

Abstract—This paper considers how Petri net main classes or

categories can be used to support systems and software requirements
engineering processes. In general Petri nets are classifiable into four
main categories which are i) elementary nets , ii) Normal Petri nets ,
iii) higher order nets and iv) timed Petri nets or Petri nets with time.
Apart from some major fundamental differences, each category has a
specific use for systems engineering and software engineering and
thus they can clearly help with requirements engineering issues. In
this work the main differences between these categories are briefly
explained. It is also shown how these Petri net classes can be made to
fit in a semi structured approach. This is very useful for the analysis
and design of a whole range of system types. A simple case study of
a vending machine is used for illustrating this work.

Keywords— Higher order Petri nets, Petri nets, Requirements

engineering, software modeling,

I. INTRODUCTION
ETRI NETS are special graphical formalisms based on sound
mathematical principles that can properly explain the

‘cyber physical’ behavior of systems and their components.
They have over three decades of use. Petri nets share many
common properties with other formalisms. Petri nets can be
verified and simulated. Petri nets can normally be converted to
time Petri nets for simulation and performance modeling. Petri
nets have a dual identity. They can be represented graphically
and non graphically. Compared with other formalisms Petri
nets are preferable for visualization and comprehension by
different stakeholders.

Petri nets have been used to model i) hardware, ii) software
systems, iii) communication systems, iv) manufacturing and
v) software modeling. Some examples are: intelligent
transport system analysis, analysis and design of flexible
manufacturing systems, requirements engineering of
embedded applications, supporting UML notations and their
transformations, most UML diagrams ranging from class
diagrams to use cases and activities have been supported via
Petri nets. Other examples are LAN and WAN requirements
analysis and performance estimation, computer hardware
architecture modeling, architectural specification for
distributed systems, system on a chip verification, hybrid
systems analysis, wireless network routing, real time systems
critical performance estimation, fault diagnosis, workflow
analysis, traffic control, e-commerce system modeling, etc

Manuscript received Jul 15, 2010. Anthony (Tony) Spiteri Staines, is with the
Department of Information Systems, Faculty of ICT, University of Malta,
(corresponding phone: 00356-21373402,e-mail: toni_staines@yahoo.com)

[17]-[21]. Many more uses can be found. In general Petri nets
have been used for requirements elicitation, system modeling,
supporting UML diagrams for verification and execution [2]-
[9]. The extensive use of Petri nets in information technology
is evidenced in many different sources and books.

 Petri nets can be applied at different levels of granularity in
the software or hardware engineering process. Petri nets can
model very well higher levels of abstraction as is done in
Fundamental Modeling Concept Approach [16] down to
program level or very low levels of programming logic [9].
Petri nets can describe a high level manufacturing process
managed via hardware down to multi layered networking
protocols and programming instructions in almost any
language.

Modern systems are normally a hybrid of software and
hardware in varying amounts. Many research projects
challenge traditional development by requiring new methods
of integrating system components. Thus more stringent
requirements are placed at the analysis and design stages.
Today many industries depend heavily on software and
hardware integration. New methods of software engineering
are required to solve these problems. However it is not always
an easy task and involves a lot of time.

Petri nets can be used for many different issues in the
system and software engineering processes. System and
software engineering processes are intricately complex issues
and cater for a variety of systems ranging from simple to
complex systems that are very difficult to specify correctly. It
is for this reason that many different sub classes or different
Petri net types have been formally defined and created. Every
one of them has its own particular specialized use which is
very interesting to solve and address a particular problem. But
having so many different types of Petri nets creates issues as
how to choose the best Petri net type or class for a particular
problem. Petri nets can be used to test and verify rigorously,
system functionality and design implications at the very initial
phases of analysis. They can be used to determine critical
performance issues related to time and failure. Petri nets can
be used to create different viewpoints of a system related to
the conceptual, logical or physical design structures.

II. PROBLEM FORMULATION
In principle system and software engineering [1], [13]-[14]

are related. The success of systems implementation depends
on the integration of both. Requirements engineering
manages the whole process of requirements elicitation, design
and requirements expression. But at the same time the

 Supporting Requirements Engineering With
Different Petri Net Classes

A. Spiteri Staines

P

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

215

requirements engineering process is not restrictive as to which
model or notation is to be used at a particular stage. These
serve as tools for supporting requirements engineering.

Different types of Petri nets have been created for different
problem scenarios. This is sometimes done for a one off
problem. Petri nets are classifiable under three or four main
types.

 Finding the right Petri net type for a problem is no easy
task. This is because it becomes complicated to select the
correct class and type creating a problem. Classifying Petri
nets into four major types indicates that it is not easy to select
the correct Petri net type. This is further complicated by the
fact that what is required initially at the early analysis stage
might become obsolete for the design stages. To explain this
issue: e.g. if we take a particular system, initially a simple
Petri net model of it could suffice for the general system stake
holders but as the design stage is entered the system engineers
require a complex performance model for clarification, i.e. a
timed colored Petri net is needed. This implies that if we have
a simple Petri net model, this model is not so useful as more
detail is required. On the other hand if there is a simple
straightforward problem, modeling it using a complex Petri
net is unjustified.

 Petri nets four main categories are i) elementary nets , ii)
Petri nets , iii) higher order nets [10]-[11] and iv) timed Petri
nets. These categories have further subdivisions that can
become quite complex and are not dealt with here. Normally
the more detailed or complex classes are suited for very
specific problem modeling.

Unfortunately there is no clear guideline that indicates
which Petri net class or classes should be used for systems and
software engineering. Each class offers different features from
another class. This is evident from the vast literature available.
There are overlaps in the types of Petri nets used so these can
be generalized for both systems and software engineering
which are considered. Sometimes a difficulty occurs when to
use a particular Petri net class instead of another. To
complicate matters, different classes have similar properties
that might make the Petri nets look similar when in reality
there are many other attributes included. Another problem is
that a Petri net class that is unnecessary complex is used to
represent a simple system. This could have easily been shown
using a more elementary class. At different levels of
requirements elicitation, different models are normally
required.

III. PETRI NET CLASSIFICATION
Requirements [1], [12]-[14] have to specify what a system

does and how it does it. Systems are composed of a series of
interacting components either hardware or software or a
combination of both. System processes expressible in
graphical notations can be modeled as Petri nets. System
processes are derivable from sequence of observations made
regarding system behavior. In this approach or work a simple
method is suggested. Complex transformations are avoided and the idea is to generate an initial Petri net that will serve to

create more complex and higher order nets if necessary. The

TABLE I
PETRI NET MAIN CLASSES

Level Class/Category type Description

 1 Elementary Nets i. simple structured nets
ii. well behaved

iii. boolean tokems
iv. simple behavior

 2 General Petri Nets i. arcs can have multiple
values

ii. place capacity greater
than one

iii. unstructured tokens
iv. tokens as integer values
v. many sub classes

vi. e.g. P/T nets, S-nets, T-
nets etc

 3 Higher Order Petri
Nets

i. highly structured places
ii. representing records, sets,

objects
iii. well formed
iv. complex data types
v. complex transition firing

rules
vi. arc structures

vii. complex structures
overall

 4 Timed Petri Nets Variants of the above classes with
timing elements introduced

TABLE 2

 PETRI NET CLASS USES

Level Class/ Category type Description

 1 Elementary Nets i. basic top level system
description

ii. simple modelling,
iii. abstraction of top level

processes
iv. initial systems analysis

and design
v. teaching Petri nets

vi. basic network structure
models

vii. preliminary analysis
 2 General Petri Nets i. initial systems analysis

and design
ii. system composition and

decomposition
iii. teaching Petri nets
iv. similar to EN classes

 3 Higher Order Petri
Nets

i. more program oriented
solutions

ii. problems requiring
complex modeling rules
e.g. real time error
handling

iii. fine granularity modeling
iv. complex modeling as

close as possible to the
real solution

 4 Timed Petri Nets i. simulation and behavior
analysis

ii. performance modeling
with time

iii. bottleneck identification
iv. system failure

identification

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

216

idea is to formally or informally transform requirements
directly into a simple Petri net or elementary net. This is a
good starting point. Later, more complex Petri nets like higher
order nets and timed Petri nets can be derived from the initial
net. The information used to create the initial net can be
derived from various sources of information, formal, informal
or both.

The analogy is to use a “correct-by-construction” approach,
where the Petri net can be validated at different stages before
reaching the final detailed model or models. The final model
would serve to obtain the detailed requirements for producing
the system. Fundamental flaws or incorrectness would be
sorted out initially or as work progresses.

A. Petri Net Categories and Classsification
According to [10]-[11] Petri nets are normally classified

into three major categories. In this work we classify Petri nets
into four major types or levels. These are i) Elementary Net
Classes, ii) Main Petri Net Classes, iii) Higher Order Net
Classes and iv) Timed Petri nets (TPNs) [13]. Refer to table 1
and 2. TPNs are very important for system and software
modeling and there are extensive references to these being
used directly.

B. Elementary Net Classes
These are a fundamentally simplistic class of Petri nets.

Normally in ENs controlled changes take place via events that

must be identical in another context. It is possible to obtain
EN structures by ‘reducing’ other types of Petri nets. In this
case information is lost or removed. For EN systems the state
space is quite small. Behavior is always predictable.

 In the elementary net categories [15] the Petri net
structures are rather basic and restricted. Condition event nets
(C/E) are structurally similar to elementary nets (EN). These
structures are identified as having simple structural qualities in
Petri net terminology. In this category places can contain at
most one token. Input arcs and Output arcs connecting to a
transition remove and output one token. This means that
places represent boolean information. Condition event net
systems are pure/simple/1-live. There is backward and
forward reachability where every event has a chance to occur.

C. General Petri Nets
The second category of Petri nets [10]-[12],[15] are still

quite similar to the previous one. There are structural
similarities. In fact elementary net structures could be Petri
nets with certain restrictions. It is still quite simple to convert
this class into elementary nets via reduction. The Petri nets in
this category are still simple in structure but places can
contain more than one token and arcs can have multiple values
removing more than one token at a go. In this category there
are i) Ordinary Place Transition nets, ii) Free choice nets, iii)
S-System state machines, iv) T-System marked graphs, etc. It
is possible to classify Place transition systems in this category.
Tokens are still unstructured but they can represent integer
values.

D. Higher Order Net Classes
The third category as its name implies has significant

differences from the previous ones [4]-[6]. Here Petri nets are
no longer simple and start to resemble programmable artifacts
that are graphical and retain basic structural and operational
properties of Petri nets.

Some higher order nets are: Algebraic Petri nets, Predicate

Fig. 1 Petri Net Class Transformation Relationships

Fig. 2 Semi Structured Petri Net Class Transformations

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

217

Transition nets (Prt), Product nets, environmental nets, object
oriented Petri nets, colored Petri nets, etc [10]-[11]. Higher
order structures are characterized mainly by token types that
can represent anything like an object, record, data sets,
complex data types, etc. Place token types are complex.
Tokens are well structured or well formed and can represent
complex values or structures defined on abstract data types.
Transitions can have complex firing rules that match special
token data sets. The rules can be programmed using special
languages like ML as in the case of CPNs [5]-[7]. Arcs can
contain special inscriptions. These Petri nets are suitable for
detailed modeling and system behavior. They offer a great
deal of flexibility and simulations that are close to the real
world or actual environment. This class of Petri nets greatly
increases the modeling power of these structures, at the same
time these structures become very complex and are no longer
simple to create. They require special expertise. To work with
these classes programming knowledge is a prerequisite.

E. Timed Petri Net Classes
The fourth category represents timed Petri nets (TPNs)

[12]. There are many different sub categories of TPNs, but
basically they are one of the three classes previously presented
including the time dimension. As explained, more than a
category in its own right this class derives from the previous
ones. However here they are considered as separate structures
because they offer a different modeling perspective and the
time dimension which is important for system and software
structures. This implies that it is possible to convert/transform
an elementary net into a timed Petri net. Normally the time
values are assigned to transitions. It is possible to assign the
time values to arcs and places also. Some common types of
time Petri nets are timed Petri nets (TPNs), deterministic
timed Petri nets (DTPNs), stochastic Petri nets (SPNs),
GSPNs [12], Q-nets ,etc. TPNs are very important for
performance modeling, simulation and analysis related to
bottleneck problems in systems. Some sub classes of TPNs
can become quite complex and detailed and require special
expertise being directed to special areas.

IV. POSSIBLE PROBLEM SOLUTION

A. Petri Net Transformation Relationships
The diagrams in fig. 1 illustrates the possible relationship

between the four main categories of Petri nets useful for
modeling. This diagram illustrates that all net types are
directly transformable from one to another. Obviously this
transformation does not necessary imply that the nets will and
must look similar to one another.

 From a practical point of view transformation from one
class or category to another can be done directly. An EN
system can be transformed into a TPN by adding time values
to transitions. A higher order net can be created from a general
Petri net or elementary net by adding token types, firing rules
and arc inscriptions. A higher order Petri net can also be
transformed into a TPN by adding time values to the

transitions [12]. A higher order Petri net can be created from a
P/T net or vice-versa. From the TPN structure it is possible to
create a higher order Petri net or an EN or TPN etc. For
modeling system and software behavior the ideal starting
point might be either the EN system or a Place transition net.
Transformation from the P/T net into the EN is quite simple as
actually it is a reduction of the structural properties of the P/T
net. Different literature exists for formalizing the possible
correspondence and transformations. Formalizing the
transformations might reduce the actual usefulness of this
approach because it might be better to leave it open to the user
to develop the models accordingly. Hence the diagram in fig.
1 serves as a reference map or guideline to what is possible.

B. Semi Structured Transformations
For i) Initial system modeling: This is normally done at a

high level of abstraction. It is ideal to start off using either
main Petri nets or elementary nets. These are suitable to
illustrate basic system operations and create working models.
ENs and main Petri nets are suitable for modeling very
elementary protocols or device handling or basic operational
logic. At this stage emphasis is placed on conditions and
events as well as understanding the main features. ii)
Advanced or detailed system modeling: In this case EN and
main Petri net classes might not be suitable as more
information and detail needs to be represented or captured in
the Petri net structure. Higher Order nets like CPNs, etc.
might be more suitable for this. The detailed system model
can be constructed using the information of the initial system
model. The emphasis here is more on detail and expression
handling.

 iii) Timed model: The timed model can be constructed
directly from the initial model or from the advanced model for
experimenting with timing issues.

Different Petri net models can be targeted towards the
needs of different system stakeholders e.g. one non technical
person is interested in the top level functionality, so the EN
are more suitable, but the systems engineer is interested in the
low level detailed functionality so the higher order net is more
appropriate.

At any step in the process if one is satisfied with the model
there is no need to construct further models. If refinement is
needed, the model can be modified or more detailed models
created.

V. CASE STUDY

A. Simple Vending Machine
A case study of a simple vending machine that operates by

coin insertion is considered. In [15] a different view of a
vending machine is given. The vending machine’s main steps
summarized are: i) coin insertion, ii) select and dispense item
and iii) refill item. The initial net to be constructed according
to the semi structured transformation in fig. 2 is the
elementary net. This is shown in fig. 3.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

218

Fig. 5 Vending Machine Colored Petri Net

Fig. 3 Vending Machine Elementary Net

Fig. 6 Vending Machine Timed Petri Net

Fig. 4 Vending Machine General Petri Net

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

219

This structure is used as the starting point for constructing
the basic Petri net, higher order nets and/ or the timed Petri
net. It serves as the starting point for creating more detailed
models for further investigation and analysis. It is possible to
go into detail and draw the elementary net aesthetically better.
The node and edge layout can be improved.

B. General Place Transition Petri Net
The detailed Petri net or place transition net is built from

the elementary net in 4.1. This is shown in fig. 4. Places can
contain more than 1 token. The net is not necessary conflict
free and is not simple. This Petri net contains more reasoning
about the system. The execution logic is more complex than
the EN system. This structure allows for the possible
selection of items using conflicting transitions. The refilling of
products has been separated from the main structure. A coin
counter that allows maximum insertion of 4 coins is
introduced. When a coin is inserted it is possible to accept it
or reject it. Arc weights can be used to decide which items to
dispense. In this example, for product A, 3 coins are
necessary, so dispense product A is enabled if there are 3
tokens in coin accepted place. When an item is dispensed an
item is removed and a refill takes place automatically so there
are always 4 items buffered to be dispensed for each product
available.

C. Higher Order Petri Net
The higher order net is constructed from the general place

transition Petri net in 4.2. This is shown in fig. 5. Token types
are based on sets. Some token types are coin, change, amount
and items. The operational logic of the colored Petri net is
closely imitates the real machine operational logic. It includes
many details. Coins are inserted into the vending machine
using a random function to obtain the value. Product selection
is done using a function called check. Once a product is
selected the change is computed and given to the customer.
Items have an actual name like A for product A and a quantity
value. Thus a value (“A”, 4) means that there are 4 items of
product type A. One place can be used to manage all items.

D. Timed Petri Net
The timed Petri net can actually be constructed from the

nets described in 4.1, 4.2 or 4.3. The net in 4.2 is converted to
a TPN. As shown for constructing the TPN it is not necessary
to alter the underlying net structure but add time to transitions,
places or arcs. Normally timed transitions are used. This is
shown in fig. 6. This timed Petri net looks almost identical to
the vending machine general Petri net shown in fig. 4. The
only changes are the transition types. The immediate
transitions in fig. 4. are converted to timed transitions. This
is the only change carried out and the underlying structure is
unmodified. Two types are used: i) Deterministic or fixed
time, ii) time obtained from uniform distribution. The
transition insert coin has a time value of [50,100] which could
represent the time in seconds required to insert a coin by a
customer. If the colored Petri net in fig. 5 is converted or

extended to include time, the structure would look similar.

VI. RESULTS
The aim of this work was to identify the different uses of

Petri net classes in systems design process and see how they
can fit together. Table 4 summarizes the use of these Petri net
classes. Traditionally, users look only at a single class of Petri
nets and cannot see the full picture of the different classes at a
single glance. In this work it has been shown that all these
classes are all useful at one stage or another. Petri net
structures can practically represent various forms of dynamic
behavior for most systems and software artifacts. Normally it
is better to progress from simple structures to more complex
ones. As fig. 1 indicates transformation from one class to
another is possible at any stage. Some transformations imply
adding more information, whilst others imply reducing the
Petri net structure and removing information. A semi
structured non formal approach is presented to simplify the
idea and present the working importance of Petri nets to a
large group of users.

All the models created are working models which are fully
functional, deadlock free, etc. The models were created in the
given order and can be developed further. From a modeling
perspective the EN and general Petri nets are less complex
than the higher order net. Hence it is easier to analyze EN and
general PNs for static properties. It is possible to prove the
correctness of these models using place/transition invariants
and input/output incidence matrix. Table 3 summarizes the
basic properties for the nets in fig. 3 and 4. These are the
elementary net and general Petri net. These basic properties
can be used to analyze these Petri nets. E.g. It is possible from
the reachability analysis to construct a marking graph.
Boundedness refers to the places being bounded. Liveness
would indicate that the net transitions are enabled for firing in
a given sequence. Reversibility indicates that the net can
return to its original state or initial marking. In addition to
these properties there are things like siphons and traps, etc. All
the nets can be analyzed using simulation. The TPN is useful
when the underlying structures are correct and timing issues
need to be analyzed. This is the case with systems like real
time, critical, etc.

Other results like Petri net static and dynamic analysis can
be investigated. This is carried out on the models that need to
be analyzed. The results would be useful for comprehending
the underlying structures, complexities involved and Petri net
properties.

A timed Petri net like the one in fig. 6 is useful for
obtaining the cycle time of the system. This can be used to
understand if there is a possible bottleneck with timing of
different activities. This could then be resolved by changing
the timings. Optimization problems begin with crucial
understanding of the problem domain and the functioning of a
system. Such systems normally are constraint bound related to
capacity or time. Timed Petri nets are very useful for
investigating this case. Normally optimization problems can

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

220

be formulated mathematically. Timed CPNs and certain
classes of TPNs can be used for investigating certain types of
problems. Systems operating at below optimal levels can incur
certain penalties.

The Petri nets are suitable for visualizing the systems. It is
possible to transform the Petri nets into directed graphs for
other forms of analysis. The Petri nets could also be enhanced
by using other formal languages. Other forms of analysis are
possible like probability estimation of transition firing,
discrete event simulation

Unfortunately the graphical complexity of the Petri nets
will grow with the system complexity making them more
difficult to depict. Validation and verification are not so
simple when the Petri nets are complex. The models can be
simplified using Petri net reduction methods based on rules

for fusion, augmentation or elimination of places and
transitions.

VII. CONCLUSION
This paper has very briefly explained the main Petri net

classes and their uses in systems engineering. It has been
shown how all the different classes of Petri nets fit together
and can be combined for different purposes. It has been
explained how to use these classes in a semi structured
approach. The case study presented is quite simple. In reality
there are many difficulties with different systems requiring
special and dedicated attention. It is possible to combine this
work with a lot of research on Petri net theory.

Petri nets are decomposable in a top down approach. This
implies that the models especially the more complex ones can
be refined in detail. It is possible to extract functioning of the
individual system components.

The idea presented is suitable for using different Petri net
classes for requirements engineering in general. One can start
off with simple models and work up to new advanced and
complex models as needed. It has been shown that all Petri net
main classes find their use for modeling systems and software
artifacts at different stages. Petri nets model dynamic behavior
which is essential for proper comprehension.

The idea of combining different classes creates many issues
which need to be solved appropriately. It has not been
explained how to carry out the transformations. This could be
done very simply by just creating completely new models and
keeping some parts of the initial model. i.e. informally or
formally. The transformations have not been formalized or
explained in detail. It is possible to formalize the
transformations. This requires a lot of new work, definitions
and rules. It can become quite complex.

This was done as the aim of this paper is to present the
concept of combining Petri net main classes. The fact of
having several Petri net main classes and several sub classes
indicates that they are quite flexible for use. It is possible to
find better models of how the classes could contribute
between each other. The main classes are subdivided into
many other classes e.g. S-nets, T-nets, different levels of safe
nets, etc, complicating things. Other issues are: i) different
Petri net case tools are needed and proper integration is
required, ii) reduction of the model’s structure will normally
mean information is lost, iii) the final Petri nets might result
with many differences from the initial ones. Many different
case tools exist for supporting Petri net construction and
simulations.

Some advantages of using Petri net classes in requirements
engineering might be: i) improved system/software features,
ii) reduced rework at construction stage, iii) final product has
fewer defects, iv) better stakeholder negotiation of the product
at the initial stages a priori to the design, v) accurate final
system performance and timing ,vi) good requirements
validation. Disadvantages of using Petri nets are that normally
more work is required, special expert knowledge is needed
and it is difficult to find proper case tools that integrate all
different Petri net classes. The possible benefits from using
Petri nets depend on many other factors and issues, like
quality ,good project management, expert knowledge, good
team support, etc. which are not always easy to find.

REFERENCES
[1] S.R. Schach, Introduction to Object-Oriented Analysis and Design with

UML and the Unified Process. NY: McGraw-Hill, 2004, ch.1-11.
[2] J. Brusey, D. McFarlane, “Designing Communication Protocols for

Holonic Control Devices using Elementary Nets”, Holonic and Multi-
Agent Systems for Manufacturing, 2nd Int. Conf. on Industrial
Applications of Holonic and Multi-Agent Systems, Aug 2005, pp.76-78.

[3] L. A. Cortes, P. Eles, Z. Peng , “A Petri Net Based Model for
Heterogenous Embedded Systems”, Proc. Norchip Conf., Oslo, Norway,
Nov 1999, pp. 248-255.

[4]] K. Jensen, G. Rosenberg, High-Level Petri Nets: Theory and
Application , Springer – Verlag, Berlin, 1991.

[5] L.M. Kristensen, S. Christensen, K. Jensen, “The Practioner’s Guide to
Coloured Petri Nets”, International Journal On Software Tools for Tech.
Transfer (STTT), Vol. 2, Springer-Verlag,1998, pp. 98-132.

TABLE 4
 PETRI NET CLASS SUMMARY OF USES

PN
CLASS
LEVEL

Complexity Possible Results

System/softwar

e
Development

uses
 EN LOW limited initial
 PN MEDIUM limited middle
 CPN HIGH detailed detailed

design
 TPN DEPENDS detailed depends

TABLE 3
 STRUCTURAL QUALITIES

PN
CLASS

Structural
Qualities

 EN,PN Self loops
 Reachability
 Boundedness and

Safeness
 Conservativeness

 Liveness

 Reversibility

 Home States

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

221

[6] K. Jensen, L. M. Kristensen, L. Wells, “Colored Petri Nets and CPN
Tools for Modelling and Validation of Concurrent Systems”,
International Journal On Software Tools for Tech. Transfer (STTT),
Springer- Verlag, Vol. 9, Springer-Verlag, 2007, pp. 213-254.

[7] CPNTools, CPN Group, Department of Computer Science, University of
Aarhus, Denmark. http://www.daimi.au.dk/CPnets/

[8] T. Spiteri Staines, “ Using a Timed Petri Net (TPN) to Model a Bank
ATM ”, Proc. of 13th IEEE Int. conf. on Engineering of Computer Based
Systems,Potsdam Germany,2006, pp. 151-158.

[9] A. Spiteri Staines, “Modeling UML Software Design Patterns Using
Fundamental Modeling Concepts (FMC)”, Proceedings of the 2nd
WSEAS European Computing Conference, Malta, pp. 192-197, Sep
2008.

[10] A Classification of Petri Nets, http://www.informatik.uni-
hamburg.de/TGI/PetriNets/Classification

[11] L. Bernardinello, F. De Cindio, A Survey of Basic Petri Net Models and
Modular Net Classes, LNCS Vol. 609, Springer-Verlag, 1992.

[12] M. Zhou, K. Venkatesh, Modeling, Simulation And Control Of Flexible
Manufacturing Systems A Petri Net Approach, World Scientific, 1999,
isbn981023029X.

[13] I. Graham, Object-Oriented Methods Principles & Practice. ED: Pearson
Education, 2001, ch.6.

[14] S. Goldsmith, Real-Time Systems Development, Pretence Hall, 1993, ch.
1.

[15] J. Desel, W. Reisig, Place/Transition Petri Nets, LNCS, Vol 1491\1998,
Springer-Verlag, 1998.

[16] A. Knöpfel, B. Gröne, P. Tabeling, Fundamental Modeling Concepts,
Wiley UK ,2006.

[17] P. Strbac, M. Tuba, D. Simian, “ Hierarchial model of a systolic array
for solving differential equations implemented as an upgraded Petri net”,
WSEAS Transactions on Systems, Vol. 8. Issue 1, pp.12-21, Jan 2009.

[18] K. Mun Ng, Z.A. Haron, “ Visual Microcontroller Programming using
Extended S-System Petri Nets ”, WSEAS Transactions on Computers,
Vol 9. Issue 6, pp. 573-582, Jul 2010.

[19] H. Apaydin Ozkar, A. Aybar, “ A reversibility enforcement approach
for Petri nets using invariants”, WSEAS Transactions on Systems, Vol. 7.
Issue 6, pp. 672-681, Jun 2008.

[20] M.A. Drighiciu, A. Petrisor, M. Popescu, “A Petri Nets approach for
hybrid system modeling”, NAUN Int. Journal of Circuits, Systems and
Signal Processing, Issue 2 vol 3, 2009.

[21] A. Spiteri Staines, “ A Compact CPN Representation for Embedded and
Control Systems Fault Diagnosis and Recovery”, Proc. of the 8th Wseas
Int. Conf. on SEPADS, Cambridge, pp. 78-83, Feb 2009.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

222

