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Word Co-occurrence Matrix and Context Dependent
Class in LSA based Language Model for Speech

Recognition
Welly Naptali, Masatoshi Tsuchiya, and Seiichi Nakagawa

Abstract— A data sparseness problem for modeling a language
often occurs in many language models (LMs). This problem is
caused by the insufficiency of training data, which in turn, makes the
infrequent words have unreliable probability. Mapping from words
into classes gives the infrequent words more confident probability,
because they can rely on other more frequent words in the same
class. In this research, we investigates a class LM based on a latent
semantic analysis (LSA). A word-document matrix is commonly used
to represent a collection of text (corpus) in LSA framework. This
matrix tells how many times a word occurs in a certain document.
In other words, this matrix ignores the word order in the sentence.
We propose several word co-occurrence matrices that keep the word
order. By applying LSA to these matrices, words in the vocabulary
are projected to a continues vector space according to their position
in the sentences. To support this matrices, we also define a context
dependent class (CDC) LM. Unlike traditional class LM, CDC LM
distinguishes classes according to their context in the sentences.
Experiments on Wall Street Journal (WSJ) corpus show that the
word co-occurrence matrix works 3.62%-12.72 better than word-
document matrix. Furthermore, the CDC improves the performance
and achieves better perplexity than the traditional class LM based on
LSA. When the model is linearly interpolated with the word-based
trigram, it gives improvements about 2.01% for trigram model and
9.47% for fourgram model on relative perplexity against a standard
word-based trigram LM.

Keywords— Latent semantic analysis, Language model, Word co-
occurrence matrix, Context dependent class

I. INTRODUCTION

ASpeech recognition task is to find the corresponding word
sequence for a given acoustic signal. Let A be an acoustic

input, the corresponding word sequence Ŵ is a word sequence
W that has maximum posterior probability P (W |A) given by
the following equation:

Ŵ = arg max
W

(logPA(A|W ) + λ logPL(W )), (1)

where PA(A|W ) is the probability of A given W based on
acoustic model, PL(W ) is the probability of W based on
language model, and λ is a scaling factor (language weight).

Language model (LM) is an important study in automatic
speech recognition (ASR) system [1][2]. It assigns a prob-
ability to word sequences. The most common LM used in
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modern ASR systems is word-based n-gram. It is a simple and
powerful method based on an assumption that the predicted
word (current word) depends on only n− 1 preceding words.
In the case of trigram (n = 3), the LM gives the following
probability to a word sequence W = w1, w2, ..., wN :

PTRIGRAM (W ) =
N∏

i=1

P (wi|wi−2, wi−1). (2)

The parameters of the LM are usually trained from a very
large collection of text (corpus). If the corpus is not large
enough, word which occurs only few times will have unreliable
probability, also known as a data sparseness problem. This
is a serious problem and frequently occurs in many LMs.
The problem is often solved partially using a good smoothing
technique [3][4].

A class LM is another way to avoid data sparseness by
mapping words into classes, resulting an LM with less param-
eters. Class LM gives infrequent words more confidence by
relying on another more frequent words in the same class. The
simplest class LM is known as class-based n-gram LM [5].
However, this LM has its own problem. Class-based n-gram is
hard to recognize different histories, which can be encountered
only by increasing number of the context [6].

A common way to improve a class-based n-gram LM
is by combining it with a word-based n-gram LM using
interpolation method [7] [8]. If two LMs model a different
part of the language, the interpolation will leads to further
improvements. Another approach is to use a class-based n-
gram LM to predict the unseen events, while the seen events
are predicted by a word-based n-gram LM. This method is
known as word-to-class backoff [9]. But when using both a
word-based LM and a class-based LM, the size of parameters
will be larger than the previous case which is not good for
low resource application.

Word-based n-gram is very good on modeling short-range
dependencies but weak on modeling of long-range dependen-
cies. Several attempts have been done to capture the long-
range dependencies. There are many methods. The cache
model [10] increases the probability for words observed in
the history based on an assumption that if a word X occurs,
then it is most likely that the word X will occur again in
the future. Trigger model [11] incorporates any arbitrary word
with the corresponding trigger pairs which are combined in
an exponential model. A trigger pair X → Y makes the
probability of Y augment when X occurs in the document
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Fig. 1. Model diagram

history. Grammar model [12] is to use syntactical rules for
LM. Topic mixture model [13] combined a number of LM
trained on documents of various topics. Multi-class model [14]
assigns multiple classes to each word by clustering the current
word and preceding word separately.

Martin et al. [15] reported some of those language models
experiment on Wall Street Journal (WSJ) corpus. The com-
bination of word-based trigram and class-based trigram will
improve the performance of word-trigram with 4% relative
reduction on perplexity. Using the cache model, the perplexity
is getting smaller. It gives 14% relative reduction against the
word-based trigram. When the cache model is integrated with
the topic adaptation model, it gives 27% relative improve-
ments. Finally when both models are combined with varigram,
the perplexity reduced to 31% relatively.

Latent semantic analysis (LSA), which is originally from
information retrieval, recently has been successfully used in
language modeling to map discrete word into a continuous
vector space (LSA space). Bellegarda [16][17] combines the
global constraint given by LSA with the local constraint
of n-gram language model. The same approach is used in
[18][19][20][21][22][23][24] but using Neural Network (NN)
as an estimator. Gaussian mixture model (GMM) could also be
trained on this LSA space [25]. Instead of a word-document
matrix, a word-phrase co-occurrence matrix is used in [26] as
a representation of a corpus. The model shows better perfor-
mance than the clustering method based on the maximisation
of the amount of mutual information. However, the model is
limited to only the class of the previous word. Our work is
somewhat similar to the model with several extensions.

To apply LSA, first the corpus must be represented by
a mathematical entity called matrix. LSA is usually used
together with a word-document matrix [27] to represent the
corpus. Its cell contains the frequency of how many times a
word occurs in a certain document in the corpus. The order
of words in the sentence is ignored and this is why LSA is
also called ”bag-of-word” method. However, the word order
is too important to be ignored. We will show that LSA could
also extract the hidden (latent) information behind this word
order. With a word co-occurrence matrix, LSA maps a word

into a different point in a continuous vector space according
to the word’s position in the sentence. Then a clustering is
applied on each LSA space to get word classes for different
word position. Finally, we propose a context dependent class
(CDC) LM that can maintain its ability to recognize different
histories. All this process is illustrated by Figure 1.

We divide this paper into the several sections. Section
2 gives an introduction about the traditional class-based n-
gram LM. In section 3 we review some related works on
modeling long-range dependencies. Section 4 gives a brief
review about LSA. Section 5 describes how to build the matrix
representation to get the projection matrices from words to the
LSA vector space. Section 6 introduces our proposed method;
context dependent class language model. Section 7 reports
all the experiments. This paper is closed with discussion and
conclusions.

II. CLASS-BASED n-GRAM

A class-based n-gram LM[5] was proposed to counter a
data sparseness problem suffered by word-based n-gram LM.
Without loss of generality, let us consider a bigram case and
denote Ci for a class of word wi. Given wi, wi−1 and its
class Ci, Ci−1, the probability of current word wi given history
wi−1 is calculated according to:

PCLASS(wi|wi−1) = P (wi|Ci−1, wi−1, Ci)P (Ci|Ci−1, wi−1).
(3)

Assume that P (wi|Ci−1, wi−1, Ci) is independent on
Ci−1, wi−1, and P (Ci|Ci−1, wi−1) is independent on wi−1.
Then Equation (3) becomes:

PCLASS(wi|wi−1) = P (wi|Ci)P (Ci|Ci−1), (4)

which is known today as a class-based bigram LM.
In general, the probability of word sequence W is defined

by:

PCLASS(W ) =
N∏

i=1

P (wi|Ci)P (Ci|Ci−n+1, ..., Ci−2, Ci−1),

(5)
Instead of words, a class-based n-gram LM estimates param-
eters for word classes. By mapping words into classes, this
model significantly reduces the parameter size. As a tradeoff,
the performance of this model is slightly worse compared
to word-based n-gram LM. In this work, word classes are
determined by clustering word vectors in the LSA space.

III. LONG-RANGE DEPENDENCIES

n-gram LMs are very powerful in modeling dependencies
between words that are very near to each other within the
text. However, they fail in modeling long-range dependencies
between words because they rely on the history limited to
n− 1 preceding words. Adaptive language modeling is based
on the idea of capturing long dependencies in the corpus.
A small number of parameters are added to the model to
allow the extraction of information from further back in the
document history, then the models adapt their expectation and
probabilities. Various approaches have been taken to adapt the
language model based on the observed text so far, including
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the use of a cache model, a trigger model, or topic mixture
model.

The cache model was proposed based on idea that words
appearing in a document will have an increased probability
of appearing again in the same document. Given a history
h = wi−n+1, ..., wi−2, wi−1, the cache model is defined by
the following equation:

PCACHE(wi|h) =
c(wi ∈ h)
length(h)

, (6)

where c(wi ∈ h) means how many times wi occur in the his-
tory wi−n+1, ..., wi−2, wi−1 so far (from the beginning of the
document to the preceding word). It is usually used together
with the word-based trigram using linear interpolation,

PL ≈ αPTRIGRAM + (1− α)PCACHE . (7)

There are other variation in the usage of this cache model. For
example n-gram caches, instead of a single word wi, the model
use more than one word (n-gram) to detect the occurrence in
the history. n-gram cache is defined by,

PCACHE(wi|h) =
c(wi−n+1, · · · , wi−1, wi ∈ h)
c(wi−n+2, · · · , wi−1, wi ∈ h)

. (8)

Another variation is to use n-gram cache only if
wi−n+1, · · · , wi−1, wi ∈ h known as conditional n-gram
cache. For short documents, the number of words appearing
is limited, so the benefit is small.

Trigger model was also introduced by taking advantages
of a long-distance document history which is not covered by
statistical n-gram model. Similar to the cache model but more
general, the trigger model allow to incorporate arbitrary word
trigger pairs which are combined in an exponential model. If a
word sequence X is significantly correlated with another word
sequence Y , then X → Y is considered as a trigger pair. It
makes the probability of word sequence Y affected when word
sequence X occurs in the document history. The selection
of these trigger pairs is a complex issue. If w1 triggers w2,
and w2 triggers w3, then w1 had better trigger w3. But this
is hard if w1 → w3 happens to be a low frequency trigger
pair, because it will likely be pruned away by the trigger
pair selection algorithm. As a result, different pairs display
different behaviour, and the potential of low frequency word
triggers is very limited [11]. Another drawback of this LM is
that the performance is very similar to that of the cache model,
because most of the best triggers are self-triggers (triggers with
the same root).

It is known that a language model built for a restricted
topic obtains low perplexity. Topic mixture model is based on
the idea of producing LM adapted to each particular topic or
domain. Corpus to train an LM usually contains many topics
which can also include subtopics. So the corpus can be divided
into a set of topics K either manually hand-labelled or using a
clustering method. The simplest approach for this model is to
combine the topic specific LM using linear interpolation [15]

PTOPIC(wi|h) =
∑

k

λkPk(wi|h), (9)

where Pk refers to the LM probability that was trained on
kth topic, and λk is the interpolation weight optimized on a

Fig. 2. LSA illustration on matrix decomposition and dimension reduction

held-out data set. Usually one of the mixture is a global model
trained on the entire corpus. However, this LM is less practical
since it makes smoothing complicated.

Recently, the word trigger concept has been extended into a
more systematic framework to handle the trigger pair selection.
This is based on a paradigm originally formulated in the
context of information retrieval, called latent semantic analysis
(LSA). In LSA, the analysis is wider than the long-distance
document history. It maps all the words in the corpus to the
continuous space, and extracts its semantic relation. Words
which have similar semantic meaning will be placed on the
continuous space closer. It begins from representing the corpus
through a mathematical object called term-document matrix.
Then using a Singular Value Decomposition (SVD), the matrix
is decomposed and reduced the dimension. Using the matrices
obtained from the SVD, every word and document is projected
to the continuous space. LSA tries to capture the long-range
dependencies and use it together with the word-based n-gram
for the short-range dependencies [17]. The probability of this
model is given by the following equation:

PLSA(wi|h, ĥ) =
PNGRAM (wi|h)ρ(wi, ĥ)

Z(h, ĥ)
, (10)

where ĥ denotes the global document history, ρ(wi, ĥ) is
a measure of the correlation between the current word and
this global LSA history, and Z(h, ĥ) is a normalization. The
language model represents a modified n-gram incorporating
large-span semantic information derived through LSA.

IV. LATENT SEMANTIC ANALYSIS

LSA extracts semantic relations from a corpus, and maps
them on the l-dimension vector space. The discrete indexed
words are projected into an LSA space by applying singular
value decomposition (SVD) to a matrix that representing
a corpus (representation matrix). In the original LSA, this
representation matrix is a term-document matrix.

Let A be a representation matrix with M ×N dimension.
SVD decomposes the matrix A into three other matrices U,
S, and V

AM×N = UM×kSk×kVT
k×N , (11)

where k = min(M,N). Because the solution’s dimensionality
is too large for computing resources, and the original matrix A
is presumed to be noisy, the LSA matrices (U and V matrix)
dimension is set to smaller than the original,

ÂM×N = UM×lSl×lVT
l×N , (12)

where l� k and Â is the best least square fit approximation
to A. Dimension reduction is illustrated by Figure 2.
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Fig. 3. Term-Document Matrix

Fig. 4. Bigram Matrix

The resulting matrix U is corresponding with the rows of
matrix A, and matrix V is corresponding with the columns
of matrix A. These LSA matrices are then used to project
the words into the l-dimension LSA vector space. In case
of a term-document matrix used as a representation matrix,
matrix U contains information about words while matrix V
contains information about the documents. So matrix U is
used to project words into the LSA space.

Let ‖V ‖ be a size of a vocabulary, each word in the
vocabulary can be mapped into an l-dimensional vector space
according to the following equation:

wi = ciX for 1 ≤ i ≤ ‖V ‖, (13)

where X is a projection matrix with ‖V ‖ × l dimension, and
ci is a discrete vector of word wi, where the i-th element of
the vector is set to 1 and all other ‖V ‖ − 1 elements are set
to 0. For instance, if ‖V ‖ = 5, discrete vector for word w4 in
the vocabulary (c4) is (0, 0, 0, 1, 0). To make it more easier, a
continuous vector for word wi is represented by the ith row
vector of matrix X. So each word wi has a continuous vector:

wi = (xi1, xi2, ..., xil) for 1 ≤ i ≤ ‖V ‖. (14)

Since wi is a vector which representing word wi, any
familiar clustering method could be applied, and is mapped
to the class Ci. The word probability can be approximated
according to a class-based LM, such as class-based n-gram
[5],

PCLASS(wi|wi−n+1, ..., wi−1)
= P (Ci|Ci−n+1, ..., Ci−1)P (wi|Ci),

(15)

where Ci is a class of word wi.

V. MATRIX REPRESENTATION

Originally, LSA uses a word-document matrix to represent a
corpus. This matrix ignores the word order in the sentence. In
this paper, we tried to keep the order by using co-occurrence
of word-word matrix. We propose three kinds of representation

Fig. 5. Trigram Matrix

Fig. 6. 1-r Distance Bigram Matrix

matrices; they are bigram matrix, trigram matrix, and 1-r
distance bigram matrix.

A. Term-Document Matrix

Term-document matrix or word-document matrix is a matrix
where its cell aij contains occurrence word wi in document dj .
In other words, the rows of the matrix are corresponding with
words and the columns corresponding with the documents.

B. Bigram Matrix

Bigram matrix is a matrix representation where each row
represents a current word wi, and each column represents the
1st preceding word wi−1 as illustrated by Figure 4. Each cell
aij is a co-occurrence frequency of word sequence wjwi in
the corpus. The resulting SVD matrix U is used to project a
current word into the LSA space. While matrix V is used to
project the 1st preceding word.

C. Trigram Matrix

Figure 5 illustrates the trigram matrix. Unlike the trigram
matrix defined in [26], in this research the two previous
words will not be seen as a phrase, but will be put as
independent words in the column. This makes the matrix
dimension even smaller. The literature Thus, a trigram matrix
is defined as a matrix where each row represents a current
word wi, each column in the first n columns represents the
2nd preceding word wi−2, and each column in the second n
columns represents the 1st preceding word wi−1.

Each cell aij , for the first n columns (1 ≤ j ≤ n), is a
co-occurrence frequency when the word wj occurs as the 2nd

preceding word of word wi. For the second n columns, each
cell aij (n + 1 ≤ j ≤ 2n) is a co-occurrence frequency of
word sequence wjwi. The resulting SVD matrix V consists
of two different parts. The first n rows are used to project the
2nd preceding word into the LSA space, and the next n rows
are used to project the 1st preceding word. Matrix U is used
to project a current word.

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 3, 2009

88



5

D. 1-r distance Bigram Matrix

Different with bigram or trigram matrix, in this matrix
we tried to collect the information about the previous word
in general by accumulating the co-occurrence of r-distance
bigram words. So the column in 1-r distance bigram matrix
represents the preceding words of wi−r, ..., wi−1 in general as
illustrated by Figure 6.

Each cell aij is the accumulation of co-occurrence word wi

as a current word with wj appearing from the 1st preceding
word to the rth preceding word. The resulting SVD matrix
U is used to project a current word wi into the LSA space.
While matrix V is used to projecting the preceding words.

VI. CONTEXT DEPENDENT CLASS

Because we use the word co-occurrence matrix to represent
the corpus, as a result LSA gives a different projection matrix
for different word position. For instance, bigram matrix is
decomposed into matrix U that projects the current word wi,
and matrix V is a projection matrix for the 1st preceding word
wi−1. So instead of calculating probability using Equation
(15), we need another formulation that could support different
classes. The idea is similar to multi-class composite n-gram
in [14]. A simple modification on Equation (15), we define a
context dependent class (CDC) language model as

PCDC(wi|wi−n+1, ..., wi−1)
= P (C(wi,Xi)|C(wi−n+1,Xi−n+1), ..., C(wi−1,Xi−1))
×P (wi|C(wi,Xi),

(16)
where C(wi,Xi) is a class of word wi obtained from the
classification of the LSA space build by projecting all words
in the vocabulary using projection matrix Xi. For an unseen
n-gram class, we applied class backoff to a lower context
class.

Equation (16) will change according to what kind of matrix
representation which is used to represents the corpus. When
using a bigram matrix, the equation becomes:

PCDC(wi|wi−1)
= P (C(wi,U)|C(wi−1,V))P (wi|C(wi,U)). (17)

In a trigram matrix case, the CDC is calculated as follows:

PCDC(wi|wi−2, wi−1)
= P (C(wi,U)|C(wi−2,V1), C(wi−1,V2))
×P (wi|C(wi,U)),

(18)

where V =

 V1

· · ·
V2

, V1 is the first n rows and V2 is the

second n rows of matrix V. And when using a 1-r distance
bigram matrix case, Equation (16) becomes:

PCDC(wi|wi−n+1, ..., wi−1)
= P (C(wi,U)|C(wi−n+1,V), ..., C(wi−1,V))
×P (wi|C(wi,U)).

(19)

Because the matrix V contains information about all the
preceding words, unlike bigram or trigram matrix, the CDC
context could be extended into n-gram context without in-
creasing cost to calculate a matrix.

In [7], language models that model different aspects have
been successfully combined with an n-gram language model.
Here, the statistical n-gram language model is used to capture
the local constraint using linear interpolation

PL ≈ αPCDC + (1− α)PNGRAM , (20)

where α is a weight constant.

VII. EXPERIMENTS

A. Setup

The data taken from Wall Street Journal (WSJ) corpus
from year 1987 to year 1989 consists of 37 million words
in 86,601 documents. It is divided into training and test
set. The vocabulary is used ARPA’s official ”20o.nvp” (20k
most common WSJ words, non-verbalized punctuation). By
inserting a beginning sentence, an end sentence, and an out-
of-vocabulary (OOV) symbols, the vocabulary size is 19,982
words. More detail is given by Table I.

TABLE I
EXPERIMENTAL DATA STATISTICS

#Word OOV Rate
Training Set 36,754,891 0.0236
Test Set 336,096 0.0243

As a baseline, LSA with word-document matrix is used.
The matrix representation was decomposed and reduced using
SVDLIBC 1 toolkit with Lanczos method. The LSA dimension
was varied from 20, 50, 100, and 200 dimensions. The
clustering was conducted by Gmeans2 toolkit using K-means
algorithm with Euclidean distance and various numbers of
classes from 500, 1000, 2000, and 4000. For an interpolation
model, Katz backoff word-based trigram language model is
used. Build using HTK Language Model toolkit[6], the per-
plexity of a conventional word-based trigram LM was 111.55.
We maximize the interpolation weight α from 0.1 to 0.9 with
step size 0.1.

B. Evaluation Method

To evaluate language model for speech recognition, one
may run the recognition experiment and calculate the accuracy.
However, it takes the whole speech recognition system. More
simple and widely used approach is to calculate its perplexity
(PP), as defined by the following equation:

PP = 2−
1
N log2 PL(W ). (21)

Minimising perplexity means maximising the log-likelihood
function. Although perplexity is not always agree with the
accuracy [28], but it is the first approximation towards better
language model. It tells how many word choices during the
recognition process. Small number of word choices will make
speech recognition system easier to choose the correct word.

1http://tedlab.mit.edu/∼dr/SVDLIBC
2http://www.cs.utexas.edu/users/dml/Software/gmeans.html
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Fig. 7. LSA space of term-document matrix of current word

Fig. 8. LSA space of bigram matrix of current word

C. LSA Space

After applying SVD and dimension reduction to a matrix
representation, we can project words into a continues vector
space using the resulting matrix projection. In this section,
we made 2 dimensions plot on nine words where each three
of them are closely related. They are man, woman, person,
college, school, university, finance, economy, and bank. With
the term-document matrix we can project all those words using
U matrix based on Equation (13). The result can be seen on
Figure 7. For the word co-occurrence matrix, there will be
more than one plot for each word since the projection matrix
is different for a different word position. Word vector college
as a current word will be different when we compare it to word
vector college when we refer this word as a preceding word.
Thus, it is better to treat this differently. All the plots for LSA
with the word co-occurrence matrix can be seen from Figure 8
to Figure 14 for all word positions. From these figures, we may
compare word vectors from the word-document matrix with
word vectors from the word co-occurrence matrix on how they
relate one word to the others. When using word co-occurrence
matrix, we will have a different word vectors distribution for
different word position in the sentence.

D. LSA-based Class Language Model

To show the performance of the word co-occurrence matrix
against word-document matrix, we conducted experiment on
these matrices where the probability is calculated with class-
based n-gram LM (15). It means that the word co-occurrence

Fig. 9. LSA space of bigram matrix of preceding word

Fig. 10. LSA space of trigram matrix of current word

matrix will only use its U matrix after applying LSA. The
models are the word-document matrix (TD) as a baseline, the
bigram matrix (B), the trigram matrix (T), the 1-2 distance
bigram matrix (12DB), the 1-3 distance bigram matrix (13DB),
the 1-4 distance bigram matrix (14DB). With 2000 word
classes, the result for bigram model is given by Figure 15
in increasing LSA dimension. It shows that by keeping the
word order in matrix representation gives improvement on
perplexity about 3.62%-12.72% relative. Similar for trigram
model (Figure 16), although the trigram matrix gives worse
perplexity on 20 dimensions, overall results show that keeping
the word order could improve performance. The interpolated
model results are given by Figure 17 and Figure 18, respec-
tively. The results for increasing cluster size with fixed 200
LSA dimension can be seen on Figure 19 and Figure 20
for bigram and trigram model, respectively. The interpolated
model is also presented in Figure 21 for bigram model, and
Figure 22 for trigram model. From all these figures, we can see
that the perplexity given by model with the word co-occurence
matrix is better than the word-document matrix. LSA extracts
latent information that lies within the word order in the word
co-occurrence matrix effectively.

E. Context Dependent Class Language Model

Up to this point, the usage of the word co-occurrence
matrix is not optimum yet. We only used matrix U in the
model. In the following experiment, we incorporated all LSA
matrices of the word co-occurrence matrix in CDC LM. We
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Fig. 11. LSA space of trigram matrix of 1stpreceding word

Fig. 12. LSA space of trigram matrix of 2stpreceding word

consider several CDC models; they are CDC with the bigram
matrix (CDC-B), CDC with the trigram matrix (CDC-T), CDC
with the 1-2 distance bigram matrix (CDC-12DB), CDC with
the 1-3 distance bigram matrix (CDC-13DB), CDC with the
1-4 distance bigram matrix (CDC-14DB). As a baseline, a
traditional class-based LM with the word-document matrix
(TD) is used. Using a fixed 2000 classes, we varied the
LSA dimension and show the results in Figure 23 for bigram
model and Figure 24 for trigram model. In bigram model,
we can see all word co-occurrence matrices give better result
than the baseline word-document matrix about 7.88%-13.48%
relative. In trigram model, at 20 dimensions, the trigram
matrix gives worse performance but after that the performance
is increasing. While, the 1-r distance bigram matrix gives
better performance in any dimension. Next, we interpolated
the model with word-based trigram and show the results in
Figure 25 and Figure 26. Although the interpolation gives
larger impact to the baseline, but the word co-occurrence
matrix model still gives better perplexity about 0.6%-1.68%
relative. This is caused by keeping the word order on word co-
occurrence matrix. So a combination with word-based trigram
which has strong local constraint will impact more on a model
which only captures global constraint. Next, we tried to show
the model’s behaviour on increasing the number of clusters.
We set a fixed 200 dimensions LSA space and various number
of classes from 500 to 4000. The results are given by Figure
27 for bigram model and Figure 28 for trigram model. The
interpolation model’s results are also given in Figure 29 and

Fig. 13. LSA space of 1-3 distance bigram matrix of current word

Fig. 14. LSA space of 1-3 distance bigram matrix of preceding word

Figure 30. In these figures we can also see that the proposed
word co-occurrence matrix has better peformance than the
original word-document matrix. These results also indicate that
CDC performs better than the traditional class-based language
model.

A similar conclusion is also valid for fourgram model on
CDC with the 1-r distance bigram matrix (CDC-1rDB) shown
by Table II. The perplexity improvements are around 7.09%-
10.52% for the stand-alone model, i.e., class-fourgram LM,
and 2.41%-2.69% for the interpolated model against LSA
based class language model with word-document matrix (TD).

TABLE II
FOURGRAM MODEL OF CDC WITH 200 LSA DIMENSIONS

Stand-alone Interpolated Stand-alone Interpolated
2000 classes 4000 classes

TD 161.51 104.73 131.95 103.68
CDC-12DB 146.23 102.21 122.59 101.05
CDC-13DB 144.53 101.94 122.43 100.99
CDC-14DB 144.53 101.91 122.52 101.07

VIII. DISCUSSION

In 1993, Kneser and Ney [29] proposed a class mapping
algorithm with the objective function is to maximize the
likelihood, thus it will minimize the perplexity. The algorithm
starts from a given number of class, then iteratively mapped
a word into a class which will gives the highest likelihood.
This is repeated until some threshold or some number of
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Fig. 15. Bigram model on increasing LSA dimension with 2000 number of
classes

Fig. 16. Trigram model on increasing LSA dimension with 2000 number of
classes

Fig. 17. Interpolated bigram model on increasing LSA dimension with 2000
number of classes

Fig. 18. Interpolated trigram model on increasing LSA dimension with 2000
number of classes

Fig. 19. Bigram model on increasing cluster size with 200 LSA dimensions

Fig. 20. Trigram model on increasing cluster size with 200 LSA dimensions

Fig. 21. Interpolated bigram model on increasing cluster size with 200 LSA
dimensions

Fig. 22. Interpolated trigram model on increasing cluster size with 200 LSA
dimensions
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Fig. 23. Bigram model of CDC on increasing LSA dimension with 2000
number of classes

Fig. 24. Trigram model of CDC on increasing LSA dimension with 2000
number of classes

Fig. 25. Interpolated bigram model of CDC with word-based trigram on
incrasing LSA dimension with 2000 number of classes

Fig. 26. Interplated trigram model of CDC with word-based trigram on
incrasing LSA dimension with 2000 number of classes

Fig. 27. Bigram model of CDC on increasing cluster size with 200 LSA
dimensions

Fig. 28. Trigram model of CDC on increasing cluster size with 200 LSA
dimensions

Fig. 29. Interpolated bigram model of CDC with word-based trigram on
increasing cluster size with 200 LSA dimensions

Fig. 30. Interplated trigram model of CDC with word-based trigram on
increasing cluster size with 200 LSA dimensions
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iteration has been reached. The initial class is usually formed
by randomly distributed words among all classes or placing
all words in the first class. This algorithm is implemented in
the HTK LM Toolkit [6].

The approach that we proposed in this research is performed
in a different way. A semantic approach performed by LSA
maps similar words into a continuous vector space closely
to each other. Then the clustering method will group these
words into semantic classes. The class-based LM performed
using HTK on 2000 classes gives perplexity 132.38 for trigram
model and 121.46 for fourgram model. These results are
comparable to the CDC LM method with 200 LSA dimensions
and 4000 classes proposed here, which gives perplexity 132.46
for trigram model and 122.43 for fourgram model. This fact
proves the validness of our proposed method.

The linear interpolation of CDC LM with word-based
trigram LM give improvements around 2.01% for trigram
model, and 9.47% for fourgram model against the word-
based trigram LM perplexity. Obviously, these results can
still be improved by optimizing the available parameters, such
as using another distance in the clustering, or changing the
clustering method itself. We are also looking forward to use
another word extraction method, such as Probabilistic LSA
(PLSA) [30] or Latent Dirichlet Allocation (LDA) [31].

IX. CONCLUSION

In this paper, we demonstrated that word co-occurrence ma-
trix has better performance than the traditional word-document
matrix in LSA framework. One of the reason is because the
proposed word co-occurrence matrix keeps word order unlike
word-document matrix. We also showed that the CDC LM
improve its perplexity and also give performance better than
the traditional class-based n-gram LM based on LSA.
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