

Abstract—We compare four paradigms that have recently been

the subject of recent research: mobile agents, distributed shared

memory (DSM), coordination paradigms, and self-migrating

computations. We place these paradigms in a common framework

and demonstrate that self-migrating computations subsume the other

three paradigms in terms of their capabilities to organize and

coordinate computation, and map the concurrent activities onto a

multicomputer architecture. We then demonstrate the advantages of

self-migration in terms of algorithmic integrity, performance, the

ability to generate parallel programs, and the ability to support

incremental parallelization.

Keywords—Coordination, DSM, mobile agents, parallel and

distributed computing, self-migrating computations.

I. INTRODUCTION

OBILE agents, distributed shared memory (DSM),

coordination paradigms, and self-migrating threads

represent four lines of research that have each gained

considerable attention in recent years. Mobile agents provide

autonomous service entities capable of roaming

communication networks in search of information and

services. DSM aims at providing an abstraction for distributed

memory computers such that applications could be written

using shared memory programming paradigms. Coordination

paradigms also focus on providing structured abstractions of

the data or information space but, in addition, provide new

conceptual models for expressing concurrency and

coordination among the activities operating on the structured

logical space. While these three research areas appear to be

unrelated, there are similarities among them that are best

understood by examining them in a common framework

together with self-migrating threads. Self-migrating threads

navigate through a logical space, based on their own internal

program and state, and collectively solve a global problem

through their individual efforts. The self-migrating threads

draw heavily on ideas from the other three areas [1].

Self-migrating computations offer several important

advantages over the other paradigms. Specifically, (1) they

Manuscript received December 9, 2008: Revised version received March

4, 2009.

L. F. Bic is with the Department of Computer Science, University of

California, Irvine, CA 92617, USA (phone: 949-824-5248; e-mail: bic@

ics.uci.edu).

M. B. Dillencourt is with the Department of Computer Science, University

of California, Irvine, CA 92617, USA (e-mail: dillenco@ics.cui.edu).

allow certain sequential computations to run faster by

distributing the underlying data; (2) they facilitate the

parallelization of sequential algorithms by preserving the

essential structure of the original computations; (3) they lead

to the parallelization of certain algorithms traditionally

considered unparallelizable; and (4) they lend themselves to

incremental parallelization of sequential programs.

II. FOUR PARADIGMS

A. Mobile Agents

Mobile agents are self-contained entities that can navigate

autonomously through the underlying network and perform a

variety of tasks in the nodes they visit. Fig. 1(a) captures the

essence of most mobile agent systems, which focus on the

following major aspects:

1) The computational model underlying mobile agents

system is similar to a multithreaded environment, where

individual threads consist of a program and a state, and

communicate with one another via shared or distributed

memory mechanisms. The main extension to this model is

navigation. The computational model provides special

commands or other linguistic constructs that enable agents

to relocate themselves or their clones to other physical

nodes in the network and to continue executing in the new

environment.

2) To serve a useful function, a mobile agent must be able to

interact with the environment of the host on which it

currently resides. This is accomplished by providing an

interface to the host's operating system, which permits the

agent to access data and/or invoke services available on

the current host.

3) To permit autonomous navigation, a layer of software

consisting of daemons is superimposed on the underlying

physical network. The task of each daemon process is to

receive agents, interpret their behavior, and send them on

to other daemons as necessary. The daemons themselves

have no intelligence; all functionality is carried as part of

the mobile agents. The daemons use existing physical

links to communicate with one another. Hence the

mapping of resulting daemon network onto the physical

network is trivial; the former is a subset of the latter as

determined by the user.

Advantages of Self-Migration for

Distributed Computing

Lubomir F. Bic and Michael B. Dillencourt

M

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

320

A number of mobile agent projects have been carried out in

recent years [2, 3, 4, 5]. Most focus on “intelligent” agents,

i.e., those that can serve as personal assistants, roaming the

Internet and perform arbitrarily complex services on behalf of

their users. One of the first proposals was Telescript [6], which

was centered on the design of a special-purpose language for

expressing agents’ behaviors, including their ability to move

themselves around the Internet. More recent approaches rely

on existing languages, such as Java (used by IBM Aglets [7])

or Tcl/Tk (used by Agent Tcl [8] and Tacoma [9].)

Another focus of mobile agent research has been on

intelligent communication. This is best represented by the

Messenger projects of the U. Geneva [10]. Mobile agents are

viewed as “prototypic” mobile agents on top of which more

complex “intelligent” agents can be built. The objective of this

project is to replace traditional messages and communication

protocols by mobile agents.

There are a number of advantages of mobile agents over

traditional approaches. First, they offer a more natural

metaphor for both users and programmers in that they replace

the traditional client/server or send/receive points of view by

self-contained activities that encapsulate both communication

and remote computing. A second advantage is the inherently

open-ended nature of mobile agents, which permits new

functionality to be introduced at runtime as needed. Finally,

mobile agents can significantly reduce message traffic in

client/server type applications. Instead of engaging in a

bandwidth and latency intensive message exchange with a

server, the client may dispatch an agent to the server site,

which performs all the necessary interactions locally. When

the task is completed, it reports the answer to the original

client. Hence only a single “round trip,” traveled by the object,

is necessary between the client and the server.

The heavy lines of Fig. 1(a) indicate the emphasis of

mobile-agent system on the agents' navigational capabilities,

the daemon infrastructure, including its mapping to the

physical network, and the agents' interface to the host's

environment.

B. Distributed Shared Memory

Distributed shared memory (DSM) systems provide the

illusion of a common shared memory on a multi-computer,

where each node only has a private local memory and can

communicate with other nodes via a network or a switch. Fig.

1(b) captures the essence of most DSM systems, indicating the

main emphasis of this line of research:

1) The shared space provided by a DSM system is a passive

component, which is accessed by the various applications

running on the system. The organization and structure of

the shared logical space is what distinguishes different

DSM approaches. These represent the trade-offs between

the system’s expressiveness and the resulting

performance.

2) The implementation provides the mapping of the logical

space onto the physical architecture. Its complexity

depends on the size of the semantic gap that must be

bridged.

One of first approaches to providing DSM was based on

Fig. 1 Comparison framework. (a) Mobile agents. (b) DSM. (c) Coordination paradigms. (d) Self-migrating computations

im
p

le
m

en
ta

ti
o

n

co
m

p
u

ta
ti

o
n

al

m
o

d
el

sy
st

e
m

s

in
te

rf
ac

e

navigate

access

(d)

map

map

concurrent
activities

environment

daemon
network

physical
network

logical
space navigate

access

(a)

map

agents

environment

daemon
network

physical
network

access

(b)

map

physical
network

logical
space

operate in

(c)

map

concurrent
activities

physical
network

logical
space

applications

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

321

paging [11]. Similar to a paged-based virtual memory in a

single-processor system, the virtual shared space is partitioned

into fixed-size pages. However, instead of moving them

between primary and secondary memory as needed, they are

moved between different processors. A number of

implementations have been proposed to keep track of the

migrating pages to facilitate performance while ensuring that

memory consistency is not violated.

The above approach to DSM guarantees sequential memory

consistency, which is the most convenient from the

programming point of view but also the most costly to

implement. Other approaches have taken a more restricted

view of what a DSM is to gain better performance [12]. These

restrictions require the memory consistency model to be

weakened. For example, a causally consistent DSM

guarantees that different processes see only causally-related

accesses to the shared variables in the same order, while

causally-unrelated accesses may be observed in a different

order. In addition, the view of the shared memory may change.

That is, instead of providing a one-dimensional flat sequence

of data locations, thus mimicking the view of physical RAM,

the shared portion may be restricted to only certain variables

or data structures. In this case, special synchronization

primitives are typically provided, with the understanding that

the consistency of the shared data is guaranteed only in

conjunction with these primitives. For example, release and

entry consistency guarantee a consistent view of shared data

only when a critical section is exited or entered, respectively.

Regardless of the particular scheme or implementation, the

focus of all DSM-based schemes is the logical space

organization and its mapping onto the underlying physical

architecture, as shown by the heavy lines of Fig. 1(b).

C. Coordination Paradigms

Coordination paradigms are closely related to DSM and it is

difficult to draw a clear line between the two research thrusts.

We characterize coordination paradigms as approaches that go

significantly beyond the scope of DSM by addressing not only

the aspect of space but also integrate its operational aspects

into a common model:

1) Like DSM, coordination paradigms provide the

abstraction of a logical space, which consists of data and

possibly functions, and which is structured specifically to

facilitate the development of distributed applications.

Unlike DSM, it is not always the data that is brought

transparently to the current processes or thread as needed.

Rather, a coordination paradigm may support the ability

of an activity to relocate itself to another (physical or

logical) domain to gain access to some data.

2) In addition to the above spatial aspect, coordination

paradigms also incorporate a temporal aspect by

providing specific mechanisms or constructs to operate on

the logical space, thus coordinating the concurrent

activities comprising the computation. These, in general,

are closely integrated with the logical space. They

typically include mechanisms for controlling

synchronization, communication, and creation/destruction

of the computational activities required to orchestrate the

operation of a complex system. Hence, from the

programming point of view, coordination paradigms may

be viewed as extensions of the DSM concept.

The two abstract layers, which are the main focus of all

coordination paradigms (as indicated by heavy lines of Fig.

1(c)), are then mapped onto the underlying computational

structure—a network or a multiprocessor. The mapping,

however, is typically outside of the scope of the coordination

paradigm.

A large number of coordination paradigms have been

proposed and developed in recent years, which can be

subdivided into several broad categories. One approach to

coordination utilizes channel-based communication between

processes. Processes communicate directly with each other by

reading from and writing to ports. Ports of processes are

connected to ports of other processes via channels. This

approach leads to a clean separation of computation and

coordination functions. An example of the channel-based

approach is the IWIM model [13].

Another approach to coordination is medium-based

coordination. At a very abstract level, all medium-based

approaches to coordination work on the same principle. There

is a common medium or state space, shared by the processes.

Processes can modify the state space, and these modifications

affect the behavior of other processes. Computation is

performed by the processes, and coordination is achieved

through the shared state space.

One of the most prominent examples of the medium-based

approach is Gamma [14], based on a chemical reaction

metaphor. The state space is a multiset of objects. Gamma

programs consist of matched (reaction conditions, action)

pairs. Execution proceeds by replacing a collection of objects

that satisfy a reaction condition by the result of applying the

corresponding action. As programs are executed, they may

cause multiset transformations that create the reaction

conditions necessary to allow other programs to execute.

Another well-known example of coordination through a

shared state space is the Linda system [15]. The state space is

a pool of data called a tuple space. Processes may insert, read,

and remove tuples from the tuple space using various

primitives. They may also spawn new activities that leave new

tuples in the tuple upon their termination. Processes select

tuples associatively, by issuing requests for tuples that match

certain templates.

In the Linda model, the state space is shared by all

processes. PoliS [16] is an enhancement to the basic model

intended to simplify the design of distributed systems. PoliS

allows multiple named tuple spaces, called places, where each

tuple belongs to exactly one tuple space. The execution

threads in PoliS are autonomous active tuples, called agents.

Because agents are tuples, an agent belongs to exactly one

tuple space. An agent can read tuples inside its own tuple

space and can write tuples to any tuple space. These simple

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

322

operations provide a uniform approach to spawning new

activity, the migration of such activities, and the exchange of

information among them.

Yet another approach to coordination is to provide

templates for common communication patterns [17] or to

provide an API that allows the composition of applications

from exiting building blocks [18].

Despite the significant differences among the various

coordination paradigms, they all share the common

characteristics captured by the two highlighted layers of Fig.

1(c).

D. Self-Migrating Computations

MESSENGERS [19, 20, 21, 22] is a system based on the

principles of self-migrating threads, called Messengers. The

system distinguishes three separate levels of networks. The

physical network is the underlying computational resource.

The daemon network is a collection of Unix processes, whose

task is to interpret the behavior of the self-migrating threads.

The logical network is an application-specific computation

network created at run time on top of the daemon network.

Multiple logical network nodes may be created on the same

daemon network nodes, thus running on the same physical

node, and they may be interconnected by logical links into an

arbitrary topology.

The self-migrating threads navigate through the logical

network based on their own internal program and state. They

are also capable of cloning themselves, both implicitly and

explicitly, to follow multiple links or to perform different

subtasks. This is accomplished by explicit navigational

statements, which also permit the creation or destruction of

logical links and/or nodes. A number of optional parameters

may be specified as part of the navigational statements,

including the specification of particular nodes, or links. Wild

cards may also be used for partial matching. The self-

migrating thread is replicated and propagated to all

destinations that match the navigational specification.

Self-migrating threads may also perform arbitrary

computations in the nodes they visit. This can take two forms.

First, the object's internal program may contain computational

statements, which permit arbitrary arithmetic, logic, and

control operations to be performed. Second, the objects may

invoke ordinary C functions as part of their behavior or spawn

complete programs as separate concurrent Unix processes. The

system also supports implicit mapping of the logical network

onto the daemon network.

III. ADVANTAGES OF SELF-MIGRATION

The use of explicit commands to support the migration of

computations leads to a new style of programming, referred to

as Navigational Programming (NavP) [23]. Using this

paradigm, a distributed computation is not viewed as a

collection of stationary parallel processes communication with

each other via messages. Instead, it is a collection of sequential

threads, each of which computes, navigates through the

underlying network, and communicates with other such

threads. This style of programming is applicable specifically to

scientific computing, it is easier to use than message passing,

and it leads to increased performance.

To illustrate these principles further, consider the analogy of

a train schedule. Fig. 2 shows graphically the course of four

trains, Tr1 through Tr4. At time t1, each trains starts from a

different station s1 though s4 and proceeds to a new station at

each of the times t2 though t4 as indicated by the arrow.

Fig. 2 Train schedules

The graphical information in Fig. 2 can be represented from

two different points of view, depending on its intended use.

Fig. 3 shows the information from each station’s point of view,

i.e., the arrivals and departures of trains at each station. This

information would be useful for someone standing in a given

station and it corresponds to the message-passing view.

Fig. 3 Arrivals and Departures

Fig. 4 shows the same information from each train’s point of

view, i.e., for each train it shows which station it will visit at

which time. This information would be useful for someone

traveling on that train and it corresponds to the NavP point of

view.

Fig. 4 train itineraries

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

323

A. Distributed Sequential Computing (DSC)

When the data set of a computation is too large for the main

memory of a single computer, it is advantages to distribute it

over the collective memories multiple interconnected machines

because it eliminates paging overhead. The main question is:

where should the computation be performed? Without

migration, the programmer must select one of the machines as

the pivot. The data that does not reside in the local memory

must be transferred to the pivot machine as needed for its

computation. This generally results in a performance

improvement because the network is faster than the paging

disk. NavP offer an even better way: it allows the computation

to move to the data it needs to access. This generally improves

performance because it avoids the movement of large amounts

of data.

To illustrate the principle, consider the following program

fragment, performs some sequential computation over a large

array A:

double A[huge];

for (i = 0; i < huge; i++)

 x = compute(x, A[i]);

Assuming A[huge] is too large for a single memory, it is

partitioned into n arrays A[smaller] such that

smaller<memory_size. Each partition A[smaller] is allocated

on a different machine and the following modified code is

started on machine 0:

for (i = 0; i < huge; i++) {

 hop(node(A[i]));

 x = compute(x, A[i]);

The hop statement makes sure that the computation always

resides on the machine that holds the current element A[i].

Note that this statement is mostly a no-op; only when the array

crosses machine boundary does an actual migration take place.

Fig. 5 illustrates the performance improvement achieved by

DSC [24]. The curve shows clearly that the point at which the

performance degrades rapidly due to paging can be postponed

by using more machines and thus solve increasingly larger

problems.

The ability to utilize the collective memory of multiple

machines to avoid paging can be exploited using some of the

other paradigms of Fig. 1, specifically DSM and some of the

coordination systems. However, they do not allow

computations to migrate and hence the data must be moved to

the computation. In contrast, self-migrating computations can

take full advantage of the underlying network by moving either

computations or data, depending on which results is less

overhead.

B. Algorithmic Integrity

Message passing is the most common approach to

developing distributed programs (sequential or parallel).

Unfortunately, given a centralized sequential program or

algorithm, there is no easy way to derive a distributed

message-passing program from it. Instead, a new program

Fig. 5 Performance of DSC

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

324

must be developed, which generally bears little similarity to

the original. NavP preserves the algorithmic integrity of

centralized sequential programs because the process of

distribution and/or parallelization requires the insertion of hop

commands into the original sequential flow.

To illustrate this concept, consider the following program

fragment:

v1 = diag(A)

v2 = f1(B,v1)

v3 = f2(A,v2)

Assume that matrix A resides on a node n1 and matrix B on

a different node n2. The following message-passing code in

SPMD style would accomplish the same task:

if (rank = n1)

 v1 = diag(A)

 send(v1, n2)

 recv(v2, n2)

 v3 = f2(A,v2)

else if (rank = n2)

 recv(v1, n1)

 v2 = f1(B,v1)

 send(v2, n1)

end if

We make two important observations. First, even though

this is an extremely simple sequential algorithms and the

resulting distributed version is still only sequential in its

execution, the new program is much larger than the original.

Second, the program structure has been significantly modified:

to follow the original sequential flow, one must alternate

between the if and else clauses by matching the respective

send a receive statements.

Consider now the corresponding NavP code:

v1 = diag(A)

hop(n2)

v2 = f1(B,v1)

hop(n1)

v3 = f2(A,v2)

The only difference is the insertion of the two hop

statements; the original sequential flow has been preserved.

Of the three other paradigms of Fig.1, only mobile agents

have the ability to explicitly migrate their computations

through the network. This could be used to preserve the

algorithmic integrity of sequential programs when adapting

them to a distributed environment. However, mobile agents

generally do not support a separate logical space. Hence the

computation could only be distributed with respect to the

current physical network and would be dependent on the

current network topology. Self-migrating computations offer a

greater flexibility by supporting an application-specific logical

space.

C. Parallelization of Sequential Algorithms

There are several classes of algorithms that are generally

considered as unparallelizable due to their specific data

dependencies. One such class are the so-called left-looking

algorithm, characterized by the fact that the computation of

any given array element uses all preceding elements in that

array. The following code fragment represents such a left-

looking algorithm.

do j = 2 to n

 do i = 1 to j-1

 a[j] = (a[j]+a[i])*j/(j+i)

 end do

 a[j] = a[j]/j

end do

Fig. 6 shows the data dependence: to compute the elements

labeled as consumer (black), all preceding elements, labeled as

producers (white) must be available. Thus it appears that there

is no opportunity for parallelism, because the computation of

the next element cannot start until all its predecessors have

already been computed.

Fig. 6 A left-looking dependency

NavP offers an elegant way to parallelize code such as the

above. The first step is to distribute the data over n machines.

Fig. 7 shows the distribution of the array over five PEs as an

example. The next step is to modify the original code by

inserting the necessary hop statements to make sure the

computation always resides on the machine that holds the

currently accessed array elements. A second minor

modification is to introduce “transport” variables to carry

copies of relevant data as the computation migrates through

the network. The following code shows these modifications,

where the new variable mx carries a copy of the currently

computed array element a[j]. As with the example of

subsection III.A, most of the hop statements will turn into no-

ops, since the next array element resides on the same machine.

do j = 2 to n

 hop(node[j]); mx = a[j]

 do i = 1 to j-1

 hop(node[i])

 mx = (mx+a[i])*j/(j+i)

 end do

 hop(node[j]); a[j] = mx

 a[j] = a[j]/j

end do

The above computation is distributed but it is still only

sequential. To parallelize it, we need the following important

insight: The computation of any given element a[j] does not

take place on only its owner PE; rather it is distributed over

multiple PEs. For example, the computation of element a[j] in

Fig. 7 starts on PE4 but it continues on PE1, PE2, PE3, and

finally terminates back on PE4. However, PE4 does not need

to wait until a[j] returns before staring the computation of the

next element a[j+1]; this can start as soon as the computation

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

325

of a[i] hops away to PE1. This results in potential parallelism

due to the overlap of the individual array element

computations. To achieve this parallelism, we make one final

modification to the code, namely, by starting each iteration of

the outer loop as an independent thread, similar to a doall

operation:

parthread thrd(j)

 hop(node[j]); mx = a[j]

 do i = 1 to j-1

 hop(node[i])

 mx = (mx+a[i])*j/(j+i)

 end do

 hop(node[j]); a[j] = mx

 a[j] = a[j]/j

end thread

Fig. 7 illustrates the resulting parallelism by showing the

paths of the two computations for a[j] and a[j+1]. We refer to

the resulting structure as a mobile pipeline [25].

To further illustrate the difference between a conventional

and a mobile pipeline, compare Figs. 8 and 9. With a

conventional pipeline (Fig. 8), the data (a through e) is

pumped through a series stationary computations (C1, C2, C3).

With a mobile pipeline (Fig. 9), the computations, each

implemented as a self-migrating thread (C1, C2, C3) follow

each over as they pass over the stationary series of data (a

through e).

Fig. 8 Conventional Pipeline Structure

Fig. 9 Mobile Pipeline Structure

D. Incremental Parallelization

Traditional message-passing approaches to parallel program

development require a brand new program to be developed.

With self-migrating computations, in contrast, it is possible to

start with a sequential program or algorithm and transform this

incrementally into a parallel version. Each intermediate

version is executable and has generally a better performance

than its predecessor. Hence the programmer can improve the

performance gradually, rather than having to commit to an all-

or-nothing approach supported by message passing [26, 27].

Fig. 10 shows the steps of the incremental parallelization

approach. The first step is to perform a data distribution of the

underlying large data structures. Data distribution is important

for the overall communication cost and parallelism. The

problem of high communication cost caused by improper data

distributions cannot be corrected by other later efforts. Shared-

memory programming models such as OpenMP on DSM rely

on their runtime systems to find data layouts; but they do not

yet deliver as good a performance as MPI programs on

distributed memory machines [28]. In the case of MP or MP-

based SPMD models, the data layouts are either explicitly

specified by the programmer as in HPF or automatically

generated by parallelizing compilers [29, 30, 31, 32, 33].

These automatic approaches decompose the data mapping

process into two steps: alignment and distribution, and attempt

to find data layout choices either analytically or by resorting to

integer programming. The underlying mathematical

representation used is a so-called component affinity graph

[34] where the nodes represent the dimensions of arrays and

the weights associated with the edges are relations derived

from the data reference patterns and thus suggest how the

Fig. 7 A Mobile pipeline

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

326

dimensions of different arrays should be aligned and then

distributed together. While promising to find good data layouts

for some benchmarks, these automatic approaches are mainly

confined to research prototype compilers.

What is common to all of the above approaches is that they

are limited to regular data distributions (e.g., along columns,

rows, or blocks). This is because, in the absence of code

migration, the partitioning of the data dictates the partitioning

of the programming task. In contrast, programs with mobility

can follow the data, so their structure is not dependent on the

data decomposition. As a result, navigational programs can

take advantage of unstructured data patterns in order to further

reduce communication overhead.

Our methodology [35] is based on constructing a

Navigational Trace Graph (NTG), an undirected weighted

graph, which is fundamentally different from the component

affinity graph [34] and its variants. In NTG, the nodes are

individual entries of all distributed arrays and the weight

associated with an edge represents the trace between the two

incident array entries as the DSC thread navigates through

them. By representing the trace relations at the level of

individual array entries, both alignment and distribution

problems are solved in a unified manner.

There are three kinds of edges in the NTG. First, Locality (or

L) Edges are introduced between the neighboring entries of an

array. These edges represent the locality of data access

exhibited in many algorithms, and they aim at obtaining

regular data layouts for each array. Second, a Producer-

consumer (or PC) Edge with the weight p is introduced

between the LHS (left-hand side) and every RHS (right-hand

side) array entry. The weight represents the communication

cost incurred if the two linked entries do not reside on the

same PE. Finally, every array entry in one statement is

connected with every entry in its successive (in time) statement

with a Continuity (or C) Edge with the weight c. When several

equally competitive data layout choices may be found using

only L and PC edges, the presence of C edges will break the

tie by favoring the choice that allows successive (in time)

statements to be executed on the same PE. Once the NTG has

been generated, we rely on the standard heuristics of the Metis

tool [36] to partition the graph.

Once a data distribution exists, the next crucial step is to

transform the code so that each reference to data is performed

on a logical node where the corresponding data exists. A

distributed block, or Dblock, is a block of code that accesses

data distributed across multiple logical nodes [37]. The

Dblock Analyser (Fig. 10) is the tool that resolves these blocks

by inserting the necessary hops and transport variables to carry

local copies of data. Dblock analysis is necessary for

correctness, since any atomic operation must be performed on

a logical node that also contains its operands. The key is to

perform it in such a way that keeps communication overhead

small.

The Dblock analysis consists of three key steps:

1) Dblock selection: Analyze the sequential program to

identify the Dblocks to be resolved, choosing the Dblocks

at appropriate granularities. A Dblock can be any block of

code: a single statement, a loop, an if-then-else construct,

etc.

2) Dblock placement: Determine the logical node(s) on

which a Dblock will execute. Given a Dblock, we decide

where the rendezvous of the locus of computation and the

data it requires should happen by following the principle

of pivot-computes [38]. This principle states that the

computation of a Dblock takes place on the logical node

that owns the largest piece of the distributed data. This

logical node is called the pivot node.

3) Code augmentation: Modify the original code so that the

rendezvous of the locus of computation and the data it

requires occurs for all Dblocks. This step requires

inserting hop statements and transport variables to carry

copies of portions of local data between logical nodes.

The choice of granularity of the Dblock is crucial. For

example, with a nested loop we have the choice of resolving

the Dblock at one of three different levels: an individual

statement, the inner loop, or the outer loop. Choosing the

smallest level of granularity results in frequent small messages.

Choosing the largest level of granularity requires moving large

chunks of data among machines. Currently, we leave the

choice of granularity up to the programmer but an important

challenge for future research is developing heuristics for

selecting the best level at which a Dblock should be resolved.

As indicated in Section III C, the fundamental notion of

parallelism in the NavP view is that of the mobile pipeline.

This task is performed by the tool Pipeline Builder (Fig. 10);

the high-level steps are illustrated in Fig. 11. First, the

sequential code Fig. 11(a) is converted to DSC (Fig. 11(b)), as

Sequential C Code

Data Distributor

DBlock Analyzer

Pipeline Builder

Optimizing Compiler

Computer Network

P
er

fo
rm

an
ce

 P
ro

fi
le

r

Data Distribution

DSC Code

DPC Code

 Native Code

Results

Fig. 10 Incremental Parallelization

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

327

described in the section III B. Next, the single DSC

computation thread is cut into multiple shorter threads, and

these shorter DSC threads are then composed to form a mobile

pipeline (Fig. 11(c)). Each of the threads is scheduled to run as

early in time as possible, subject to the constraint that all

dependences must be respected. In this example, we assumed

that the portion of the computation running on PE1 (labeled 1)

depends only on some initial portion of the computation on

PE0 and thus can start as soon as this portion (labeled 00) has

completed. Similarly, the portion 11 can start as soon as 01 has

completed, and so forth. These partially overlapping threads

spread the parallel computation as they hop through the

network, and they continue to maintain low cost of

communication as before.

The next step in the incremental parallelization process (Fig.

XX) is to compile the parallel code produced by the Pipeline

Builder into native code executable on the underlying network

cluster. The Performance Profiler then closes the feedback

loop by generating important performance statistics such as the

number and frequency of hops, the sizes of the thread-carried

variables, and level of parallelism/load balancing across the

PEs. This data can then be used by the programmer to

incrementally improve the implementation. For example, if a

particular portion of the code causes frequent hops to occur,

this indicates that the mapping of the data should be modified

(e.g., by increasing the number of the cyclic data blocks) or

that a coarser level Dblock resolution should be used. This

incremental process of refinement can be repeated until a

program with the desired performance has been derived.

REFERENCES

[1] L. Bic and M. Dillencourt, Mobile Agents, DSM, Coordination, and

Self-Migrating Threads: A Common Framework, Proc. 7th WSEAS Int’l

Conf. on Data Networks, Communication, Computers (DNCOCO’08),

Bucharest, Romania, Nov. 2008

[2] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus, Mobile Agents:

Motivations and State-of-the-Art Systems, Technical Report TR2000-

365, Dartmouth College, Hanover, New Hampshire, April 2000.

[3] D. Kotz, R. Gray, and D. Rus, Future Directions for Mobile Agent

Research, IEEE Distributed Systems Online, 3(8) (2002).

[4] D. Shiao, Mobile Agents: A New Model of Intelligent Distributed

Computing, IBM Developer Works, China. 2004.

[5] Z. Minchev and D. Dimitrov, Intuitionistic Fuzzy Concept for

Navigation of Mobile Agents in Unknown Environment, 9th WSEAS

Int. Conf. on Fuzzy Systems (FS'08), Sofia, Bulgaria, May, 2008

[6] The Telescript Reference Manual, Tech Report, General Magic Inc.,

Mountain View, CA 940404, June 1996.

[7] G. Cabri, L. Ferrari, L. Leonardi, R. Quitadamo, Strong Agent Mobility

for Aglets based on the IBM JikesRVM, Tech Report, Universita di

Modena e Reggio Emilia, 2003.

[8] R. S. Gray, Agent Tcl: A flexible and secure mobile-agent system,

Proceedings of the Fourth Annual Tcl/Tk Workshop (TCL 96),

Monterey, CA, 1996

[9] D. Johansen, R. van Renesse and F. B. Schneider, An Introduction to

the TACOMA Distributed System, Technical Report 05-23, Department

of Computer Science, University of Tromso, 1995.

[10] G. Di Marzo, M. Muhugusa, C. Tschudin and J. Harms, The Messenger

Paradigm and its Impact on Distributed Systems, ICC'95 Workshop on

Intelligent Computer Communications, 1995.

[11] K. Li, A Shared Virtual Memory System for Parallel Computing, Proc.

of the 1988 Int'l Conf. on Parallel Processing, 1988.

[12] G. Antoniu and L. Bouge. DSM-PM2, A portable implementation

platform for multithreaded DSM consistency protocols, Lecture Notes in

Computer Science, 2026:55, 2001.

[13] F. Arbab, The IWIM Model for Coordination of Concurrent Activities,

in Coordination Languages and Models, Cesena, Italy, 1996.

Fig. 11 Pipeline builder. (a) sequential thread. (b) DSC. (c) pipelined threads

PE0 PE1 PE0 PE1 PE0 PE1 PE2 PE2 PE2

space

ti
m

e

02

01

00

10

11

12

20

21

22
1

2

0

space

ti
m

e

space

ti
m

e

(a) (b) (c)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

328

[14] J-P. Banatre and D. Le Metayer, Programming by Multiset

Transformation, Comm. CACM, 36(1):98-111, 1993.

[15] N. Carriero and D. Gelernter, Linda in Context, Comm. CACM, 32(4),

1989.

[16] P. Ciancarini, Distributed Programming with Logic Tuple Spaces, New

Generation Computing, 12(3):251-284, 1994.

[17] A. S. Staines, A Fundamental Modeling Concept Approach for

Modeling UML Design Patterns, NAUN International Journal of

Computers, Issue 3, Vol. 2, 2008

[18] K.-Y. Wong, Y.-M. Choi, and S.-W. Lam, The Design, Implementation

and Application of the Software Framework for Distributed Computing,

NAUN International Journal of Computers, Issue 3, Vol. 1, 2007

[19] L. Bic, M. Fukuda, and M. Dillencourt, Distributed Computing using

Autonomous Objects, IEEE Computer, 29(8), 1996.

[20] M. Fukuda, L. Bic, M. Dillencourt, F. Merchant, MESSENGERS:

Distributed Programming Using Mobile Agents, Transaction of the

Society for Design and Process Science (SDPS), Vol. 5, No. 4, 2001

[21] M. Fukuda, L. Bic, M. Dillencourt, and F. Merchant, Distributed

Coordination with MESSENGERS, Science of Computer Programming,

31(2), 1998

[22] R. Utter, Diaktoros: Full State Migration with Mobile Agents, PhD

Thesis, Dept. of Information and Computer Science, University of

California, Irvine, 2006.

[23] L. Pan, L. Bic, M. Dillencourt, and M. K. Lai, NavP Versus SPMD:

Two Views of Distributed Computation, Int'l Conf. on Parallel and

Distributed Computing and Systems (PDCS 2003), Marina del Ray,

CA, November 2003

[24] L. Pan, L. Bic, M. Dillencourt, and M. K. Lai, Distributed Sequential

Computing, Advances in Computation: Theory and Practice, Vol. 16,

Nova Science Publishers, Inc., New York, 2004.

[25] L. Pan, M. K. Lai, M. Dillencourt, and L. Bic, Mobile Pipelines:

Parallelizing Left-Looking Algorithms Using Navigational

Programming, 12th IEEE Int'l Conf. on High Performance Computing

(HiPC-2005), Goa, India, December 2005.

[26] L. Pan, M. K. Lai, K. Noguchi, J. J. Huseynov, L. Bic, and M. B.

Dillencourt, Distributed parallel computing using navigational

programming." International Journal of Parallel Programming, vol. 32,

no. 1, pp. 1-37, 2004.

[27] L. Pan, W. Zhang, A. Asuncion, M. K. Lai, M.. Dillencourt, and L. Bic,

Incremental Parallelization Using Navigational Programming: A Case

Study, International Conference on Parallel Processing (ICPP-2005),

Oslo, Norway, June 2005.

[28] Y. C. Hu, H. Lu, A. L. Cox, and W. Zwaenepoel, OpenMP for networks

of SMPs, in Proceedings IPPS/SPDP. IEEE Computer Society
Press, 1999, pp. 302-310.

[29] J. Garcia, E. Ayguade, and J. Labarta, A framework for integrating data

alignment, distribution, and redistribution in distributed memory

multiprocessors, IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 4, pp.

416-431, 2001.

[30] M. Gupta and P. Banerjee, Demonstration of automatic data partitioning

techniques for parallelizing compilers on multicomputers, IEEE Trans.

Parallel Distrib. Syst., vol. 3, no. 2, pp. 179-193, 1992.

[31] K. Kennedy and U. Kremer, Automatic data layout for High

Performance Fortran, in Proceedings of the 1995 ACM/IEEE

supercomputing conference. ACM Press and IEEE Computer Society

Press, 1995.

[32] P. Lee and Z. M. Kedem, Automatic data and computation

decomposition on distributed memory parallel computers, ACM

Transactions on Programming Languages and Systems, vol. 24, no. 1,

pp. 1-50, Jan. 2002.

[33] A. Navarro, E. Zapata, and D. Padua, Compiler techniques for the

distribution of data and computation, IEEE Trans. Parallel Distrib.

Syst., vol. 14, no. 6, pp. 545-562, 2003.

[34] J. Li and M. C. Chen, Index domain alignment: Minimizing cost of

cross-referencing between distributed arrays, in Third Symposium on

the Frontiers of Massively Parallel Computation, College Park, Md.,

Oct. 1990, pp. 424-433.

[35] L. Pan, J. Xue, M. B. Dillencourt, and L. F. Bic, Toward automatic data

distribution for migrating computations, Int'l Conf. on Parallel

Processing (ICPP 07), Xian, China, Sept. 2007

[36] G. Karypis and V. Kumar, METIS, unstructured graph partitioning and

sparse matrix ordering system. Version 2.0, University of Minnesota,

Department of Computer Science, Minneapolis, Minn., Tech. Rep.,

Aug. 1995.

[37] L. Pan, L. F. Bic, M. B. Dillencourt, and M. K. Lai, Mobile agents - the

right vehicle for distributed sequential computing, in Proceedings, 9th

International Conference on High Performance Computing (HiPC

2002), Lecture Notes in Computer Science, S. Sahni, V. K. Prasanna,

and U. Shukla, Eds., vol. 2552.Springer-Verlag, Dec. 2002, pp. 575-

584.

[38] L. Pan, W. Zhang, A. Asuncion, M. K. Lai, M.. Dillencourt, L. Bic, and

L. Yang, Toward Incremental Parallelization, IEICE Trans. Inf. & Syst.,

Vol. E89-D, No. 2, pp. 390-398, Feb. 2006.

Lubomir Bic received an M.S. Degree in computer science from the

Technical University Darmstadt, Germany in 1976 and a Ph.D. in information

and computer science from the University of California, Irvine, in 1979.

In 1979-80 he worked as a researcher at the Siemens Corporation in Munich,

Germany. From 1980 until 2003 he was a faculty member in the Department

of Information and Computer Science at the University of California, Irvine.

Since then he has been a Professor and Chair of the Department of Computer

Science at the University of California, Irvine. He is the author of 6 books and

well over 100 publications in scientific journals and conference proceedings.

His current research interests are in the areas of parallel and distributed

computing.

Michael B. Dillencourt received an M.A. Degree in Mathematics from the

University of Wisconsin in 1975, an M.S. Degree in Computer Sciences from

the University of Wisconsin in 1976, and a Ph.D. in Computer Science from

the University of Maryland in 1988.

From 1978 to 1988 he worked as a software engineer in private industry.

Since 1989 he has been a faculty member in Information and Computer

Science at the University of California, Irvine. He is the author of over 70

publications in academic journals and conference proceedings. His current

research interests are in the areas of distributed computing and graph

algorithms.

.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

329

http://www.ics.uci.edu/%7Ebic/messengers/papers/SDPS.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/SDPS.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/SDPS.pdf
http://www.sdpsnet.org/
http://www.ics.uci.edu/%7Ebic/messengers/papers/PDCS03.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/PDCS03.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/NOVA-DSC.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/NOVA-DSC.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/NOVA-DSC.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/HIPC05.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/HIPC05.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/HIPC05.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/HIPC05.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/ICPP05.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/ICPP05.pdf
http://www.ics.uci.edu/%7Ebic/messengers/papers/IEICE06.pdf

