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A Testing Theory for Real-Time Systems

Stefan D. Bruda and Chun Dai

Abstract—We develop a testing theory for real-time systems.  The aim of this paper is to develop a semantic theory for
We keep the usual notion of success or failure (based on finite real-time system specification based on timed transition sys-
runs) but we also provide a mechanism of determining the SUCCesS tamg modeling the behaviour of real-time processes. We first

or failure of infinite runs, using a formalism similar to the d | tic th f I-ti ¢ ificati
acceptance in Biichi automata. We present two refinement timed 9€VEI0P @ Seémantic theory lor real-ime systeém specinication.

preorders similar to De Nicola and Hennessy's may and must Using a theory of timed-final states (inspired from the theory
testing. We then provide alternative, behavioural and language- of timed automata [6]) as well as a timed testing framework
based characterizations for these relations to show that the new pased on De Nicola and Hennessy’s testing [4], we develop
preorders are extensions of the traditional preorders. Finally we timed may and must preorders that relate timed processes on

focus on test generation, showing how tests can be automaticallyth basis of thei to timed tests. Our f K
generated out of a timed variant of linear-time logic formulae € basis of their responses 1o limed 1ests. Lur framewor

(namely, TPTL), so that a process must pass the generated test ifiS as close to the original framework of (untimed) testing as
and only if the process satisfies the given temporal logic formula. possible, and is also as general as possible.
Beside the obvious use of such an algorithm (to generate tests), While studies of real-time testing abound, they mostly re-
our result also establishes a correspondence between timed Musigyrict the real-time domain to make it tractable. We believe that
testing and timed temporal logic. . . . .
starting from a general theory is more productive than starting
Index Terms—Formal methods, Real-time systems, Model- directly from some practically feasible (and thus restricted)
based testing, May testing, Must testing, Testing preorders, Test g hset of the issue, so our theory is general. Still, our general
generation, Timed temporal logic, TPTL . . -
approach is more practical than one might expect. Indeed,
the characterization of the timed preorders uses a surprisingly
|. INTRODUCTION concise set of timed tests.

To further address the practicality issue we then tackle now

How to guarantee validity and reliability of software and, iomatic test generation. We show how to algorithmically
hardware is one of the most pressing proble@snformance g tests starting from timed propositional temporal logic

testing[l_] is_ known i_n this area for its succinct_ness and higtbr TPTL) [7] formulae. This algorithm is also a first yet sig-
automatization. Its aim is to check whether an implementatigfyicant step toward an integration of operational and assertive
conforms to a given specification. __ specification styles in the area of real-time systems, to obtain
In the context of conformance testing system specificatiofgterogeneous (algebraic and logic) specifications and tools.
can be mainly classified into two kinds: algebraic and logic. The remainder of this paper is structured as follows. Prelimi-
The first favours refinement, where a single algebraic fOfaries such as preorders, timed automata, and timed transition
malism is equipped with a refinement relation to represegjstems are presented in the next section. We formalize the
and relate both specifications and implementations [2]. Afytion of timed processes and timed tests in Section I,
implementation is validated if it refines its specification. PrQghere we also introduce our timed preorders. Section IV
cess algebrae, labelled transition systems, and finite automa{gracterizes the timed preorders and Section V presents our

are commonly used in this classification, with traditionglynyersion of TPTL formulae into equivalent timed tests. We
refinement relations being either behavioural equivalences Qjnclude in Section VI.

preorders [3], [4]. A typical example is model-based testing
[3]. The second approach prefers assertive constructs. Differ- Il. PRELIMINARIES AND NOTATIONS

ent formalisms describe the properties of specifications andeqrqers are reflexive and transitive relations. They are
implementations; specifications are defined logically whilg; e, ysed as implementation relations comparing specifi-
|mplem§ntat|ons are given in an o_peratlonal nota_t|on. ThStions and implementations. Preorders are easier to construct
semantics qf assertions is to determln(_a whether an |.mplemgﬁa analyze compared to equivalence relations, and once a
tation satisfies its specification. A typical example is modgleq der is established, an associated equivalence relation is
checking [5]'_ . ) ) [immediate. The cardinality df is denoted byw.

The doma_ln qf conformance 'Festlng consists in reactive o, constructions are based on some alphabestpresent-
systems, which interact with their environment. Often suglyg 5 set of actions excluding the internal actiorand on a
systems are required to beal time meaning that in addition ime aiphabet which contains some kind of positive numbers
to the correct o_rder of events, they must _satlsfy constraints &Uch asV or R*). A set of clocksC is a set of variables over
delays separating ce_rtaln events. Real-tlme specifications preye useA, L, andC in sans-serif face exclusively for this
then used as the basis of conformance testing for such Sys"eﬁ'ﬂﬁpose, so that their purpose is often consider understood
Stefan D. Bruda and Chun Dai are with the Department of Computtekr]Izuggglgti:::rggﬁ)zgon for a se€ of clocks is a mapping
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clock interpretationr’ = ¢ + t we havec' (z) = ¢(x) + ¢ for That a procesg cannot evolve any further (via either internal
all clocksz € C. Clocks can also be reset to zero. or external actions) is denoted by/A.

If z is a clock and- is a real ther: ~ r is a time constraint, A timed path = of a timed transition system\/ =
~€ {<, <, =,#,>,>}. Constraints can be joined in conjunc{(A x L) U{7},C, S, —,po) is a potentially infinite sequence
tions or disjunctions, together with the special constraint (p; 1, (a;,d;, t:, C;), pi)o<i<k, Wherepifl(af"’ i_)pi forall 0 <
(which is true in any interpretation)[(C) denotes the set of ; < - the length ofr is k and is denotedl’by;ﬂ. If 7] = w,
all time constraints over a s€t of clocks. 7 is infinite; otherwise (that is, ifix| € N) 7 is finite. If
|r| € N andp, # (thatis,p, is a deadlock state), then the
timed pathr is called maximal. trader), the (timed) trace
of 7 is defined as the sequence;, d;, ti, Ci)o<i<|r|,air €

Labelled transition systems [3] are used to model tHé& x L x T(C) x 2%)*. I;(p'), I (p'), II;(p') denote the
behaviour of various processes; they serve as a sema#gts of all finite timed paths, all maximal timed paths, and all
model for formal specification languages. A timed transitioifinite timed paths starting from stag¢ € S, respectively.
system is essentially a labelled transition system extendég also putll(p’) = Il (p’) U IL,, (p") UTIf(p). The empty
with time values associated to actions. Timed automata [6]ned pathr with || = 0 is symbolized by() and its (always
[8] are based on the automata theory and introduce tB@pty) trace by.
notion of time constraints over their transitions. In general Statep’ of transition systenp is timed divergentdenoted
labelled transition systems model the execution of a proceby,p’ i, (Or justp’ f when there is no ambiguity), ir €
while timed automata are suitable for specifying processesldr(p’) : tracgn) = ¢. Statep’ is called timedw-divergent
defining tests upon processes. We find convenient to combidenoted byp" 1, w) for somew = (a;,d;, ti, Ci)o<i<k €
the two concepts to obtain a unified model for real time, whidi x L x T(C) x 2€)*U(Ax L x T(C) x 2€)« if 3l € N,p” €
we call by abuse of terminology (and for lack of a better termy . | < k. p/ é’; 0" fp, With w' = (a;, 8, 5, C)o<i<i-
timed transition system. We do not introduce any new concegfiate p’ is timed convergent or timea-convergent j’ Uy
in this section; instead we unify existing constructions intandp |}, w, respectively, again omitting the subscriptvhen
a convenient single construction. A timed transition systefiere is no ambiguity) if it is not the case thétf, andp’ 1,
is essentially a timed automaton (or more precisely a timed respectively. The set of initial actions of is init,(p') =
trz_insmon table, since final states will be mtrod_uce(_j _Iateq)(a,&mc) € AxLxT(C) x 2¢: Jp” :p/(%i)pu}_
without the restriction of the number of states being finite. ~ 5t w00 1. TIMED TRACE LANGUAGES For a timed

For a setA of observable actionsr(¢ A), a setl of times  yansition system (statep the timed finite-trace language
values, and a set of clocks, a timed transition system is a; (p), maximal-trace (complete-trace) language,.(p)

tuple ((AxL)U{7}, C,.5, —, po), where:S'is a countable set of infinjte-trace languagé; (p), and divergence languagdes (p)
states; every state< S has an associated clock interpretatiogg p are

cp: C— L —C (Sx (AxL)xSxT(C) x2°)U(S x

A. Timed Transition Systems

{7} x S) is the transition relation (we ugé™%y’ instead of Ly(p) = {tracer):m e Ils(p)}

(p, (a,9),p',t,C) €—, omitting C wheneverC' = () and also L,(p) = {tracdn):mweIl,(p)}

t whenevert = T); po is the initial state. Li(p) = {tracdr):m e Il;(p)}
Wheneverp%)p’, the transition system performs with Lp(p) = {we (AxLxT(C)x2°)*

delay ¢; the delay causes the clocks to progress so that Crw

ep(x) = cp(x) + 0 wheneverz ¢ C and ¢y (z) = 0 UA X LxT(C) x 27)% : p fhw}

otherwise; the transition is enabled only if holds under  We defined timed languages slightly differently from the
the interpretatiorc,; 7 transitions do not affect clock inter- original [6] to reflect their use for system specification and also
pretations and cannot be time constrained. Normally a tragesimplify the presentation. However if we omit the clocks
is described as a sequence of the events or states (but & their constraints (which we will do for processes) there is
the delays between them). To add time to a trace, we aglthatural bijection between our definition and the original.
time information to the usual notion of trace (that contains Once more similar to the theory of timed automata [6] we
actions only). A timed trace ovek, L, andC is a member of introduce a set of timed-final states. Then:
(AxLxT(C)x2°)*U(AxLxT(C)x 2°)~. Definition 2;: TIMED w-REGULAR TRACE LANGUAGE. The

If both L andT(C) (or equivalentlyC) are empty the timed timed w-regular trace language of some timed transition sys-
transition system becomes an LTS, and its timed traces @&enpis L, (p) = {tracdn) : 7 € I, (p)} C (Ax L x T(C) x
normal traces. One df or T(C) could be empty and we still 2¢)« whereIl, (p) contains exactly all thes-regular timed
obtain a timed trace; we will use this to differentiate betweegsaths that is,w-final states must occur infinitely often in any

processes and specifications. 7 € I, (p).
As usual we Wl’itep(;%,@p/ if and only if p &> ... 5 We exclude henceforth Zeno behaviours from all the lan-

guages that we consider; that is, no trace is allowed to show
w Zeno behaviour. In other words, time progresses and must
for somen > 0. Furtrlsrmc;reg(aa ?) q w(f;erlge;/erw = eventually grow past any constant value (this property is also
(ai, di, ti, Ci)o<i<k andp m%—'? D1 tﬁz P2 m%i pr=D". called progress [6], [9]).

1

pn%)z?/ andp = p/ifandonlyifp =py = --- = p, =7/,
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B. Timed Propositional Temporal Logic ¢, writtenp =, ¢, if and only if Vw € L;(p)UL,,(p)UL(p)U

Timed Propositional Temporal Logic (TPTL) [7] is one ot () w ks 6.

the most general temporal logics with time constraints [10].
TPTL extends linear-time temporal logic (LTL) [5], [10] by [1l. ATESTING THEORY FORREAL TIME

adding time constraints, so that its semantics is given with\yx gre now ready to extend the testing theory of De Nicola
respect to timed tracé,sthr_alt is, timed words inA x L)* U and Hennessy [4] in two ways. For one thing, we adapt
(A x L)~. We use TPTL without congruence, but we just calhjs testing theory to timed testing. In addition, we are also
it TPTL for short. _ _ __introducing the concept of Biichi acceptance to tests (or Biichi

For presentation convenience we use a slightly modifigflccess), so that the properties of infinite runs of a process can
form of TPTL without congruence. However, it is immediatgye readily identified by tests. Timed testing has been studied
that our form is equivalent to the original so we continue tgefore in many contexts [8], [11], [12] but to our knowledge
call ourtempor_al Iog_ic TPTL without congruence—we will i.nnever in such a general setting and never including Bichi
fact shorten this to just TPTL, the lack of congruence being,ccess. In addition, timed testing has never been considered in
henceforth implied. conjunction with test generation from temporal logic formulae.

With ¢, ¢1, ¢ ranging over TPTL formulae, ranging over e note however that a somehow incipient consideration of
A, z ranging over a set of clocks, andc ranging over positive Biichij success for tests and also of temporal logic formulae as
constants, the syntax of the tefnand the TPTL formula)  test generators for untimed tests exists [13], though this theory
is the following: is not real time and to our knowledge has not been pursued
any further.

0 = z+ele The traditional testing framework defines behavioural pre-
= <O [T[Lla|=¢|¢1Aa] orders that relate labelled transition systems according to their
Xo| o1 Uoa|xd responses to tests [4], [14]. The tests are thus used to verify the

) external interactions between a system and its environment.
Let 7 be the set of all TPTL formulae. A timed tracéye yse timed transition systems as the formalism for both
w = (ai,di)o<i<k € (A x L)"U (A x L)“ satisfies¢ if and  processes and tests.
only if w =, ¢. The relation=, C ((Ax L)* U(AXL)*) xF " |n our framework a test is a timed transition system where
is the least relation safisfying the conditions in the semagartain states are considered to be success states. In order to
tics of TPTL formulae shown below, withy; standing for getermine whether a system passes a test, we run the test in
(ai,0:) j<i<k foranyl < j < k, andy : C — L being some para|iel with the system under test and examine the resulting

clock interpretation. finite or infinite computations until the test runs into a success
e 01 <05 if and only if v(61) < v(62), staté (pass) or a deadlock state (fail). In addition, a set of
e wk, T andw K, L for anyw, w-final states is used to compartmentalize infinite runs into
e wk,aifandonly if w # e anda; = q, successful and unsuccessful.
o wk, —¢ if and only if —=(w E, ¢), Definition 3: TIMED PROCESSES AND TESTSA timed pro-
o Wk, @1 A¢oifand only if w Ey ¢ andw E4 ¢o, cess((A x L) U {r},S,—,po) is a timed transition system
e wk, X ¢if and only if wy E 15, &, (AxL)Yu{r}, 0,8, —,po) with an empty set of clocks (and
e w Fy 91 U ¢ if 30 < ¢ < Kk (Vi < r < ki thus with no time constraints). It follows that all the traces of
wr Eypsor gy 02, V0 <s <itws Fypse s 1), any timed process are in the gét x L)* U (A x L)“.
o whky x.¢ifand only if w F, /4] ¢. Atimed test(AU{7},C, T, —, %, Q, ) is a timed transi-
We denote byy + ¢ a clock interpretation in whiclfy + tion system((A x 0) U {r},C, T, —, to) with the addition of
¢)(z) = y(z)+ ¢ for all clocksz. We require thaty(z +¢) = > € T of success states arfdl C 7" of w-final states. Note

v(z) + ¢ and~(c) = ¢; y[t/z] is the clock interpretation that thatL = 0 for tests and therefore:,C (T x A x T(C) x 2¢ x
agrees withy on all clocks exceptz, which is mapped to 7)) U (' x {7} x T').

t € L. The occurrence of a free time variabten a formula The transition relation of a process and a test are restricted
“freezes” the moment in time, which can be checked later i different manners) because the test runs in parallel with
usingz in various expressions. These restrictions are sufficiehe process under the tésThis latter process (called the im-

to model most phenomenae from other timed temporal logip$ementation) features time sequences but no time constraints,
[7]. while the test features only time constraints. It is meaningless

As usual one can also introduce the derived operaorsto run the test by itself. Iff'(C) = () which means there is no
(“globally”) and F (“eventually”) asG ¢ = L. R ¢ andF ¢ = time constraint in the test, we call the test classical. The set
T U ¢, respectively. The operat® (‘releases”) is the dual of Of all timed tests is denoted Y. .
the operatot). A timed proces3p satisfies the TPTL formula  Definition 4: PARTIAL COMPUTATION. A partial computa-

tion ¢ of a timed procesp and a timed test is a potentially

1Time traces as presented in the previous section also contain time
constraints; however, as we will see in Section IlI, the time constraints appeafSuccess states are deadlock states too, but we distinguish then as special

only in tests and so the trace of processes are AverL only. deadlock states.
2A timed process is a timed transition system without time constraints, as*Note however that the difference is syntactical only, for indeed the
detailed in Section Il transition relation for a timed process allows for an emptylset
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infinite sequencé(p;_1,t;— 1>ga;’éﬁ)<p“ﬁ1>)0<l<k, wherek €
N U {w}, such thatp; € P andt; € T forall 0 < i < k;
andé; € L is taken fromp, t;, and C; are taken front, and
R e{1,2,3} for all 0 < i < k. The relation— is defined by
the following rules:
o (Pic1,tic1)=D1(pi, t) if a; = 7, pic1 ——p iy tic1 =
t;, andt;_y € %,
b <pz 1;tz 1>’—>2<pz;
t;, andt;_, € %,
(@i,6;)

o (pi—1,ti- 1>(’§—C’B)<Pu t;) if (a;,0;) e Ax L, pio1 —'p

Dis ti—l(ti—'é%)tl, andt;,_1 ¢ .
The first two expressions in the definition:ef indicate that

T
-1 7t

z> |f a; =T, Pi— 1*pz|t'

when the test or the process under test is executing an internal

in style to other characterizations and provide the basis for
comparing the existing testing theory to our timed testing. The
first characterization is similar to the characterization of other
preorders [14], [15] and relates timed testing directly with the
behaviour of processes.
Theorem 1:
1) p Ex* qif and only if Ly(p) € Ly(q) and Lu(p) €
Ly (q).
2) p Cust g if and only if for all w € (Ax L)*
such thatp || w it holds that:
a) q | w,
b) if |w| < w thenVq : ¢ == ¢’ implies 3’ : p ==
p’ and init,(p’) C init,(¢’), and
¢) if lw| =w thenw € L, (p) impliesw € L,(q).

U(AxL)¥

action, the other process keeps its state. The third expressiofthe second characterization is given in terms of timed trace
indicates that when the action is not internal, the test and tf#|usions, once more similarly to the characterization of other
process under test execute their respective action in paralifgkorders [2], [15]. Note that we are now concerned with
and spend the same time while doing so. The test also neQdSust only, as the simplesE7* is already characterized

to check its time constraint.

If & € N thenc is finite, denoted byc| < w; otherwise, it
is infinite, that is,|c| = w.

The projection prgj(c) of ¢ on p is defined as
(pi_l,(ai,&-),pi)]; S H(p), Wherelg = {0 <1 < k:
R; € {1,3}}. Similarly, the projectionproj:(c) of ¢ on
t if defined aS(fi_l,(ai,(si,ﬂ?i,ci),ti)ie]tc S H(ﬁ), where

={0<i<k:R;€{23}}.

in terms of timed traces in Theorem 1.

To state this result we need to introduce the notiopurie
nondeterminismWe call a timed procesg purely nondeter-

L S s
ministic if for all statesp’ of p, p’ —, implies p’ “;L?p,
and [{((a,6),p”) : p @4 » P} = 1. Note that every timed
processp can be transformed to a purely nondeterministic
timed procesg’, such thatl;(p) = L;(p'), Lp(p) = Lp(p'),

Ly(p) = Lm(p'), and L,(p) = L. (p') by spliting every

Definition 5: COMPUTATION. A partial computatiort is a
computation whenever: Ik € N then ¢ is maximal, that is,
Pk —ps ti /¢, and init,(py) N init,(tx) = 0 or the time
delay ofp;. does not satisfy the time constraintigf If £ = w
then proj(c) € Il;(p). C(p,t) is the set of all computations
of p andt.

Computationc is successfulf ¢, € ¥ wheneverc| € N,
and proj(c) € II,(t) wheneveric| = w.

. 5 : "
transitionp’ MP p” into two transitiony’ —=, p(y.(a.5),p)
(a.9)
and poy a5y ——p P’ Where pyy a6y IS a New,
distinct state.

Theorem 2:Let p and ¢ be timed processes such thats
purely nondeterministic. Thep C“s* ¢ if and only if all of

the following hold:

Definition 6: TIMED MAY AND MUST PREORDERS p may Lp(q) < Lp(p) (1)
passt (written p mayr t), if and only if there exists at least Li(@)\Lp(q) < L¢(p) (2)
one successful computatiere C(p,t); p must pass (written L@ \Lp(q) C Lim(p) @3)
p musty t) if and only if every computatior: € C(p,t) is -
successful. Lo(@\Lpla) S Lu(p). 4)

pCp® qifandonlyif vVt € 7 : pmayr t = ¢ mayr t;
andp Cust ¢ if and only if Vi € 7 : p musty t —>
g mMustr ¢.

With respect to finite traces, the characterizations of timed
tests differ from the ones of classical preorders by the addition
of time variables. We also need to refine the classical charac-

Intuitively, an infinite computation of procegs and test terizations so as to capture the behaviour of timed may- and
t is successful if the test passes through a setvdinal must-testing with respect to infinite traces. The proofs of the

states infinitely often. Hence some infinite computations caharacterization theorems 1 and 2 rely on the properties of the
be successful in our setting. Since timed processes and timggbwing specific timed tests.

tests potentially exhibit nondeterministic behaviour, one distin-

> e > . - o Forw = (ai,éi)0<i<k S (A X L)*, let tilay’* = (A @]

guishes between the possibility and inevitability of success. It {r},C, T, —,0,0,k), whereT = {0,1,...,k} and —=
is immediate that the relationsT.*Y andC7“** are preorders. (G g~ Z’g 510 < i - k’:}. ’

They are defined analogously to the classical may and must .. . Y (’a_l(;_) =0 ZE (A x L—)w let May.w —

preorders (which are based on labelled transition systems and (AU {r},C T ;O;Z%km whereT — N e (i —
restrict7 to classical tests). 1a i T i ’5 S '

s @iy cp =00 0;) 11> 0}, .
o Forw = (ai,éi)0<i<k c (A X L)*, let tuf\?ay,dw = (A U
IV. ALTERNATIVE CHARACTERIZATIONS OF TIMED {r}.C,T,—, {k} 0_@) whereT = {0,1,...,k}, —=

PREORDERS {(i—1,a4,i,¢; =

Forw = (ai,éi)0<i§k S (A X L)*,
{r},C,T,—,0,0,{s}), whereT = {0,1,...

Z;:o 0;): 0 <i<k}U{(k,7,k,T)}.
let t¥* = (AU

Tk} U s}

We now present alternative characterizations for the timede
may and must preorders. The characterizations are similar

100



Fig. 1.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 4, 2010

(ay,@Cy)
(a,®Cy)

(a3@Cy)

(ga(@ck)

May,*
ty Y

Must,*
tw

t]\/fust,w
w

—= {(i — Liaj,d,¢; = 25 6;) : 0 < i < k}U
{(i,7,8, T):0< i<k}

For w = (ai,d;)o<i<i € (A x L), let tﬁ;“ = (AU
{r},C, T, —,{s},0,{s}), whereT' = NU{s}, —= {(i—
Lag,i,c; =335 00:) :i >0} U{(i,7,5,T) i >0}
Forw = (ai,(si)0<i§k S (A X L)*, let t%ust,* = (A U
{r},C,T,—,0,0,{s}), whereT = {0,1,...,k} U{s},
—= {(i — Lajdi,¢; = > 6) : 0 < i < k}U
{(i,7,5,T):0< i <k}

o Forw= (ai,éi)0<i§k S (A X L)*, let tqleust,max = (AU
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(ay,9cy)

Timed tests used for the characterization of timed may and must preorders.

{r},C,T,—,0,0,{s1,s2}), whereT = {0,1,...,k} U
{81,52}, —= {(’L —1,a;,1,¢; = 23:051) 10 <1 <
E}U{(i, 7,81, T):0<i<k}U{(k,a,s2,T):(a,t) €
A x T().

Forw = (ai,(si)0<i§k S (A X L)w, let thUSt’w = (A U
{r},C,T,—,0,0,{s}), whereT = NU {s}, —= {(i —
Lag,i,c; =35 0;) i >0} U{(i,7,5,T):i €N}
For w = (ai,éi)0<i§k S (A X L)* and A C A,
let 3%t = (AU {r},C,T,—,0,0,{s1,52}), where
T = {0,1,...,k} U{s1,s2}, == {(i — 1,a;,4,¢; =
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Z;:o 6) + 0 < i < kyuU{(i,7,5,T) : 0 < i < of a potential computatiom for both p and t}av-*, In
k}U{(k,a,s2,T):ac A} factw is even the trace of a computationpfndt @v-*

These tests are depicted graphically in Figure 1. In the figure (indeed,t,"*** /= and I, (p) N L (¢, ") = 0), and
w-final states are marked by the symholnd success states IS further the trace of a successful computation (since

o ) May,

are distinguished from regular states by thick borders. t, “" € Suc). It then folloszwthatp mayr V"
Intuitively, while timed testg?/@v-* andt}/2v« test for the «: Given that p mayr i, ", we have a suc-
presence of a finite and infinite trace, respectively, timed cessful computationc of p and t,;/**. That is,

teststMav.div ¢x andtl are capable of detecting divergent  ((pi—_1, .7 $Y") “t_ R)<pi, MYV ocichs o L,

behaviour when executing traee These are “presence” tests, L) NI (tliway";) = 0, and tMavs = ¢Mav* ¢ Gy

that check whether a trace (finite or infinite) exists’ in the By a reverse argument we conclude then thatc
implementation. Timed testg/ust.*, ¢Must;maz - gnd¢Must.w Li(p) (tMay.,*(m:,@)tiuay,*(aQ:,@) . ”(agk)tgay,*’ then
test for the absence of the finite trace, maX|maI trace,w@and t1 t2 tr

(a (a2,92) 19k)
state trace (that is, trace that goes through infinite occurrences po ) pr == (s pr, and thusw € L¢(p)).

of w-final states)w, respectively. « Items 2 and 3 are proven similarly.

Timed must-testing is a bit trickier, since we cannot feasibly « Item 4, =: Assume thatp mustr t;* does not hold.
check all the possible traces or computations exhaustively (as However, the traces passes:y;* (by the definition of
we need to do according to the definition of must testing). t4*), only divergence can cause the test to fail. So for

So we think the other way around: We assume one “failure some0 <[ < k there exists one trage :‘S;) 1 (‘12:»52)
” H H 76
trace,” which does not satisfy the test and leads to failure. If  (a,9) n pi--- which means thap 1 w, a

there exists at least one such fallqre trace, f[hen the te;t fails. contradiction. So it must be thatmustr tﬁv*.

On the other hand, if we cannot find the failure trace in the ~: Assume thatp § w. Then for some) < [ < k
implementation, the test succeeds. We then test the absence of . (a1,81) (az,02) (a1,8,)
this trace in must-testing. there exists one fracp, = hl - =

... 1 I 7* i i
Finally, timed tesltM““ is capable of comparing the initial ﬁl] — I:jl_t. which faﬂi the dteSt?éf ) TT'; c:)hntradwts

action sets of states reached when executing traceith € conditionp mus:t]p .t“f and so it must be that | w.
respect to a subset C A. « Item 5 is proven similarly.

. Must,*
Note that we use the tightest time constraint possible in our® Lt\em 6d,':. gAstiurgethip m(;i%;& th does ?Ot hold.
test. We denote; = > _;_, d; by t; in what follows. ceording fo the detinition ere are two ways

Our specific timed tests satisfy the following desired prop-  for P to fail the test: Eithep, e L), (2 ()
erties: pi — pi---, OF Po (‘“:>’61 P1 (%62) (a’“z’ék)

Lemma 3: These contradict the conditions | w or w ¢ Ly(p),

1) Letw € (A x L)* . Then,w € L(p) if and only if respectively.
p mayp tMavx, «<: Assume thatv € L (p). By the definition oft/ust:*,

2) Letw € (A x L)*. Thenw € L, (p) if and only if w fails to pass this test. This contradicts the condition that
p mayr tija%w_ p musty tll\fust,*.

3) Letw € (A x L)* . Then,w € L,(p) if and only if  « Items 7 and 8 are proven similarly.
p mayp tgfay,di'u_ ]

4) Let w € (A x L)* . Then,p | w if and only if The proof of Theorem 1 relies extensively on these intuitive
p mustp 4. properties of timed tests. Notice that the usagewe$tate

5) Letw e (AxL)*U(AxL)¥.Thenp| wifandonly tests (that is, tests that accept based on an acceptance family,
if p musty t4«. not only on Suc)—even when discussing finite-state timed

6) Letw € (A x L)* such thatp |} w. Then,w ¢ L;(p) if processes—is justified by our view that timed tests represent
and only if p musty tMust*, the arbitrary, potentially irregular behaviour of the unknown

7) Letw € (A x L)* such thatp |} w. Then,w & L,,(p) if real-time environment.
and only if p musty ¢Must:maz,

8) Letw € (A x L)“ such thap | w. Then,w ¢ L (p) if Proof Theorem 1:Item 1 of the theorem is fairly imme-
and only ifp mustp ¢35t diate. For the= direction we distinguish the following cases:

may

Proof: The proofs are simple analyses of the potentiab € L(p) implies thatp mayr t2/e¥*. Sincep CT%Y ¢ it
computations arising when running the timed tests in lockellows thatg mayr t2v* and thUSw €Ls(q).we L (p)]
step (to a deadlock or successful state) with arbitrary timéés two sub-cases:

processes. Lew = (a;,d;)o<i<i for somek € NU {w}. (a) If jw| = w, thenp mayy tM*« Sincep TR q it
3 May,
eltem 1, = w € L;(p), and thusp, (22 ” T?"|°V|VS that;;hmay]r by ay:Maag‘gizhuSS?”ELwE(g)(;y '
3 3 w| < w, thenp ma v Sincep C i
P (2.8 (28) Dk (Def|n|t|0n 1). On the other p Mayr by p=r 4

follows thatq mayy tMv-4v and thusw € L, (q).

May,*(a1,91), May,*(az, 2 . (ak, k) May,* _
hand, £ May% t ii & K (defi We go now to the< direction for Item 1. Lett be any
nition 0;[1; . Q?gludlng[aths form oft;). _Therefore, timed process such thatmayr ¢, that is, there exists a suc-
((pi—1,t;5"7) (pist; """ ))o<i<k, SOwis the trace cessful computatior € C(p,t) with w = traceproj,(c)) =

102



INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 4, 2010

tracgproj,(c)). If |w| = w, thenw € L,(p) and thus Sincet; = t, & Suc, ¢’ is unsuccessful, sp mustr ¢t does
w € L,(q) (since L,(p) C L,(q)). It follows that we can not hold.
construct a successful computatiére C(g, t) such thatw = Wheneverc| = w, we have thay musty t}“s« does not

traceproj,(c')) = traceproj,(c’)) and proj(c’) = proj,(c). It hold. It follows thatw € L., (¢), and thusw € L, (p) (given).
follows thatg mayr ¢ and thereforep C1*Y ¢. If |w| < w, Sop musty tMust« does not hold either (contrapositive of
we can split the proof into two cases: elthere Ls(p) or Lemma 3). In all,p C7ust ¢, as desired. [ |

w € L, (p). We can then establish thatmayr ¢ as above.

On to Item 2 now. For the> direction we have that Tt The proof of Theorem 2 also relies on the properties of the
g, w € (AxL)*U(AxL)* such thap |} w. Thenp mustr t*  timed tests introduced in Lemma 3.
or p musty t4 (Lemma 3), they musty t%* or g musty 4+
(Definition 6), thusg || w (Lemma 3). We further distinguish Proof Theorem 2: For the = direction, assume that
two cases, depending on whether = w or not: pCmust g and letw € (A x L)* U (A x L)“. Then,

If Jw| < w letq = ¢ folr some ¢, thaﬁ, Is, w e For Relation (1)w € Lp(q) implies ¢ f w, so it is not the
Lf@' Assum/e that there is np ,SUCh thatp = p" and a5 thay mustr t%« (by Lemma 3(5)). Therefore it is not
L,(p") € I,(¢). Suppose thap #=, that is,w ¢ Lf(p). the case thap musty ¢4 (sincep CRUst g), sop ft w, or
Then p musty tMust* (Lemma 3), soqg musty tMustx w € Lp(p), as desired

R Must,* ! '
(Definition 6). However,q mustr does not hold . Relation @w € L(q) \ Lp(q) implies ¢ | w and

(contraposmve of Lemma 3), a contradlctlon Suppose NY¥us p | w (same as Relation (1) but using Lemma 3(4)). In
thatp ==. Let thenX = {(a,6) € L,(p') : p = p'} # 0.

addition, it is not the case thatmustr t}“st* (Lemma 3(6))
Since I,,(p') Z I,(¢’) (assumption), for everd € X there and thusp mustr ¢M“st* does not hold (sincg Cust g).
exists an(a d) € A\ I,(¢'). Let B be the set of all such Thereforew € L;(p ) again as desired.
actionsa (ignoring tjt\14e tlme actions). It is then |r5\14metd|ate The proofs of Relations (3) and (4) are the same as the
then thatp mustr ¢, 5" (by the construction oft, 5");  ro0f of Relation (2) using Lemma 3(7) and Lemma 3(8),
however, it is not the case thatmustr tM““’t (sinceq’ 7&» respectively.
for any (a,d) € (B,L)). This contradicts the assumption that On to the< direction now. We assume that Relations (1),
p Cmust g, (2), (3), and (4) hold. We further assume that there ex-
If on the other handw| = w, assume thatv ¢ L, (p). ists a timed testt such thatq musty ¢ does not hold
Then p musty tMustw (Definition 6) and thusw ¢ L, (g) (if such a test does not exist them Cmust ¢ for any
(Lemma 3). This contradicts withy € L, (q) (given). processp). Thus there exists an unsuccessful computation
Finally, for the < direction of Item 2, lett be ¢ = ({qi—1,ti—1)(ai,;8:){qi,ti))o<i<k € C(g,t), with w =
any timed process such that mustr ¢ does not hold, traceproj,(c)) = trace(proj,(c)).

that is, there exists an unsuccessful computation= If p f# w then construct an unsuccessful, infinite com-
((qi—1,ti—1), (@i, 03y t4), (@i, ti) )Jo<i<i € Cf(q,t) (Defini- putation ¢ which resemblesc until p can engage in its
tion 6). Letw = tracgproj,(c)) = traceproj,(c)). divergent computation, at which poiattan be forced to stop

Assume thap f+ w. We can then construct an unsuccessfutontributing toc¢’. Thusq {f w and it is not the case that
infinite computation¢’ which resembles: until p can en- p musty t.
gage in its timed divergent computation and then we forcelf p | w, || < w, andt; ¢ Suc we distinguish two cases:
£ not to C(l)_[m”tb“tg anymore..Thlen pi@/_?_h,e -Hw(ﬁ)) ?ﬂdt 1) Letw € L#(q)\ Lm(q). Then there exists sonfe, §) €
ro w ecaus < w).This implies tha a, , .
proj, () ¢ I, (1) ( aprojp(c)| < w) b A x L such thaty, (—62,1 butt, @t. Thatis,w-(a,d) €

p mustr ¢ does not hold (Definition 6) and thysC7“st ¢ X .
(since ¢ mustr ¢ does not hold, by the contrapositive of Lm(q) and so (by Relation (3))-(a, d) € L (p). Since

Definition 6). pis purety nt/)ndeterministic, we can construct a finite
Assume now thap |} w, thatis,w ¢ Lp(p). We have again computationc’ = ((gi—1,%;_1)(a:, 0; ><q“tl>)0<l<l(;)€
two cases depending on whethef < w or not. C(g,t) where proj(c) = proj,(c'), t; = tx, andp; — .
Wheneverjc| < w, we have: The computation is maximal (sinag = @t/) and
(a) w € Ly(q), ¢ == ¢ for someq andt; # Suc by unsuccessful (since’| < w andt; ¢ Suc). Therefore,
definition of ¢}Must:x, p mustr t does not hold.
(b) ar #=. tk /=, IS(qr) N If(tk) = O by definition of  2) Let noww € L,,(¢) (and thusw € L,,(p)). We can
tMust,maz, gnd then construct a maximal computatiohas above and
(¢) I :p :> P, 1;(p") C I5(q") by condition 2(b). thenp mustr ¢ does not hold given that mustr ¢ does
By observations(a)—(c) we have a finite computation not hold.

/

= ((pi-1,ti_1), (@i, 0i, ti), (i, t}))o<i<i € C(p,t) with  Finally, if p | w and |¢] = w, since proj(c) & TL,(t),
proj, (') = proj,(c) and (p;, ;) = (p”,tx), wherep’ = p”  proj,(c) € T1,(¢), andw € L, (p), we can construct an infinite
for somep” /-,. Note that such @” must exist since computationc € C(g,t) such that prgjc) = proj,(c’).
p | w. Then Ig(p”) - I;;(p’), definition of ¢’ and p”, and Similar to the above¢’ is unsuccessful and sp musty ¢
observationga) and (b) above imply thatl;(p”) N If(t,) € does not hold.

IS(q) N Ig(ty) € I5(qr) N IE(t); thusc’ cannot be extended.  All the cases lead tp C*! ¢, as desired. [ |
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V. TIMED TEST GENERATION formula needs to be true for the whole formyiao be true,

We now establish an algorithm that generates equivalé}ﬁd the semantics of time in a timed transition system ensures
timed tests starting from any TPTL formula. This can also JBat every clock measures the time from when it was reset
regarded as a relation between TPTL and timed must testiifyhe transition system (that is, frozen in the formula) to the
Our result builds on timed Biichi automata [6] approaches g§frent time. _

LTL model checking [4], [5], [16]-[18]. Acceptance is handled by the “eventuality” automaliyn=

Theorem 4:Given a TPTL formulap there exists a test;, (2°?. 0,25, — 5,0, {0}, 0), with £(¢) = {€ U ¥ € C(9)}
such thap &, ¢ for any suitabley if and only if p mustp 7,, a@nds 73# ¢ if and only if _
for any timed procesg. Ty can be algorithmically constructed 1) s =0 and& U ¢ e ¢t if and only if ¢» ¢ a for all

starting frome. EUYeaq,
Proof: Let p be an arbitrary timed proces$} is first 2) s AP andé U v € tifand only if ¢ & a for all
constructed to consider only infinite computations, and will § U ¥ € s.
then be modified to consider maximal traces. A sub-formulhe eventuality automaton is identical to the one developed
of ¢ is defined inductively: elsewhere [17]. It tries to satisfy the eventualities of the
1) ¢ is a sub-formula of, formula (with no regard for time constraints). The current state

2) any formulat formed by terms of formd and rela- keeps track of which eventualities have yet to be satisfied.
tional and boolean operators (henceforth called “time The testT}, is obtained by taking the cross-product bf
formula”) occurring ing is a sub-formula ofs, but no andE,. The cross-product is taken using the usual (untimed)
sub-formula oft is a sub-formula ofp (a time formula construction [17], for only the transitions ir;, contain time

is indivisibly a sub-formula), constraints and/or clock resets (and these go into the composite
3) if ¢ is a sub-formula ofp, then so ist, automaton together with the actions that accompany them in
4) if O £ is a sub-formula then so i§ O € {X,z.} L). This test characterizes traces 026f?) x L: in order to
5) if &, O & is a sub-formula ofs then so aref; and&,, Switch toA x L we project overA the action labels of all the

O € {A,V,U}. transitions, as done previously [17].

Let C, be the set of exactly all the clocks that occur in a 1he construction offy, follows carefully the construction
TPTL formula ¢, and letC(¢) be the closure of, that is, for the untlme_d case. It is then immediate t@t is correct
the set of exactly all the sub-formulae ¢f Furthermore, let @S far as untimed words are concerned, in the sense that
O(4) C C(¢) contain exactly all the sub-formulae of that trace(prolp(c)) E ¢ for exaptly all the SL_Jccessfu_I infinite
are time formulae. computations: € C(p, Ty) stripped of time information. The
The construction off}, is then based on the untimedtiming information is added (vid ), as detailed above. In all,
construction developed by Vardi and Wolper [17]. We first tracgproj,(c)) F, ¢ for exactly all the suc-
consider the “local” automatorL, = (2¢(9),Cy, Ny, -1, v
,0, N1, s0). The set of states contain all the subset<’ (f)
that have no internal inconsistency, plus one designated initiaM/e now enhancé’, so that it also accepts finite maximal
state. The local automaton does not impose any acceptatreees: For every state in Ty, we check if all the formulae
condition. A states has no internal inconsistency if and onlycontained ins are satisfied by the trace. Checking for

cessful infinite computationse C(p, Ty) (5)

if: acceptance of the traeg(like for any fixed trace) can be done
1) ¢ € sif and only if = ¢ s for all 1 € C(¢), algorithmically along the structure of the formulaThen, for
2) Ay esifandonlyifé € s,¢ € sforall Ent € C(¢), every states in T;, such that each TPTL formula labeling s
3) z.¢ € s impliesy € s. is satisfied by, we add a transitios = A, whereA is a new

The transition relation is defined as;’z~ ¢ if and only if State. We use\ to distinguish from other states also having
a=t,C={zeCh:apesAtpc t}: t = \(©(¢) N's), NO outgoing transitions; these states represent deadlock due
Y etNza € simpliesz.y ¢ t, and to inconsistent sub-formulae @f. The final states of will

1) s =so andé € a, or then be the set containing only the statethus introduced.

2) s # s, for all ¢ € C(¢), X ¢ € s if and only if o € ¢, Ve have:
and for all§ U ¢ € C(¢) eithery € s, or ¢ € s and tracgproj, (c)) F- ¢ for exactly all the suc-
¢Uyet ) N cessful maximal computationse C(p, Ty) (6)
L, does not impose any acceptance conditions as men- ) ) o
tioned, but enforces all the time constraints present in thedeed, x(p) F, ¢ (with x(z) = traceproj,(c))) implies
original formula¢. Indeed, at every moment frozen in times, X(:T‘é) s = A (wheresg is the initial state off};). That
by a constructionz.y) we reset the respective clock in th
local automaton (for the se&f of clocks reset by a transition
out of s contains exactly all the sets of clocksreset by
an z. construction ins). Later, whenever a time formula isAccording to the algorithm there exits thep X(:T?) s — A,
encountered, that formula is added to the time constraints tid&us, ¢ is maximal.
enable the transition. Checking the time formula to determineThat p k., ¢ if and only if p mustr T4 follows from
that the transition is enabled has the intended effect: the tifReoperties (5) and (6), as desired. ]

50 X(:T‘Q) s #. Thus, ¢ is maximal. Conversely, it is
successful and maximal, then there ex;'ttsX(:T“i) s A+ in Ty.
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VI. CONCLUSIONS systems intact and exclude congruence from TPTL instead.

o ) This does diminish the expressiveness of TPTL [7], but we
We proposed in this paper a model of timed tests based i ;|| significantly above the expressiveness of most real-

timed transition systems. We addressed the problem of chargg;e temporal logics [7], [10].

terizing infinite behaviours of timed processes by developingwe avoid the discussion of discrete versus continuous time.
a theory of timed.-final states. This theory is inspired by the| the results and definitions are oblivious to whether time
acceptance family of Buchi automata. We also extended fReconsidered discrete or continuous. We therefore leave the
testing theory of De Nicola and Hennessy to timed testingecision of discreteness to the future uses of this work.

We then studied the derived timed may and must preordersrhis paper is only a first step in the direction of combining
and developed an alternative characterization for them. T'gferational and assertional styles of timed specifications; the
characterization is very similar to the characterization udying of techniques mixing operators from timed process
De Nicola and Hennessy's testing preorders, which showgepras and TPTL is a widely open area. Indeed, we estab-
that our preorders are fully back compatible: they extend thighed an algorithm for constructing timed tests from TPTL
existing preorders as mentioned, but they do not take anythiggmulae, but how to go the other way around is still open for
away. Further into the characterization process we also showggearch. The timed preorder testing developed from De Nicola
that the timed must preorder is equivalent to a variant ghq Hennessy’s preorder testing is not the only testing relation;
reverse timed trace inclusion when its first argument is puredyher testing relations with the addition of time constraints will

nondeterministic. also be exciting to investigate.
We then presented an algorithm for test generation out of
TPTL formulae. Both processes and tests are represented by ACKNOWLEDGMENT
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