the test and the
process under test execute their respective action in parallel,
and spend the same time while doing so. The test also needs
to check its time constraint.

If k ∈ N then c is finite, denoted by|c| < ω; otherwise, it
is infinite, that is,|c| = ω.

The projection projp(c) of c on p is defined as
(pi−1, (ai, δi), pi)Ic

p
∈ Π(p), where Ic

p = {0 < i ≤ k :
Ri ∈ {1, 3}}. Similarly, the projectionprojt(c) of c on
t if defined as(ti−1, (ai, δi, ti, Ci), ti)i∈Ic

t
∈ Π(t), where

Ic
t = {0 < i ≤ k : Ri ∈ {2, 3}}.

Definition 5: COMPUTATION. A partial computationc is a
computation whenever: Ifk ∈ N then c is maximal, that is,
pk 6

τ
−→p, tk 6

τ
−→t, and initp(pk) ∩ initt(tk) = ∅ or the time

delay ofpk does not satisfy the time constraint oftk; If k = ω
then projp(c) ∈ ΠI(p). C(p, t) is the set of all computations
of p and t.

Computationc is successfulif t|c| ∈ Σ whenever|c| ∈ N,
and projt(c) ∈ Πω(t) whenever|c| = ω.

Definition 6: TIMED MAY AND MUST PREORDERS. p may
passt (written p mayT t), if and only if there exists at least
one successful computationc ∈ C(p, t); p must passt (written
p mustT t) if and only if every computationc ∈ C(p, t) is
successful.
p ⊑mayT q if and only if ∀t ∈ T : p mayT t =⇒ q mayT t;

and p ⊑mustT q if and only if ∀t ∈ T : p mustT t =⇒
q mustT t.

Intuitively, an infinite computation of processp and test
t is successful if the test passes through a set ofω-final
states infinitely often. Hence some infinite computations can
be successful in our setting. Since timed processes and timed
tests potentially exhibit nondeterministic behaviour, one distin-
guishes between the possibility and inevitability of success. It
is immediate that the relations⊑mayT and⊑mustT are preorders.
They are defined analogously to the classical may and must
preorders (which are based on labelled transition systems and
restrictT to classical tests).

IV. A LTERNATIVE CHARACTERIZATIONS OFTIMED

PREORDERS

We now present alternative characterizations for the timed
may and must preorders. The characterizations are similar

in style to other characterizations and provide the basis for
comparing the existing testing theory to our timed testing. The
first characterization is similar to the characterization of other
preorders [14], [15] and relates timed testing directly with the
behaviour of processes.

Theorem 1:

1) p ⊑mayT q if and only if Lf (p) ⊆ Lf (q) andLω(p) ⊆
Lω(q).

2) p ⊑mustT q if and only if for all w ∈ (A×L)∗∪(A×L)ω

such thatp ⇓ w it holds that:

a) q ⇓ w,
b) if |w| < ω then∀q′ : q

w
=⇒ q′ implies∃p′ : p

w
=⇒

p′ and initp(p′) ⊆ initq(q′), and
c) if |w| = ω thenw ∈ Lω(p) impliesw ∈ Lω(q).

The second characterization is given in terms of timed trace
inclusions, once more similarly to the characterization of other
preorders [2], [15]. Note that we are now concerned with
⊑mustT only, as the simplest⊑mayT is already characterized
in terms of timed traces in Theorem 1.

To state this result we need to introduce the notion ofpure
nondeterminism. We call a timed processp purely nondeter-

ministic if for all statesp′ of p, p′
τ

−→p implies p′ 6
(a,δ)
−→p,

and |{((a, δ), p′′) : p′
(a,δ)
−→p p

′′}| = 1. Note that every timed
processp can be transformed to a purely nondeterministic
timed processp′, such thatLf (p) = Lf(p′), LD(p) = LD(p′),
Lm(p) = Lm(p′), and Lω(p) = Lω(p′) by splitting every

transitionp′
(a,δ)
−→p p

′′ into two transitionsp′
τ

−→p p〈p′,(a,δ),p′′〉

and p〈p′,(a,δ),p′′〉
(a,δ)
−→p p′′, where p〈p′,(a,δ),p′′〉 is a new,

distinct state.
Theorem 2:Let p and q be timed processes such thatp is

purely nondeterministic. Thenp ⊑mustT q if and only if all of
the following hold:

LD(q) ⊆ LD(p) (1)

Lf(q) \ LD(q) ⊆ Lf (p) (2)

Lm(q) \ LD(q) ⊆ Lm(p) (3)

Lω(q) \ LD(q) ⊆ Lω(p). (4)

With respect to finite traces, the characterizations of timed
tests differ from the ones of classical preorders by the addition
of time variables. We also need to refine the classical charac-
terizations so as to capture the behaviour of timed may- and
must-testing with respect to infinite traces. The proofs of the
characterization theorems 1 and 2 rely on the properties of the
following specific timed tests.

• For w = (ai, δi)0<i≤k ∈ (A × L)∗, let tMay,∗
w = (A ∪

{τ},C, T,→, ∅, 0, k), whereT = {0, 1, . . . , k} and→=
{(i− 1, ai, i, ci =

∑i
j=0 δi) : 0 < i ≤ k}.

• For w = (ai, δi)0<i≤k ∈ (A × L, )ω, let tMay,ω
w =

(A ∪ {τ},C, T,→, T, 0, ∅), whereT = N, →= {(i −
1, ai, i, ci =

∑i
j=0 δi) : i > 0}.

• For w = (ai, δi)0<i≤k ∈ (A × L)∗, let tMay,div
w = (A ∪

{τ},C, T,→, {k}, 0, ∅), whereT = {0, 1, . . . , k}, →=
{(i−1, ai, i, ci =

∑i
j=0 δi) : 0 < i ≤ k}∪{(k, τ, k,⊤)}.

• For w = (ai, δi)0<i≤k ∈ (A × L)∗, let t⇓,∗
w = (A ∪

{τ},C, T,→, ∅, 0, {s}), whereT = {0, 1, . . . , k} ∪ {s},
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Fig. 1. Timed tests used for the characterization of timed may and must preorders.

→= {(i − 1, ai, i, ci =
∑i

j=0 δi) : 0 < i ≤ k} ∪
{(i, τ, s,⊤) : 0 < i ≤ k}.

• For w = (ai, δi)0<i≤k ∈ (A × L)ω , let t⇓,ω
w = (A ∪

{τ},C, T,→, {s}, 0, {s}), whereT = N∪{s}, →= {(i−
1, ai, i, ci =

∑i
j=0 δi) : i > 0} ∪ {(i, τ, s,⊤) : i > 0}.

• For w = (ai, δi)0<i≤k ∈ (A × L)∗, let tMust,∗
w = (A ∪

{τ},C, T,→, ∅, 0, {s}), whereT = {0, 1, . . . , k} ∪ {s},
→= {(i − 1, ai, i, ci =

∑i
j=0 δi) : 0 < i ≤ k} ∪

{(i, τ, s,⊤) : 0 ≤ i < k}
• Forw = (ai, δi)0<i≤k ∈ (A× L)∗, let tMust,max

w = (A∪

{τ},C, T,→, ∅, 0, {s1, s2}), whereT = {0, 1, . . . , k} ∪
{s1, s2}, →= {(i − 1, ai, i, ci =

∑i
j=0 δi) : 0 < i ≤

k} ∪ {(i, τ, s1,⊤) : 0 ≤ i < k} ∪ {(k, a, s2,⊤) : (a, t) ∈
A ×T().

• For w = (ai, δi)0<i≤k ∈ (A × L)ω, let tMust,ω
w = (A ∪

{τ},C, T,→, ∅, 0, {s}), whereT = N ∪ {s}, →= {(i−
1, ai, i, ci =

∑i
j=0 δi) : i > 0} ∪ {(i, τ, s,⊤) : i ∈ N}.

• For w = (ai, δi)0<i≤k ∈ (A × L)∗ and A ⊆ A,
let tMust

w,A = (A ∪ {τ},C, T,→, ∅, 0, {s1, s2}), where
T = {0, 1, . . . , k} ∪ {s1, s2}, →= {(i − 1, ai, i, ci =
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∑i
j=0 δi) : 0 < i ≤ k} ∪ {(i, τ, s1,⊤) : 0 ≤ i <

k} ∪ {(k, a, s2,⊤) : a ∈ A}.

These tests are depicted graphically in Figure 1. In the figure
ω-final states are marked by the symbolω and success states
are distinguished from regular states by thick borders.

Intuitively, while timed teststMay,∗
w andtMay,ω

w test for the
presence of a finite and infinite tracew, respectively, timed
teststMay,div

w , t⇓,∗
w , andt⇓,ω

w are capable of detecting divergent
behaviour when executing tracew. These are “presence” tests,
that check whether a tracew (finite or infinite) exists in the
implementation. Timed teststMust,∗

w , tMust,max
w , andtMust,ω

w

test for the absence of the finite trace, maximal trace, andω-
state trace (that is, trace that goes through infinite occurrences
of ω-final states)w, respectively.

Timed must-testing is a bit trickier, since we cannot feasibly
check all the possible traces or computations exhaustively (as
we need to do according to the definition of must testing).
So we think the other way around: We assume one “failure
trace,” which does not satisfy the test and leads to failure. If
there exists at least one such failure trace, then the test fails.
On the other hand, if we cannot find the failure trace in the
implementation, the test succeeds. We then test the absence of
this trace in must-testing.

Finally, timed testtMust
w,A is capable of comparing the initial

action sets of states reached when executing tracew with
respect to a subsetA ⊆ A.

Note that we use the tightest time constraint possible in our
test. We denoteci =

∑i
j=0 δi by ti in what follows.

Our specific timed tests satisfy the following desired prop-
erties:

Lemma 3:

1) Let w ∈ (A × L)∗ . Then,w ∈ Lf(p) if and only if
p mayT tMay,∗

w .
2) Let w ∈ (A × L)ω. Thenw ∈ Lω(p) if and only if

p mayT tMay,ω
w .

3) Let w ∈ (A × L)∗ . Then,w ∈ Lω(p) if and only if
p mayT tMay,div

w .
4) Let w ∈ (A × L)∗ . Then, p ⇓ w if and only if

p mustT t⇓,∗
w .

5) Letw ∈ (A× L)∗ ∪ (A× L)ω . Then,p ⇓ w if and only
if p mustT t⇓,ω

w .
6) Let w ∈ (A × L)∗ such thatp ⇓ w. Then,w 6∈ Lf(p) if

and only if p mustT tMust,∗
w .

7) Letw ∈ (A× L)∗ such thatp ⇓ w. Then,w 6∈ Lm(p) if
and only if p mustT tMust,max

w .
8) Let w ∈ (A× L)ω such thatp ⇓ w. Then,w 6∈ Lω(p) if

and only if p mustT tMust,ω
w .

Proof: The proofs are simple analyses of the potential
computations arising when running the timed tests in lock-
step (to a deadlock or successful state) with arbitrary timed
processes. Letw = (ai, δi)0<i≤k for somek ∈ N ∪ {ω}.

• Item 1, ⇒: w ∈ Lf (p), and thus p0
(a1,δ1)
=⇒

p1
(a2,δ2)
=⇒ · · ·

(ak,δk)
=⇒ pk (Definition 1). On the other

hand, tMay,∗
0

(a1, δ1)=⇒t1 tMay,∗
1

(a2, δ2)=⇒t2 · · ·
(ak, δk)
=⇒tk

tMay,∗
k (defi-

nition of tMay,∗
w including the form ofti). Therefore,

(〈pi−1, t
May,∗
i−1 〉

(ai, δi)7−→Rti

〈pi, t
May,∗
i 〉)0<i≤k, sow is the trace

of a potential computationc for both p and tMay,∗
w . In

factw is even the trace of a computation ofp andtMay,∗
w

(indeed,tMay,∗
k 6

τ
−→ and Ip(pk) ∩ It(t

May,∗
k ) = ∅), and

is further the trace of a successful computation (since
tMay,∗
k ∈ Suc). It then follows thatp mayT tMay,∗

w .
⇐: Given that p mayT tMay,∗

w , we have a suc-
cessful computationc of p and tMay,∗

w . That is,
(〈pi−1, t

May,∗
i−1 〉

(ai, δi)7−→Rti

〈pi, t
May,∗
i 〉)0<i≤k, tMay,∗

k 6
τ

−→,

Ip(pk) ∩ It(t
May,∗
k ) = ∅, and tMay,∗

w = tMay,∗
k ∈ Suc.

By a reverse argument we conclude then thatw ∈

Lf(p) (tMay,∗
0

(a1, δ1)
=⇒t1 tMay,∗

1
(a2, δ2)
=⇒t2 · · ·

(ak, δk)
=⇒tk

tMay,∗
k , then

p0
(a1,δ1)
=⇒ p1

(a2,δ2)
=⇒ · · ·

(ak,δk)
=⇒ pk, and thusw ∈ Lf(p)).

• Items 2 and 3 are proven similarly.
• Item 4, ⇒: Assume thatp mustT t⇓,∗

w does not hold.
However, the tracew passest⇓,∗

w (by the definition of
t⇓,∗
w ), only divergence can cause the test to fail. So for

some0 < l ≤ k there exists one tracep0
(a1,δ1)
=⇒ p1

(a2,δ2)
=⇒

· · ·
(al,δl)
=⇒ pl

τ
−→ pl · · · which means thatp ⇑ w, a

contradiction. So it must be thatp mustT t⇓,∗
w .

⇐: Assume thatp ⇑ w. Then for some0 < l ≤ k

there exists one tracep0
(a1,δ1)
=⇒ p1

(a2,δ2)
=⇒ · · ·

(al,δl)
=⇒

pl
τ

−→ pl · · · which fails the testt⇓,∗
w . This contradicts

the conditionp mustT t⇓,∗
w and so it must be thatp ⇓ w.

• Item 5 is proven similarly.
• Item 6,⇒: Assume thatp mustT tMust,∗

w does not hold.
According to the definition oftMust,∗

w , there are two ways

for p to fail the test: Eitherp0
(a1,δ1)
=⇒ p1

(a2,δ2)
=⇒ · · ·

(ai,δi)
=⇒

pi
τ

−→ pi · · · , or p0
(a1,δ1)
=⇒ p1

(a2,δ2)
=⇒ · · ·

(ak,δk)
=⇒ pk.

These contradict the conditionsp ⇓ w or w 6∈ Lf(p),
respectively.
⇐: Assume thatw ∈ Lf(p). By the definition oftMust,∗

w ,
w fails to pass this test. This contradicts the condition that
p mustT tMust,∗

w .
• Items 7 and 8 are proven similarly.

The proof of Theorem 1 relies extensively on these intuitive
properties of timed tests. Notice that the usage ofω-state
tests (that is, tests that accept based on an acceptance family,
not only on Suc)—even when discussing finite-state timed
processes—is justified by our view that timed tests represent
the arbitrary, potentially irregular behaviour of the unknown
real-time environment.

Proof Theorem 1:Item 1 of the theorem is fairly imme-
diate. For the⇒ direction we distinguish the following cases:
w ∈ Lf (p) implies thatp mayT tMay,∗

w . Sincep ⊑mayT q it
follows thatq mayT tMay,∗

w and thusw ∈ Lf (q). w ∈ Lω(p)]
has two sub-cases:

(a) If |w| = ω, then p mayT tMay,ω
w . Sincep ⊑mayT q it

follows thatq mayT tMay,ω
w and thusw ∈ Lω(q).

(b) If |w| < ω, thenp mayT tMay,div
w . Sincep ⊑mayT q it

follows thatq mayT tMay,div
w and thusw ∈ Lω(q).

We go now to the⇐ direction for Item 1. Lett be any
timed process such thatp mayT t, that is, there exists a suc-
cessful computationc ∈ C(p, t) with w = trace(projp(c)) =
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trace(projt(c)). If |w| = ω, then w ∈ Lω(p) and thus
w ∈ Lω(q) (sinceLω(p) ⊆ Lω(q)). It follows that we can
construct a successful computationc′ ∈ C(q, t) such thatw =
trace(projq(c

′)) = trace(projt(c
′)) and projt(c

′) = projt(c). It
follows that q mayT t and thereforep ⊑mayT q. If |w| < ω,
we can split the proof into two cases: eitherw ∈ Lf (p) or
w ∈ Lω(p). We can then establish thatq mayT t as above.

On to Item 2 now. For the⇒ direction we have thatp ⊑mustT
q, w ∈ (A×L)∗∪(A×L)ω such thatp ⇓ w. Thenp mustT t⇓,∗

w

or pmustT t⇓,ω
w (Lemma 3), thenq mustT t⇓,∗

w or q mustT t⇓,ω
w

(Definition 6), thusq ⇓ w (Lemma 3). We further distinguish
two cases, depending on whether|w| = ω or not:

If |w| < ω, let q
w

=⇒ q′ for some q′, that is, w ∈
Lf (q). Assume that there is nop′ such thatp

w
=⇒ p′ and

Ip(p
′) ⊆ Iq(q

′). Suppose thatp 6
w

=⇒, that is,w 6∈ Lf(p).
Then p mustT tMust,∗

w (Lemma 3), soq mustT tMust,∗
w

(Definition 6). However,q mustT tMust,∗
w does not hold

(contrapositive of Lemma 3), a contradiction. Suppose now
that p

w
=⇒. Let thenX = {(a, δ) ∈ Ip(p

′) : p
w

=⇒ p′} 6= ∅.
Since Ip(p′) 6⊆ Iq(q

′) (assumption), for everyA ∈ X there
exists an(a, δ) ∈ A \ Iq(q

′). Let B be the set of all such
actionsa (ignoring the time actions). It is then immediate
then that p mustT tMust

w,B (by the construction oftMust
w,B );

however, it is not the case thatq mustT tMust
w,B (sinceq′ 6

(a,δ)
=⇒

for any (a, δ) ∈ (B, L)). This contradicts the assumption that
p ⊑mustT q.

If on the other hand|w| = ω, assume thatw 6∈ Lω(p).
Then p mustT tMust,ω

w (Definition 6) and thusw 6∈ Lω(q)
(Lemma 3). This contradicts withw ∈ Lω(q) (given).

Finally, for the ⇐ direction of Item 2, let t be
any timed process such thatq mustT t does not hold,
that is, there exists an unsuccessful computationc =
(〈qi−1, ti−1〉, (ai, δi, ti), 〈qi, ti〉)0<i≤k ∈ C(q, t) (Defini-
tion 6). Letw = trace(projp(c)) = trace(projt(c)).

Assume thatp ⇑ w. We can then construct an unsuccessful,
infinite computationc′ which resemblesc until p can en-
gage in its timed divergent computation and then we force
t not to contribute anymore. Then projp(c

′) ∈ Πω(p) and
projt(c

′) 6∈ Πω(t) (because|projp(c′)| < ω).This implies that
p mustT t does not hold (Definition 6) and thusp ⊑mustT q
(since q mustT t does not hold, by the contrapositive of
Definition 6).

Assume now thatp ⇓ w, that is,w 6∈ LD(p). We have again
two cases depending on whether|c| < ω or not.

Whenever|c| < ω, we have:

(a) w ∈ Lf (q), q
w

=⇒ q′ for someq′ and tk 6= Suc by
definition of tMust,∗

w ,
(b) qk 6

τ
−→, tk 6

τ
−→, Ic

q (qk) ∩ Ic
t (tk) = ∅ by definition of

tMust,max
w ; and

(c) ∃p′ : p
w

=⇒ p′, Ic
p(p′) ⊆ Ic

q (q′) by condition 2(b).

By observations (a)–(c) we have a finite computation
c′ = (〈pi−1, t

′
i−1〉, (ai, δi, ti), 〈pi, t

′
i〉)0<i≤l ∈ C(p, t) with

projt(c
′) = projt(c) and 〈pl, tl〉 = 〈p′′, tk〉, wherep′

ε
=⇒ p′′

for some p′′ 6
τ

−→p. Note that such ap′′ must exist since
p ⇓ w. Then Ic

p(p′′) ⊆ Ic
p(p′), definition of c′ and p′′, and

observations(a) and (b) above imply thatIc
p(p′′) ∩ Ic

t (tk) ⊆
Ic
q (q′) ∩ Ic

t (t′l) ⊆ Ic
q (qk) ∩ Ic

t (tl); thusc′ cannot be extended.

Since t′l = tk 6∈ Suc, c′ is unsuccessful, sop mustT t does
not hold.

Whenever|c| = ω, we have thatq mustT tMust,ω
w does not

hold. It follows thatw ∈ Lω(q), and thusw ∈ Lω(p) (given).
So p mustT tMust,ω

w does not hold either (contrapositive of
Lemma 3). In all,p ⊑mustT q, as desired.

The proof of Theorem 2 also relies on the properties of the
timed tests introduced in Lemma 3.

Proof Theorem 2: For the ⇒ direction, assume that
p ⊑mustT q and letw ∈ (A × L)∗ ∪ (A × L)ω . Then,

For Relation (1)w ∈ LD(q) implies q ⇑ w, so it is not the
case thatq mustT t⇓,ω

w (by Lemma 3(5)). Therefore it is not
the case thatp mustT t⇓,ω

w (sincep ⊑mustT q), so p ⇑ w, or
w ∈ LD(p), as desired.

For Relation (2)w ∈ Lf (q) \ LD(q) implies q ⇓ w and
thusp ⇓ w (same as Relation (1) but using Lemma 3(4)). In
addition, it is not the case thatq mustT tMust,∗

w (Lemma 3(6))
and thusp mustT tMust,∗

w does not hold (sincep ⊑mustT q).
Therefore,w ∈ Lf (p), again as desired.

The proofs of Relations (3) and (4) are the same as the
proof of Relation (2) using Lemma 3(7) and Lemma 3(8),
respectively.

On to the⇐ direction now. We assume that Relations (1),
(2), (3), and (4) hold. We further assume that there ex-
ists a timed testt such that q mustT t does not hold
(if such a test does not exist thenp ⊑mustT q for any
processp). Thus there exists an unsuccessful computation
c = (〈qi−1, ti−1〉(ai, δi)〈qi, ti〉)0<i≤k ∈ C(q, t), with w =
trace(projq(c)) = trace(projt(c)).

If p ⇑ w then construct an unsuccessful, infinite com-
putation c′ which resemblesc until p can engage in its
divergent computation, at which pointt can be forced to stop
contributing to c′. Thus q ⇑ w and it is not the case that
p mustT t.

If p ⇓ w, |c| < ω, andtk 6∈ Suc we distinguish two cases:

1) Letw ∈ Lf(q)\Lm(q). Then there exists some(a, δ) ∈

A×L such thatqk
(a,δ)
−→q but tk 6

(a,δ)
−→t. That is,w ·(a, δ) ∈

Lm(q) and so (by Relation (3))w·(a, δ) ∈ Lm(p). Since
p is purely nondeterministic, we can construct a finite
computationc′ = (〈qi−1, t

′
i−1〉(ai, δi)〈qi, t′i〉)0<i≤l ∈

C(q, t) where projt(c) = projt(c
′), t′l = tk, andpl

(a,δ)
−→p.

The computation is maximal (sincetk = t′j 6
(a,δ)
−→t′ ) and

unsuccessful (since|c′| < ω and t′l 6∈ Suc). Therefore,
p mustT t does not hold.

2) Let noww ∈ Lm(q) (and thusw ∈ Lm(p)). We can
then construct a maximal computationc′ as above and
thenp mustT t does not hold given thatq mustT t does
not hold.

Finally, if p ⇓ w and |c| = ω, since projt(c) 6∈ Πω(t),
projt(c) ∈ Πω(q), andw ∈ Lω(p), we can construct an infinite
computationc′ ∈ C(q, t) such that projt(c) = projt(c

′).
Similar to the above,c′ is unsuccessful and sop mustT t
does not hold.

All the cases lead top ⊑mustT q, as desired.
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V. T IMED TEST GENERATION

We now establish an algorithm that generates equivalent
timed tests starting from any TPTL formula. This can also be
regarded as a relation between TPTL and timed must testing.
Our result builds on timed Büchi automata [6] approaches to
LTL model checking [4], [5], [16]–[18].

Theorem 4:Given a TPTL formulaφ there exists a testTφ

such thatp �γ φ for any suitableγ if and only if p mustT Tφ

for any timed processp. Tφ can be algorithmically constructed
starting fromφ.

Proof: Let p be an arbitrary timed process.Tφ is first
constructed to consider only infinite computations, and will
then be modified to consider maximal traces. A sub-formula
of φ is defined inductively:

1) φ is a sub-formula ofφ,
2) any formulat formed by terms of formθ and rela-

tional and boolean operators (henceforth called “time
formula”) occurring inφ is a sub-formula ofφ, but no
sub-formula oft is a sub-formula ofφ (a time formula
is indivisibly a sub-formula),

3) if ¬ξ is a sub-formula ofφ, then so isξ,
4) if O ξ is a sub-formula then so isξ, O ∈ {X, x.}
5) if ξ1 O ξ2 is a sub-formula ofφ then so areξ1 andξ2,

O ∈ {∧,∨,U}.
Let Cφ be the set of exactly all the clocks that occur in a

TPTL formula φ, and letC(φ) be the closure ofφ, that is,
the set of exactly all the sub-formulae ofφ. Furthermore, let
Θ(φ) ⊆ C(φ) contain exactly all the sub-formulae ofφ that
are time formulae.

The construction ofTφ is then based on the untimed
construction developed by Vardi and Wolper [17]. We first
consider the “local” automatonLφ = (2C(φ),Cφ, NL,→L

, ∅, NL, s0). The set of states contain all the subsets ofC(φ)
that have no internal inconsistency, plus one designated initial
state. The local automaton does not impose any acceptance
condition. A states has no internal inconsistency if and only
if:

1) ψ ∈ s if and only if ¬ψ 6∈ s for all ψ ∈ C(φ),
2) ξ∧ψ ∈ s if and only if ξ ∈ s, ψ ∈ s for all ξ∧ψ ∈ C(φ),
3) x.ψ ∈ s impliesψ ∈ s.
The transition relation is defined ass

a−→Lt, C t if and only if
a = t, C = {x ∈ Cφ : x.ψ ∈ s ∧ ψ ∈ t}, t =

∧
(Θ(φ) ∩ s),

ψ ∈ t ∧ x.ψ ∈ s implies x.ψ 6∈ t, and
1) s = s0 andφ ∈ a, or
2) s 6= s0, for all ψ ∈ C(φ), X ψ ∈ s if and only if ψ ∈ t,

and for all ξ U φ ∈ C(φ) eitherψ ∈ s, or ξ ∈ s and
ξ U ψ ∈ t.

Lφ does not impose any acceptance conditions as men-
tioned, but enforces all the time constraints present in the
original formulaφ. Indeed, at every moment frozen in time
by a constructionx.ψ we reset the respective clock in the
local automaton (for the setC of clocks reset by a transition
out of s contains exactly all the sets of clocksx reset by
an x. construction ins). Later, whenever a time formula is
encountered, that formula is added to the time constraints that
enable the transition. Checking the time formula to determine
that the transition is enabled has the intended effect: the time

formula needs to be true for the whole formulaφ to be true,
and the semantics of time in a timed transition system ensures
that every clock measures the time from when it was reset
in the transition system (that is, frozen in the formula) to the
current time.

Acceptance is handled by the “eventuality” automatonEφ =
(2C(φ), ∅, 2E(φ),→E , ∅, {∅}, ∅), with E(φ) = {ξ U ψ ∈ C(φ)}
ands

a−→E⊤, ∅ t if and only if
1) s = ∅ and ξ U ψ ∈ t if and only if ψ 6∈ a for all

ξ U ψ ∈ a,
2) s 6= ∅ and ξ U ψ ∈ t if and only if ψ 6∈ a for all

ξ U ψ ∈ s.
The eventuality automaton is identical to the one developed
elsewhere [17]. It tries to satisfy the eventualities of the
formula (with no regard for time constraints). The current state
keeps track of which eventualities have yet to be satisfied.

The testTφ is obtained by taking the cross-product ofLφ

andEφ. The cross-product is taken using the usual (untimed)
construction [17], for only the transitions in→L contain time
constraints and/or clock resets (and these go into the composite
automaton together with the actions that accompany them in
Lφ). This test characterizes traces over2C(φ) × L; in order to
switch toA× L we project overA the action labels of all the
transitions, as done previously [17].

The construction ofTφ follows carefully the construction
for the untimed case. It is then immediate thatTφ is correct
as far as untimed words are concerned, in the sense that
trace(projp(c)) � φ for exactly all the successful infinite
computationsc ∈ C(p, Tφ) stripped of time information. The
timing information is added (viaLφ), as detailed above. In all,

trace(projp(c)) �γ φ for exactly all the suc-

cessful infinite computationsc ∈ C(p, Tφ) (5)

We now enhanceTφ so that it also accepts finite maximal
traces: For every states in Tφ, we check if all the formulae
contained ins are satisfied by the traceε. Checking for
acceptance of the traceε (like for any fixed trace) can be done
algorithmically along the structure of the formulaφ. Then, for
every states in Tφ such that each TPTL formulaφ labelings
is satisfied byε, we add a transitions

τ
→ ∆, where∆ is a new

state. We use∆ to distinguish from other states also having
no outgoing transitions; these states represent deadlock due
to inconsistent sub-formulae ofφ. The final states ofTφ will
then be the set containing only the state∆ thus introduced.
We have:

trace(projp(c)) �γ φ for exactly all the suc-

cessful maximal computationsc ∈ C(p, Tφ) (6)

Indeed,χ(p) �γ φ (with χ(x) = trace(projx(c))) implies

s0
χ(Tφ)
=⇒ s

τ
→ ∆ (where s0 is the initial state ofTφ). That

is s0
χ(Tφ)
=⇒ s 6→. Thus, c is maximal. Conversely, ifc is

successful and maximal, then there exitss0
χ(Tφ)
=⇒ s 6→ in Tφ.

According to the algorithm there exits thens0
χ(Tφ)
=⇒ s

τ
−→ ∆.

Thus,c is maximal.
That p �γ φ if and only if p mustT Tφ follows from

Properties (5) and (6), as desired.
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VI. CONCLUSIONS

We proposed in this paper a model of timed tests based on
timed transition systems. We addressed the problem of charac-
terizing infinite behaviours of timed processes by developing
a theory of timedω-final states. This theory is inspired by the
acceptance family of Büchi automata. We also extended the
testing theory of De Nicola and Hennessy to timed testing.
We then studied the derived timed may and must preorders
and developed an alternative characterization for them. This
characterization is very similar to the characterization of
De Nicola and Hennessy’s testing preorders, which shows
that our preorders are fully back compatible: they extend the
existing preorders as mentioned, but they do not take anything
away. Further into the characterization process we also showed
that the timed must preorder is equivalent to a variant of
reverse timed trace inclusion when its first argument is purely
nondeterministic.

We then presented an algorithm for test generation out of
TPTL formulae. Both processes and tests are represented by
timed transition systems instead of automata (that is, their
number of states is not necessarily finite). This is consistent
with the huge body of similar constructs in the untimed
domain. However, the timed tests produced out of TPTL
formulae (Theorem 4) are always finite automata (meaning
that their set of states is always finite). This is quite nice to
have for a very practical reason, as infinite-state tests must be
further refined to become practical characterization tools.

One significance of our results stems from the fact that
while algorithms and techniques for real-time testing have
been studied actively [11], [12], the domain still lacks solid
techniques and theories. Our paper attempts to present a
general theoretical framework for real-time testing, in order
to facilitate the subsequent evolution of the area. To serve
such a purpose our framework is as close as possible to
the original framework of (untimed) testing, as shown in our
characterization theorems. In addition, our characterization is
surprisingly concise in terms of the test cases needed.

Beside the obvious use of the algorithm for test generation,
the algorithm also relates the satisfaction relation of TPTL
to the mustT operator. We therefore note that the algebraic
and logic specification techniques attempt to achieve the same
thing (conformance testing) in two different ways. Each of
them is more convenient for certain systems, as they both have
advantages and disadvantages. Therefore our test generation
algorithm also forms the basis of bringing logic and algebraic
specifications together, thus obtaining heterogeneous speci-
fications for real-time systems that combine the advantages
of the two paradigms. This has the potential of providing a
uniform basis for analyzing heterogeneous real-time system
specifications with a mixture of timed transition systems and
timed logic formulae.

We consider TPTL without congruence because the theory
of timed transition systems does not offer a congruence
mechanism. Such a mechanism could likely be introduced
without much difficulty, but to our knowledge none of the
temporal logics used in practical settings take congruence
into consideration, so we preferred to leave time transition

systems intact and exclude congruence from TPTL instead.
This does diminish the expressiveness of TPTL [7], but we
are still significantly above the expressiveness of most real-
time temporal logics [7], [10].

We avoid the discussion of discrete versus continuous time.
All the results and definitions are oblivious to whether time
is considered discrete or continuous. We therefore leave the
decision of discreteness to the future uses of this work.

This paper is only a first step in the direction of combining
operational and assertional styles of timed specifications; the
studying of techniques mixing operators from timed process
algebras and TPTL is a widely open area. Indeed, we estab-
lished an algorithm for constructing timed tests from TPTL
formulae, but how to go the other way around is still open for
research. The timed preorder testing developed from De Nicola
and Hennessy’s preorder testing is not the only testing relation;
other testing relations with the addition of time constraints will
also be exciting to investigate.
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