

Abstract - We present the development of a prototype system

called Angur, which is designed and built for visualization of

XML documents. There two main motivations of this work:

firstly is to allow the users to explore and manipulate XML

documents and secondly is to display the search results

graphically, in two or three dimensions, grouped by topic or

category. This prototype employs modern interactive

visualization techniques to provide a visual presentation of a

set of XML documents. The motivation and evaluation of

several design features, such as keyword to concept

mapping, explicit clustering, the use of 3-D vs. 2-D, and the

relationship of visualization to logical structure are

described.

Keywords: XML, XML documents, visualization,

information retrieval, fuzzy reasoning.

I. INTRODUCTION

HE use of XML (eXtensible Markup Language)

documents is growing rapidly, and as an important new

medium for communication, it provides a tremendous

amount of information related to a wide range of topics, hence

continues to create new challenges for information retrieval

[1]. XML documents provide users with a mean to store and

deal with valuable information on a wide range of domains.

This encourages researchers and companies to develop many

XML-based databases that allow preserving physical

document structure, support document-level transactions, and

execute queries in an XML query language [2]. However, the

increasing use of a large number of XML documents causes

many problems to the users [3, 4]. In particular, the structure

of these XML documents adds an additional problem in

dealing with them. One of the problems of XML documents is

the searching that can be too complex for most users. XML

documents are generally not interoperable in the same search

environment, because of all the different, incompatible

vocabularies. XML searching requires people or software to

know a lot about the structure of the documents. Moreover

XML does not have any browser support and does not have

anything to support the end user applications. Therefore,

automatic graph drawing is a necessary solution of these

problems. It has many important applications in software

engineering, database and web design, networking, and in

visual interfaces for many other domains.

Yet another problem for those developing XML based

database is that most users are not experts in information

retrieval. The users usually asking the question may not have

enough experience to format their query correctly. It is not

always intuitively easy to formulate queries which can narrow

the search to the precise area. Furthermore, regular users

generally do not understand the search mechanisms. The

document indices constructed by the current XML searching

tools are designed to be general and applicable to all [1].

Although XML is good for data exchange between

applications, it is often not chosen for visualization of the data

because it is not very human readable. Therefore, we focused

on the users and developed more intuitive ways to visualize the

XML documents.

In order to visualize the informative content of an XML

document, the structure of data has to be carefully preserved.

Therefore, we used a tree-like structure in which nodes are

used to represent the children (nodes) of the XML document

and links between these nodes are used to represent the

relations between these nodes [6, 7]. However, we used other

type of links to represent connections between arbitrary nodes

in a tree. For instance, if a document has three nodes and one

of the nodes has a link to one of the other nodes, a different

link coloring style is used to represent this relation. Therefore,

the main links is only used from the root to the children.

However, if the XML document has a complex structure

(nested nodes or levels); at each level, we used different

shapes for the nodes to represent their number of children, see

Fig. 5.

In this work, we developed a system called Angur for

visualization of structured data-oriented XML documents and

databases. It is proposed because in many applications,

complex structured data has been used and researched upon.

However, fewer researches had been done on using XML

visualization of these data structures or databases to allow

users to get better insights both in the data structure and also in

the application itself. Customizable visualization on XML

databases will be done by means of nodes in a network

representation. This project researches upon an efficient

filtration and transformation of XML database and documents

to fit particular user needs as well as a transformation to a

structure with a predefined graphical nodes presentation and

interpretation. A graphical arrangement of the network nodes

representation rules for an interactive manipulation is

presented, so the system itself can be considered a graphical

language. The graphical network representation is based on the

node maps.

Development of a Visualization Tool for XML

Documents

Khalil Shihab and Doreen Ying Ying Sim

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

153

II. REVIEW AND RELATED WORK

People are used to rely on visualizations to better understand

problems, to receive more information and more quickly

through the eyes, and to make better decisions in less time.

Visual interfaces have an increasingly important role in almost

all computing application domains and devices. This is a result

of the consistent demand by the users to use visual interfaces

in allow experts and non-expert in any domain managing

complex and information-rich tasks in particular. Therefore,

using visualization techniques and exploiting visual processing

abilities is one of the typical successful strategies that humans

use to decrease cognitive load and to simplify or ease the tasks

[8, 9, and 10].

In lieu of the literature review on Human-Computer

Interaction which will be elaborated later, the term „human-

computer interaction‟ can be put simply, the study of people,

computer technology, the ways these influence each other and

how this computer technology can be made more usable by

people [10]. In other words, study of HCI requires at least the

following : (1) computer technology, (2) the people who

interact with it, (3) understanding the work that people are

trying to perform by using the technology, (4) how it can be

made „more usable‟.

How can visualizations relate well with Human-Computer

Interaction (HCI)? If they relate well, how can visualization

techniques or visual displays of information work properly to

incorporate human-computer interaction (HCI) techniques and

methodologies? To achieve this, we need user visual interfaces

which are user-friendly, i.e. interfaces which require very little

or no training and can be used by the general public almost

immediately without any prior knowledge. In addition,

aesthetics (i.e. visually pleasing interfaces) plays a significant

important role in consumers‟ and users‟ choices in using the

application devices.

For visualizations and HCI, in order to incorporate them to

„work together‟ to achieve the synergy affects, we consider the

followings as the main features:-

(1) Mapping – How should we visually encode information

through possible visual features such as length, width, speed,

icon, movement, color, flicker, speed, animation and etc.?

(2) Selection – Among the data and information on the

visual interfaces, which is or are relevant to ease the

considered task?

(3) Presentation – How should we lay out the visualization

on the available display interface space?

(4) Interactivity – What tools should we provide to explore

and optimize the visualization effects?

(5) Human Factors – Are we taking into account human

perception capabilities? Meanwhile, are we taking into account

what mental models our users easily develop?

(6) Evaluation – How should we testify that the

visualization is really effective with users on the considered

task?

Dix et al. [12] considered that „human-computer interaction

is about devices that seem to exhibit a kind of magic. These

devices respond with complex contingencies to actions visited

upon them by people. They are used to build „user illusions‟ of

reactive paper or virtual worlds or artificial personae. They are

used as computational mediators and media for individual and

group work.‟

This research paper overall demonstrates how the

integration of large knowledge bases of semantic information

can be displayed through visualization of XML documents and

databases.

For the purposes of query refinement, it is useful to deal

with XML documents as a graph of elements. Our system can

retrieve an element‟s children, parent, siblings, etc., and

perform different kinds of aggregation. XPath provides a

simple way of expressing a path through a document tree to

select a set of nodes. When a path expression is evaluated, a

set of nodes relative to a context node is selected. The API for

our integration framework consists of a number of core classes

that allow applications to treat XML documents and databases

as graphs and to evaluate XPath expressions against a

document, to perform inter-document lookups and collect the

relevant nodes from the XML graphs. Classes are also

provided to treat the nodes as data of the appropriate type, to

enable aggregation in queries.

Recently a number of visualization systems has been

developed and widely used. Graphviz is one of these systems,

which was developed by Glen Low [13], won two 2004 Apple

Design Awards. The Graphviz layout programs take

descriptions of graphs in a simple text language, and make

diagrams in several useful formats such as images and SVG

for web pages, Postscript for inclusion in PDF or other

documents; or display in an interactive graph browser.

(Graphviz also supports GXL, an XML dialect.). GraphXML

[14] is a graph description language in XML that can be used

as an interchange format for graph drawing and visualization

packages.

Hydra3D is a 3-dimensional XML visualization and editing

tool for UNIX variants [15]. Documents are displayed as

interactive 3D tree structures. Hydra3D uses OpenGL graphic

library for three-dimensional display. The system is

implemented in Visual C++ .NET (version 7 or newer).

Currently, Hydra only runs on Linux, other related operating

systems, and Windows.

The existing visualization system of XML documents,

however, either do not comfirm to the good visualization

properties that are listed by Young and Munro [16] or ignore

the links (relations) between different nodes from the same or

different roots. Therefore, we considered these main points in

the design and implementation of our system, Angur. For a list

of important features of Angur see section 4.

III. THE MAIN FEATURES OF ANGUR

The main features of the Angur system are as follows:

A. Simple Navigation with Minimum Disorientation

The graphic manager part of Angur was designed to include

features to aid the user in navigating the visualization. In

particular, if the XML document contains a large number of

nodes, the graphic manager displays only the root of the tree.

The navigation of any part (level) or the whole tree is left to

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

154

the user. Therefore, the graphic manager provides the user a

full control on the way he/she likes to be displayed and to

work on.

B. High Information Content

The Angur graphic manager allows the user to display the

content of any node of the tree by moving and clicking the

mouse on that node

C. Low Visualisation Complexity, Well Structured

If an XML document has a complex structure, the graphic

manager displays not only the top level of the tree but also it

displays only the parent nodes of that level. The manager

allows the user to explode these nodes to their children nodes,

i.e. using partial display of the tree; the system provides the

desired information to the user.

D. Resilience to Change

The graphic manager allows changes of content of any node

and provides an option to the user for saving or ignoring the

changes. In case of updating and saving the resulting tree, the

system maintains the integrity of the data structure of XML

document.

E. Good Use of Interaction

The system provides a pull down menu of a few top level

options. Each of these options contains a few low level

options. Therefore, the system is designed and implemented to

be user friendly and easy to use.

1) Angur is platform independent; it is developed in Java

and can be used on any platform (Windows, Linux, Mac,

etc.) out of the box. Also, it can be used as a web applet

to be integrated into web pages. Angur occupies less than

50MB of the system memory when running.

2) Due to the shape of the nodes, Hydra and other existing

visualization systems would not produce readable results

when drawing large XML documents. Angur uses

specific algorithms which sort the nodes to be

presentable to the human user.

3) Angur allows the user generating an XML document

visually, without any XML knowledge. It is technically

referred to as “XML WYSWYG Editor”.

4) Angur is able to export the graph as Image and GraphML

files. GraphML is a de facto standard for graph

representation and this feature enables Angur to

collaborate with external graph drawing libraries such as

yFiles, which is known as the world's best graph drawing

library. Users are not bond to Angur's graphical features

when it comes to XML visualization; they could convert

their XML files to GraphML by Angur and then draw the

GraphML file in their desired application.

5) Angur is a multi graph application. Therefore, users can

open and visualize multiple XML documents

simultaneously and work on them individually.

6) Angur draws the graphs in multiple layouts (Tree and

Circle are currently implemented; many more layouts are

possible to apply).

F. Mining XML Documents

There are two main phases in the development of this

important part of the system. The first is the search and growth

phase. Here, the ranking system first constructs a collection of

nodes about a query string. Since the search results may

contain a large number of nodes, this number must be limited

to a reasonable quantity so that the system can reach a

compromise between obtaining a collection of nodes highly

relevant and saving computational effort. For constructing

such a collection of nodes, the ranking system makes use of

the results given by a text-based search engine. The search

engine will return a set of nodes which are determined by its

own scoring function as a root set. It then extends the root set

by adding any additional nodes that is pointed to by a node

already in the root set. The new collection is then renamed the

base set. In this way, the link structure analysis can be

restricted to this base set, which is expected to be relatively

small, rich in relevant nodes.

The second is the weight and propagation phase, in which

the results returned by the first stage are evaluated. Here, the

ranking system calculates the rank score of each node based on

the link structure between any node pairs in the base set, and

extracts good authorities and hubs from the overall collection

of nodes.

G. Computing similarity between nodes

The computing is divided into three steps, which are

Generating extended-element vectors, Measure of element

similarity, and Constructing of the similarity matrix.

Generating the extended-element vectors for an XML

document is as follows.

• Parse an XML document to extract elements and generate

a DOM (Document

Object Model) tree.

• Sift meaningful tokens by filtering delimiters such as

space, hyphen, and under score.

• Delete tokens included in a stop-list.

• Extract stems or original form of the tokens through

stemming process.

• Extend elements thus found, using the WordNet thesaurus

and a User-defined

word library, with synonyms, compound words, and

abbreviations. The basis of the measures is the degree of match

between original elements, between an original element and a

term in the extended element vector of another element. The

levels are divided into six with Level 0 is the leas similar and

Level 6 is the most similar. Finally, the similarity matrix for

two set of extended-element vectors representing two XML

documents is constructed. One set of extended-element vectors

forms the column, and another the row of the matrix. The

concept of this computing system is very useful to extract

information from XML document and database. It is the entry

to preparation for semantics-based XML mining.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

155

In some cases, semantics can be easily derived from our

daily language. For example, garden, can be described as

„open area, plants, and green region‟; and plants can also be

described as „flowers, trees, and grass. For using such simple

semantics, concepts can be defined by its primitives

(descriptors) that are for the medium and low level features.

These descriptors form a simple vocabulary, the so-called

„object-ontology‟ which provides a qualitative definition of

high-level query concepts.

In order to improve the retrieval accuracy of content-based

image retrieval systems, research focus has been shifted from

designing sophisticated low-level feature extraction algorithms

to reducing the „semantic gap‟ between the visual features and

the richness of human semantics.

One of the limitations of the current information retrieval

systems is the use of sound knowledge representation

paradigm. This is because the domains of these systems can be

hardly represented by logical formalization. Therefore, we

used case-based reasoning that has been proven more effective

in such week-theory domains.

In order to maintain a close match between the user queries

and the retrieved images, we therefore used an integrated

technique based on similarity matching and fuzzy reasoning

for indexing and retrieval of images. We also adopted XML

case-representation to facilitate the image storage and retrieval

process.

IV. SYSTEM DESIGN

The main components of this system are XML documents

and XML database, XML processor, and Graph Manager. The

XML processor, supported by XML parser (JAXP), has two

functions: transforming the XML database into proper XML

documents and vice versa. The Graph Manager, supported by

the graph library Jung, is the interface module. It accepts an

XML document and produces a tree-like structure that is

displayed on the screen. The Graph Manager has also another

task; it converts the tree-like documents to XML documents.

Fig. 1 shows the interaction of these components.

As the objective of this system is visualizing XML

documents and databases for the purposes of understanding,

we separate the visualization task into two main parts:

1) Processing Part: it has a bidirectional activity; it accepts

XML database or documents and generates acceptable

documents to the second part, which is the Graph

Manager, and vice versa. For XML databases, we used

only the file structure that is produced by native-XML

database. Native XML Databases store XML documents

of the same type in document collections, similar to

relational databases that store tuples in tables.

2) Graphic Manager: it is the interface part, it accepts the

files produced by the first part, i.e. the processing part,

and generate the tree-like trees. Also, it handles the

modifications of these trees by the users during the

execution processes. The types of information that can be

handled include not just object updating, creation, and

deletion but also the tree-like shape modification and

rotation. In addition, it handles the actions of exploding

and collapsing of any sub-tree of the whole tree.

We use Java programming language that supported by

JUNG software library for the implementation of the Angur

system. JUNG (Java Universal Network/Graph Framework),

written in Java, provides a common and extendible language

for the modeling, analysis, and visualization of data that can be

represented as a graph or network. It was created by three

Information and Computer Science PhD students at the

University of California, Irvine: Joshua O'Madadhain, Danyel

Fisher, and Scott White [17].

Fig. 1. Angur‟s system architecture.

V. SYSTEM IMPLEMENTATION

The Angur system is implemented in the Java programming

language and supported by JUNG software library. JUNG

provides a common and extendible language for the

manipulation, analysis, and visualization of data that can be

represented as a graph or network. This allows our system, in

particular, making use of the extensive built-in capabilities of

the Java applications.

Currently, the implementation of the system is divided into

three main modules: Visualizing an Existing XML file,

Creating a new XML data file and Saving the Graph as XML.

The pseudo code of these modules as follows:

A. Visualizing an Exiting XML File

1) User chooses to import the XML file and selects the

file.

2) The file address on disk is sent to XML Loader (part of

XML Processor).

3) XML Loader verifies the file's structure according to

the standard schema.

4) If any error is found, and exception is thrown.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

156

5) If no error, the file loads in memory as an XML

Document object.

6) Document object is sent to Plotter (Part of Graph

Manager).

7) Plotter reads the Document object's contents and

generates the graph by creating the corresponding

vertices and connecting those using edges.

8) The graph is sent to the currently active Canvas

window to be inserted and shown to the user.

9) User chooses to add/remove/modify a node.

a. Receive required information/confirmation.

b. Modify the Document object accordingly.

10) Go to step 6

B. Creating a New XML Data File

1) Large figures and tables may span both columns. Place

User chooses to generate a new Canvas.

2) A blank Document object is created.

3) Document object is sent to Plotter (Part of Graph

Manager).

4) Plotter reads the Document object's contents and

generates the graph by creating the corresponding

vertices and connecting those using edges.

5) User chooses to add a new node.

a. Receive required information/confirmation.

b. Modify the Document object accordingly.

c. Go to step 3.

C. Saving the Graph as XML

1) User chooses to save the graph as XML.

2) The selected path and XML Document are sent to the

XML Writer (Part of XML Processor).

3) XML Writer explores the Document and writes the

content to a text file with .XML extension, with

accordance to a standard XML schema.

4) Saving the Graph as GraphML.
5) User chooses to save the graph as GraphML.

6) The selected path and XML Document are sent to the

GraphML Writer (Part of XML Processor).

7) XML Writer explores the Document and writes the

content to a text file with .GML extension, with

accordance to GraphML Premier.

VI. CONCEPT-BASED NODES INDEXING AND RETRIEVAL

In order to improve the retrieval accuracy of content-based

image retrieval systems, research focus has been shifted from

designing sophisticated low-level feature extraction algorithms

to reducing the „semantic gap‟ between the visual features and

the richness of human semantics.

The solution for information retrieval historically has been

to develop text-based ontology and classification schemes for

image description. Images are indexed using different way

of concepts representation, which depends on the

definition of the concept [18, 19].

Concept-based information retrieval is based on the

interpretation and description of nodes or elements in terms of

what they are and what they represent. Therefore, a concept

can be defined as an abstract or general idea from particular

instances. As such it implies the use of background knowledge

and an inherent interpretation of what is perceived.

A. Case-based Reasoning

Case-based reasoning makes use of past experiences to

derive the solution for a new problem. It has been widely

implemented in practical applications [4, 5]. Often, it is a

common practice to narrow the set of retrieved cases by means

of a similarity metric. Another problem encountered in case-

based reasoning is the acquisition of past experiences when the

reasoner is initially deployed. At that early stage, the reasoner

may have to find a solution from scratch due to insufficient

numbers of past cases to be used as model. Therefore, we used

XML as case representation for making up structured

knowledge-rich data. XML has been proven an effective

knowledge representation technique for image database that is

capable of XML is capable of representing sophisticated

structures of a variety of types, well beyond the simple tables

of delimited text commonly used to exchange information, and

comes with tools for describing those structures.

For dealing with information retrieval, we consider the

query entered by the used as a new instance to be matched

against existing cases that are previously collected and

maintained in the case base (repository). An alternative source

of expertise is an extensive memory of a case base CB= {C1,

C2, Ck}. Faced with a new instance N, it may be possible to

estimate a meaning for N by assuming that some suitable

description of N relates to an equivalently phrased description

of a case Ci of CB in the same way that the meaning of N

relates to the meaning of Ci.

A node in an XML document can be described by a set of

(attribute, value) pairs. These pairs, which represent

classification criteria, enable the users to select a node (a case)

from already known cases based on the degree of similarities

between the description of a new node and of the selected

nodes that may be described by qualitative and quantitative

features. For case indexing and retrieval, there is a number of

approaches deal with qualitative attributes [6]. We have, in

particular, encouraged by the recent attempts at building

systems that combine CBR and fuzzy set theory.

Using fuzzy indexing and retrieval allows attributes that are

characterized by numerical values to be converted into fuzzy

sets to simplify comparison. For example, the height of the

artifact can be converted into categorical scale (e.g. tall/large,

medium, and short/small). Also, fuzzy sets allow multiple

indexing of a case on a single value with different degrees of

membership. For example, if the size is 60cm, this can be

classified as tall with 0.4 and medium with 0.7, where 0.4 and

0.7 are the degrees that the height is classified as tall or

medium respectively. This treatment increases the flexibility of

case matching by allowing the case to be considered as a

candidate when we are looking for an artifact with either large

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

157

or medium size.

The key to satisfactory use of the case base is a simple and

general scheme for the formation of reasoning. The present

scheme depends on similarity matching of the properties of a

given problem instant, a new case, to the properties of cases

(objects) in a hierarchical structure. In contrast to other

schemes, there is no context used in this scheme.

B. Database Construction

The system database was designed to emphasize simplicity

and portability. These criteria can be achieved by using XML

file structure that also enables a smooth navigation and editing

of the document. Therefore, the internal representation of the

knowledge base is constructed using XML with multiple

inheritances [8, 9].

Every image added to the database is copied into the

appropriate subfolder in the main directory of images and a

resized small version of the file is copied into the thumbs

directory. The XML directory contains the index files required

to maintain the integrity of the directory structure and to

manage the data extracted from the images. The design

supports a simple access to data and ease of data distribution.

When an image is added to the database, features are extracted

from the image and stored in an index file in the xml directory

of the database. The XML index file contributes to the design

goals of simplicity and portability by allowing easy access to

the underlying data [21, 22].

The system is implemented using ASP.Net and DOM

(Document Object Model). Using the DOM has several

advantages over other available mechanisms for the generation

of XML documents such as writing directly to a stream.

Since the DOM transforms the text into an abstract

representation of a node tree, problems like unclosed tags and

improperly nested tags can be completely avoided. When

manipulating an XML document with a DOM, we need only to

worry about parent-child relationships and associated

information. The node tree created by the DOM is a logical

representation of the content found in the XML file, it shows

what information is present and how is it related without

necessarily being bound to the XML grammar.

The way in which the DOM represents the relationship

between data elements is very similar to the way that this

information is represented in modern hierarchical and

relational databases. This makes it very easy to move

information between a database and an XML file using DOM.

C. Indexing and Retrieval of Cases

Case attributes can be either quantitative or qualitative.

Qualitative attributs accept nominal values. For example, the

artefact type is a qualitative attribute whose value may be

stone, bronze/copper, clay, gold, ivory, or shell. Quantitative

attributes, on the other hand, allow values to be measured on a

numerical scale.

Fuzzy indexing and retrieval are useful in domains where

cases have quantitative attributes. For cases with qualitative

attributes only, indexing can be performed on attributes

directly. For example, artifacts can be classified as large,

medium, or small (three classes according to their size); or can

be classified according to their materials into six classes:

stone, bronze/copper, clay, gold, ivory, or shell. We can easily

index systems by their materials. If we also want to include the

height or size, indexing becomes more complicated since the

value of this attribute can be any positive real number.

However, with a proper transformation into a few discrete

classes based on practical requirements, indexing becomes

easier to handle.

The process of fuzzy indexing is, therefore, of two stages.

Quantitative attributes are first processed by the fuzzifier

(called fuzzification) and then indexed on the resulting classes

(indexing) before being stored in the CB. The following

section describes these stages in more detail and illustrates

how they can be applied to the lost treasures domain.

D. Fuzzification Process

The fuzzification process includes the following steps:

1) When a case is encountered, qualitative attributes are

identified.

2) For each quantitative attribute, proper classes are

determined based on practical needs.

3) The membership function of each class and its

associated α-cuts are determined.

4) Numerical values of each case are converted into

proper classes for indexing.

VII. VISUALIZATION OF XML DOCUMENTS - SCREENSHOTS

AND WORKFLOW

Fig. 2. A screenshot of the main window of Angur, user has two

options: 1) creating a new XML data file (composing), and 2)

Visualize an existing XML data file (importing).

By clicking the Add Node button, the "Add Node" window

appears to help users create a new XML node, see Fig. 3. The

same window is used to update or delete an existing node.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

158

Fig. 3. Clicking the "Add Node" button, the system display this

window allowing the user to enter the attributes (elements) along

with their values.

From the main window of the system, the user can import an

XML document. Now, suppose that the following XML

document is imported; the system provides an option from its

main window for importing XML documents. Fig. 4 shows the

tree-like visualization of this document

<?xml version="1.0" encoding="UTF-8"?>

<!--

 Document : balloon.xml

 Created on : March 7, 2010, 2:23 AM

 Author : Amir

 Description:

 Purpose of the document follows.

-->

<A0>

 <B0>

 <C0></C0>

 <C1></C1>

 <C2>

 <H0></H0>

 <H1></H1>

 </C2>

 <C3></C3>

 </B0>

 <B1>

 <D0>

 <F0></F0>

 <F1></F1>

 <F2></F2>

 </D0>

 <D1>

 <G0></G0>

 <G1></G1>

 <G2></G2>

 <G3></G3>

 <G4></G4>

 <G5></G5>

 <G6></G6>

 <G7></G7>

 </D1>

 <D2></D2>

 </B1>

 <B2>

 <E0></E0>

 <E1></E1>

 <E2></E2>

 </B2>

</A0>

Fig. 4. Visualization of the tree-like structured documents.

When an XML file is visualized, the Angur system allow

users carrying out many actions including update, delete,

relocate and reconnect a node on another branch of the tree-

like structure. The system also allows the user to rotate the

whole image.

Nodes can be collapsed to improve complex graphs'

readability, see Fig. 5. When a node is Collapsed, its shape

will change according to the number of immediate successors

it has e.g. Square if it has 4 children, Pentagon if it has 5

children, etc. Users can Collapse and Expand the nodes by

right clicking on them in “Picking" mode.

Fig. 5. If a node is collapsed, the shape of this node will change

according to the number of its children nodes.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

159

VIII. CONCLUSION

The current research shows not only the promising public

domain data visualization software systems running on the

personal computer platform but also the effectiveness and the

usefulness of such systems to the users.

In this paper we have described the Angur system for

visualization of XML documents. The system is based on an

efficient visualization method that utilizes the JUNG software

library in order to improve its capabilities. To get some

insights into the functionality of Angur, we showed some of its

features using an XML document.

Further research areas include the visualization and

management of multiple XML documents. This is important to

allow users visually moving a node (s) from one document to

another.

REFERENCES

[1] Atay, Mustafa and Shiyong Lu, “Storing and Querying XML: An

Efficient Approach Using Relational Databases”, ISBN 3639115813,

VDM Verlag (2009)

[2] 3. Shihab, K., Ramadhan, H. and Al-Chalabi, N. An Integrated

Approach to Digital Objects Storage and Retrieval, Journal of Computer

Science, 2 (9), pp. 683--689, (2006)

[3] 4. Burch, M., Diehl, S., and Weissgerber, P. Visual data mining in

software archives. ACM Symposium on Software Visualization. ACM

Press. 37--46, (2005)

[4] 5. Erwig, M. A Visual Language for XML, Proceedings of the

2000 IEEE

[5] International Symposium on Visual Languages (VL'00), p.47, (2000)

[6] 6. Shneiderman, B. Tree visualization with tree-maps: 2-d space-filling

approach, ACM Transactions on Graphics (TOG), v.11 n.1, pp.92--99,

Jan (1992)

[7] 7. Pietriga E., Vion-Dury J. and Quint, V. VXT: a visual approach to

XML transformations, Proceedings of the 2001 ACM

Symposium on Document

[8] Engineering, USA (2001)

[9] 8. Collberg, C., Kobourov, S., Nagra, J., Pitts, J., and Wampler, A

system for graph-based visualization of the evolution of software. ACM

Symposium on Software Visualization. ACM Press 77--86, 212, (2003)

[10] 9. Frishman, Y., and Tal, A. Visualization of Mobile Object

Environments. ACM Symposium on Software Visualization. ACM

Press. 145--154, 213, (2005)

[11] 10. Eick, S.G., Graves, T.L., Karr, A.F., Mockus, A., and Schuster, P.

Visualizing software changes. IEEE Transactions on Software

Engineering. 28 (4), pp. 396--412, (2002)

[12] 11. Ronald Laurids Boring, Human-Computer Interaction as Cognitive

Science, Proceedings of the Human Factors and Ergonomics Society,

46th Annual Meeting, pp. 1767--1771, (2002)

[13] 12. Dix, A. et al, Human-computer Interaction, Prentice-Hall, 3rd ed.

(2004)

[14] 13. http://www.graphviz.org/, last accessed April 2010.

[15] 14.Herman, I. and Marshall M. GraphXML - An XML-Based Graph

Description Format, Lecture Notes In Computer Science; Vol. 1984,

Proceedings of the 8th International Symposium on Graph Drawing, pp.

52--62, (2000)

[16] 15. http://hydra3d.sourceforge.net/indexFrames.html), last accessed

April 2010.

[17] 16.Young, P., and Munro, M. Visualizing software in virtual reality.

IEEE First International Workshop on Visualizing Software for

Understanding and Analysis. IEEE Computer Society Press, pp. 19--26,

(1998)

[18] http://jung.sourceforge.net/, last accessed April 2010.

[19] Khalil Shihab, Emotional Agents in Computer Games, International

Journal of Computers, Issue 2, Volume 3, pp. 270-277, 2009.

[20] Khalil Shihab. Performance Tuning of Novell Netware Based on Fuzzy

Reasoning, International Journal of Computers, Issue 1, Volume 2, pp.

80-88, 2008G. O. Young, “Synthetic structure of industrial plastics

(Book style with paper title and editor),” in Plastics, 2nd ed. vol. 3, J.

Peters, Ed. New York: McGraw-Hill, 1964, pp. 15–64.

[21] Khalil Shihab. Automatic and Dynamic Tuning of Operating Systems,

Wseas Transactions on Systems, Vol.4, pp. 1845-1852, 2005.

[22] Khalil Shihab, Haider Ramadhan, and Nida Al-Chalabi. Probabilistic

Graphical Models for Dynamic Systems, Wseas Transactions on

Systems, Vol.4, pp. 830-837, 2005.

Dr. Khalil Shihab is an Associate Professor at Victoria University,

Australia. He earned his PhD in computer science from The University of

Exeter; the PhD research was jointly done with University College London

(UCL). His research is in the areas of Applications of Artificial Intelligence,

Data Mining, Software Engineering, and Computer Systems Performance and

Capacity Planning.

Ms Doreen Sim is currently a lecturer in the School of Engineering,

Computing and Science, Swinburne University of Technology – Sarawak

Campus

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

160

