
Validation Methods of Suspicious Network Flows
for Unknown Attack Detection

Ikkyun Kim, Daewon Kim, Yangseo Choi, Koohong Kang, Jintae Oh and Jongsoo Jang

Abstract— The false rate of the detection methods which are
based on abnormal traffic behavior is a little high and the
accuracy of the signature generation is relatively low. Moreover, it
is not suitable to detect exploits and generate its signature. In this
paper, we have presented ZASMIN (Zeroday-Attack Signature
Management Infrastructure) system, which is developed for novel
network attack detection. This system provides early warning at
the moment the attacks start to spread on the network and to
block the spread of the cyber attacks by automatically generating
a signature that could be used by the network security appliance
such as IPS. This system have adopted various technologies
— suspicious traffic monitoring, attack validation, polymorphic
worm recognition, signature generation — for unknown network
attack detection. Especially, the validation functions in ZASMIN
have to able to cover 1) polymorphism, which is an encrypted
attack code at the penetration and operation step, 2) executables,
which are any binary functions at each step, and 3) malicious
string. And also, we introduce two concepts to validate the pre-
processing of the suspicious traffic. The one is attack-based
validation and the other is signature-based validation. These
validation functions can reduce the false rate of the unknown
attack detection. In order to check the feasibility of the validation
functions in ZASMIN, we have installed it on real honeynet
environment, then we have analyzed the result about detection
of unknown attack. Even though short–period analysis is not
enough long to detect various unknown attacks, we confirmed
that ZASMIN can detect some attacks without any well-known
signature.

Index Terms— Zero-day Attack, Signature, cyber attack, In-
trusion Detection

I. I NTRODUCTION

Protecting network systems against recurrent and new worm
attacks is a pressing problem. Current solutions focus on
end system patching, the purview of end user vigilance with
system support for streamlining the patching effort, and well-
trained intrusion prevention system at network perimeter. For
both technical (e.g., disruption, unreliability, irreversibility)
and non-technical (e.g., awareness, laxity) reasons [34], [37],
software and signature patches incur a significant time lag
before they are adopted, and even then, the deployment
level is partial. According to recent studies [30], [29], an
average of twenty to forty new vulnerabilities in commonly
used networking and computer products are discovered every
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month. Such wide-spread vulnerabilities in software add to
today’s insecure computing/networking environment. Similar
new vulnerabilities in networks and applications are discov-
ered and published on a daily basis. This insecure environment
has given rise to the ever evolving field of intrusion detection
and prevention.

In the classification point of view of the typical network
intrusion detection methodology, we can consider the “zero-
day” worm problem as the extension of the anomaly detection
methodology. However, as the zero-day network attack became
more sophisticated and faster in spreading across network,
it differs from the existing anomaly detection methodology
and researches. In the initial of this research of a field,
it was initiated from the detection and signature generation
methods [26], [31], [32] using the content prevalence model
which considers the propagation of the super worm including
Code-Red, Slammer, etc. But the false rate of the detection
methods which are based on it is a little high and the accuracy
of the signature generation is relatively low. Moreover, it is
not suitable to detect exploits and generate the signature, if we
look into the recent trend of new network attacks. For example,
after Sasser worm occurred in 2004, the network attack of
the similar type markedly decreases. And malicious software
mainly spread by using E-mail, downloader, dropper, and
etc. Therefore, as to researches [26], [16] using the property
of the similarity or the repeatability of the network traffic,
the effectiveness decreases, while some static or dynamic
analysis method of network packet have gotten the attention
in detecting the malicious software.

In this paper, we have developed the Zeroday-Attack Sig-
nature Management Infrastructure(ZASMIN) system for novel
network attack detection. This system provides early detection
function and validation of attack at the moment the attacks
start to spread on the network. The system could also contain
the spread of the cyber attacks by automatically releasing a
signature that could be used by the network security appliance
such as IPS. In order to detect unknown network attack, the
ZASMIN system has adopted various of new technologies,
which are composed of suspicious traffic monitoring, attack
validation, polymorphic worm recognition, signature gener-
ation. Some of these functionalities are implemented with
hardware-based accelerator to be able to deal with giga-bit
speed traffic, therefore, it can be applicable to Internet back-
bone or the bottle-neck point of high-speed enterprize network
without any loss of traffic. After we installed the ZASMIN on
real honey-net environment in the internet exchange point (IX),
we have analyzed the results of the ZASMIN about detection
of unknown attack for two days. Even if two-day analysis
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is not enoughlong to detect various unknown attacks, any
experimental report on the zero-day attack detection in the
real network environment have never presented, and also we
could find some attacks without any well-known signature and
infer the tendency of the network attack at this point in time
through the case study.

The rest of the paper is organized as follows. In section 2,
we talk about the zero-day attacks and in the next section,
we deal with the related works. In section 4, we introduce
the ZASMIN system and describe the detail methodologies
adopted. In section 5, we shortly explain the real test environ-
ment including honeynet, and we analyze the two-days result
of the ZASMIN system. Finally, we conclude the paper and
discuss the future work.

II. Z ERO-DAY ATTACK DETECTION

As it is mentioned in the vulnerability’s law [29], new
vulnerabilities are released with every year and the infection
rate of new network attack is faster than our prediction. That
is, whilst it activates the automatic patch function, the threats
of the zero-day network attack are increased as times go by. As
the gap between the release time of the vulnerability and the
outbreak time of the attack using the vulnerability gradually
decreases, the necessary time to response its vulnerability
reached zero-day and zero-time. Actually in case of Slammer
worm in 2003, after the server buffer overflow vulnerability
was released, its exploit occurred in 185 days (called 185-day
attack). And in case of Sasser worm in 2004, it took 19 days
(called 19-day attack). At last, the attack (zero-day attack)
using the vulnerability which is not released was occurred
in the Mozilla Firefox application in 2005. Furthermore,
recently the research on the detection of zero-day network
attack and the signature generation is highlighted as an issue.
In the classification point of view of the typical network
intrusion detection methodology, we can consider the “zero-
day” worm problem as the extension of the anomaly detection
methodology. However, as the zero-day network attack became
more sophisticated and faster in spreading across network,
it differs from the existing anomaly detection methodology
and researches. In the initial of this research of a field,
it was initiated from the detection and signature generation
methods [26], [31], [32] using the content prevalence model
which considers the propagation of the super worm including
Code-Red, Slammer, etc. But the false rate of the detection
methods which are based on it is a little high and the accuracy
of the signature generation is relatively low. Moreover, it is
not suitable to detect exploits and generate the signature, if we
look into the recent trend of new network attacks. For example,
since Sasser worm occurred in 2004, the network attack of the
similar type markedly has decreased. And malicious software
mainly spread by using E-mail, downloader, dropper, and
etc. Therefore, as to researches [26], [16] using the property
of the similarity or the repeatability of the network traffic,
the effectiveness decreases, while some static or dynamic
analysis method of network packet have gotten the attention
in detecting the malicious software.

III. R ELATED WORKS

This paper is mainly related to two fields in the anomaly
attack detection category. The one is statistical methods for
anomaly detection; The other is machine learning method for
it; In the following, we first briefly review the first which are
less close to this work. Then we will focus on comparing our
work with the latter.

A. Statistical Approach

Statistical approaches to anomaly detection have some ad-
vantages. Firstly, these systems, like most anomaly detection
systems, do not require prior knowledge of security flaws
and/or the attacks themselves. As a result, such systems
have the capability of detecting “zero day” or the very latest
attacks. In addition, statistical approaches can provide accurate
notification of malicious activities that typically occur over
extended periods of time and are good indicators of impending
denial-of-service (DoS) attacks. A very common example of
such an activity is a portscan. Typically, the distribution of
portscans is highly anomalous in comparison to the usual
traffic distribution. However, statistical anomaly detection
schemes also have drawbacks. Skilled attackers can train a
statistical anomaly detection to accept abnormal behavior as
normal. It can also be difficult to determine thresholds that
balance the likelihood of false positives with the likelihood of
false negatives. In addition, statistical methods need accurate
statistical distributions, but, not all behaviors can be modeled
using purely statistical methods [28]. One of the earliest
intrusion detection systems was developed at the Stanford
Research Institute (SRI) in the early 1980’s and was called the
Intrusion Detection Expert System (IDES) [8], [20]. IDES was
a system that continuously monitored user behavior and de-
tected suspicious events as they occurred. In IDES, intrusions
could be flagged by detecting departures from established
normal behavior patterns for individual users. As the analysis
methodologies developed for IDES matured, scientists at SRI
developed an improved version of IDES called the Next-
Generation Intrusion Detection Expert System (NIDES) [2],
[3]. Statistical Packet Anomaly Detection Engine (SPADE) [9]
is a statistical anomaly detection system that is available as a
plug-in for SNORT [33], and is can be used for automatic
detection of stealthy port scans. SPADE was one of the first
papers that proposed using the concept of an anomaly score
to detect port scans, instead of using the traditional approach
of looking at p attempts over q seconds. In conjunction with
an automated worm detection and signature generation system
such as EarlyBird [32] and Autograph [14], signatures of new
worms may be uploaded onto worm filters, perhaps in time to
mitigate—if not prevent—significant damage and wide-spread
infection.

B. Machine Learning

In static anomaly-based detection, characteristics about the
structure of packet or the program under inspection are used
to detect malicious code. A key advantage of static anomaly-
based detection is that its use may make it possible to
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detect malware without having to allow the malware carrying
program execute on the host system. We categorize the static
anomaly detection into four parts : protocol header analysis,
packet payload analysis, application control detection and
static analysis of binaries.

1) Protocol Header Analysis :Mahoney et al. [21], [22],
[23] presented several methods that address the problem of
detecting anomalies in the usage of network protocols by
inspecting packet headers. The common denominator of all of
them is the systematic application of learning techniques to
automatically obtain profiles of normal behavior for protocols
at different layers. Packet Header Anomaly Detector
(PHAD) [21], LEarning Rules for Anomaly Detection
(LERAD) [22] and Application Layer Anomaly Detector
(ALAD) [23] use time-based models in which the probability
of an event depends on the time since it last occurred. Taylor
and Alves-Foss [35] propose a computationally low cost
approach to detecting anomalous traffic. Their approach is
referred to as the Network Analysis of Anomalous Traffic
Events (NATE). This technique focuses on attacks which
exploit network protocol vulnerabilities. In [41], protocol
type and Logistic Regression were used to pick up the feature
sets which can get nearly the same performance as the full
feature using a Support Vector Machine.

2) Payload Analysis:Kruegel et al. [17] show that it is
possible to find the description of a system that computes
a payload byte distribution and combines this information
with extracted packet header features. In this approach,
the resultant ASCII characters are sorted by frequency and
then aggregated into six groups. Maxion and Feather [24]
characterized the normal behavior in a network by using
different templates that were derived by taking the standard
deviations of Ethernet load and packet count at various
periods in time. An observation was declared anomalous if
it exceeded the upper bound of a predefined threshold. Lee
and Xiang [18] used several information-theoretic measures,
such as entropy and information gain, to evaluate the quality
of anomaly detection methods, determine system parameters,
and build models. These metrics help one to understand the
fundamental properties of audit data. Wang and Stolfo [39],
[38] present PAYL, a tool which calculates the expected
payload for each service (port) on a system. A byte frequency
distribution is created which allows for a centroid model to be
developed for each of the hosts services. Li et al. [19] describe
Fileprint (n-gram) analysis as a means for detecting malware.
During the training phase, a model or set of models are
derived that attempt to characterize the various file types on
a system based on their structural (byte) composition. These
models are derived from learning the file types the system
intends to handle. The authors premise is that benign files
have predictable regular byte compositions for their respective
types. In [1], its method generates normal signature sequence
and alignment threshold value from processing the system
training data and encode observed network connection into
corresponding DNA nucleotides sequence, then to align the
signature sequence with observed sequence to find similarity
degree value and decide whether the connection is attack or

normal.

3) Application Control Detection: Hittel [10] showed
how a metamorphic sled can be constructed and in the
same paper, developed Snort rules for detection; however,
their number can be very large. Toth and Kruegel [36], also
concentrating on the NOOP sled, went one step further. They
used binary disassembly to find sequences of executable
instructions bounded by branch or invalid instructions; hence,
longer the sequence, greater the evidence of a NOOP sled.
However, this scheme can be easily defeated by interspersing
branch instructions among normal code [10], resulting in very
short sequences. Recently, Pasupulati et al. [27] proposed a
technique to detect the return address component by matching
against candidate buffer addresses. While this technique is
very novel and perhaps the first to address metamorphic and
polymorphic code, there are caveats. First, the return address
component could be very small so that when translated to
a signature, it is not specific enough. Secondly, even small
changes in software are likely to alter buffer addresses
in memory. Consequently, this approach runs into similar
administrative overheads as existing signature-based detection
systems.

4) Static Analysis of Binaries:Bergeron, et al. [5] propose
a method that attempts to analyze the malicious intent of
an executable before it is executed. This form of malware
detection makes use of static analysis to identify the malicious
code. And also, Bergeron et al. [6] propose a specification-
based detection method. First the code is disassembled into
assembly code. Then to make the assembly code easier to
analyze, it is transformed into a higher level representation.
Flow analysis is used to help create the high level abstrac-
tion. Suspicious APIs of the PUI are identified based on
the behavioral specification of the system. This work differs
from [5] primarily in its specification of how to derive a high-
level imperative representation and its use of program slicing.
Andersson et al. [4] proposed a search algorithm to detect
the executable code transmitted in buffer overflow attacks.
However, the algorithm only identified the operation of the
buffer overflows attack by printing out the sequence of system
calls used in the exploit. Moreover, Chinchani and Berg [7]
proposed a fast static analysis approach to detect exploit code
inside network flows, where they relied on the control and data
flow analysis at instruction level. Unfortunately, it still not fast
enough to handle very large network traffic as mentioned in the
paper. The idea of SigFree [40] is motivated by an important
observation that “the nature of communication to and from
network services is predominantly or exclusively data and not
executable code” [7].

IV. T HE ZASMIN SYSTEM

We have developed the Zero-day Attack Signature Man-
agement Infrastructure (ZASMIN) system for novel network
attack detection. This system provides early detection function
and validation of attack at the moment the attacks start to
spread on the network. The system could also contain the
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STD : Suspicious Traffic Detector

SEG : Signature Extraction & Gen.

AVE : Attack Validation & Eval.

ROS : Release Optimized Signature

Gigabit Line Interface

Fig. 1: TheWorkflow Diagram of the ZASMIN.

spread of the cyber attacks by automatically releasing a signa-
ture that could be used by the network security appliance such
as IPS. As shown in the figure 1, in order to detect unknown
network attack, the ZASMIN system has adopted various of
new technologies, which are composed of suspicious traffic
monitoring, attack validation, signature generation. Some of
these functionalities are implemented with hardware-based
accelerator to be able to deal with giga-bit speed traffic,
therefore, it can be applicable to Internet backbone or the
bottle-neck point of high-speed enterprize network without
any loss of traffic. In the following, we describe the detail
methodologies used in the for each blocks.

A. STD : Suspicious Traffic Detection

The functionality to classify the suspicious traffic in the
normal traffic is very prerequisite in the traffic-based statistical
detection approach. The STD in the ZASMIN monitors all of
the traffic on the line without any loss and periodically notices
the traffic information, that is, dispersion of destination IP
address , TCP connection trial count, TCP connection success
count and stealth scan trial count. These traffic information
serves as the criteria to determine the suspicious traffic flow.
Most of worms, which have features called ‘fast propagation
attack’ or ‘scan-based attack’, should be filtered with these
metric standard. Basically, the thresholds to determine the
suspicious traffic depend on the type of network, which could
be the honey-net configuration, IDC network with many web
server, the transit point of the enterprize network, and so
on. In this experiment of the global honeynet, we set the
threshold value of the address dispersion as 5 degree — the
address dispersion means that a source IP with same protocol
and destination port connect to how many destination IP —,
where measurement period is 8 seconds. The determination
value of the TCP session success rate is non-zero. In case that
TCP session success rate is zero, the⟨ Source IP, Protocol,
Destination Port⟩ 3 tuple-based flow doesn’t contain the
payload as a connection trial traffic like SYN packet. We can
say that these packets are very supicious, but they don’t only
effect on the actual compromise of the victim besides DOS

attack, but also the system can not generate or validate new
signature of the attack.

B. SEG : Signature Extraction& Generation

The goal of the SEG in the ZASMIN is to generate the
candidate of signature, which should be the unique pattern
to be able to symbolize the attack packet. The SEG in the
ZASMIN is based on prevalence message through the content
analysis of payload like EarlyBird [32] and Autograph [14].
First, the SEG analyzes the flow pattern of the contents in
the suspicious packet from the STD. The flow means the⟨
Source IP, Protocol, Destination Port⟩ 3 tuple-based flow.
And it extract the patterns which is seems to an attack. At this
time, it use the same concept – prevalent content sampling–
as Autograph [14]. It extracts the fixed byte content with
overlapped windows, that is, it extracts 3-bytes contents at
the x offset position, it again extract 3-bytes contents at the
x + 1 offset position on the next time. The method of the
sampling the suspicious pattern is depend on the number
of destination of packets which are contained the fixed size
content. And it also use the ASCII filter, which exclude the
part of payload composed of ASCII code pattern. It is based on
the assumption that the payload content composed of ASCII
code pattern has very low probability to be attack. Finally, it
reconstructs the byte strings of flow pattern to a signature of
the suspicious packet. It considers the relationship between
the byte strings, so it proceed clustering byte strings with
a resemblance,R(A,B) = |S(A)∩S(B)|

|S(A)∪S(B)| , and acontainment

C(A,B) = |S(A)∩S(B)|
|S(A)| . It considerthe relationship between

the byte strings, so it proceed clustering byte strings with the
resemblance and the containment, then, finalize the signature
candidate with LCS (Longist Common Substirng) clustering
method.

C. AVE : Attack Validation& Evaluation

Basically, the suspicious traffic from the STD tend to
have high false positive rate. Therefore, we have to validate
the packets of the suspicious traffic. The functions of the
validation depend on the feature of attack packets transmitted
on the network. The feature is shaped on the specific step
during the lifetime of network exploits as shown figure 2.
The specific step could be the penetration or operation step
in the propagation phase. At this phase, any shellcode could
be delivered to the victim target, and some malicious activity is
performed at operation step. The features could be monitored
on the network at two steps are the penetration code and
operation code. The penetration code would contain incom-
plete binary of exploit code or shellcode, and its type could
be normal executable binary code or polymorphic with any
encrypted code. The operation code is the complete binary of
worm code or virus file, and its type also could be normal
or polymorphic. Therefore, the validation functions in the
AVE have to able to cover 1) polymorphism, which is an
encrypted attack code at the penetration and operation step,
2) executables, which are any binary functions at each step,
and 3) malicious string.
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Penetration Operaiton Next Attack

Purpose Target Skill

Phase 1: Vulnerabiliity

Phase 2 : Propagation

Phase 3 : Intention

Fig. 2: Thelife time of the network exploit

We introduce two concepts to validate the previous
processing of the STD and SEG. The one isattack-based
validation and the other issignature-based validation. The
attack-based validation is the thing whether the session
traffic which trigger to make new attack pattern contains
any malicious component or not. And The signature-
based validation is the thing whether the session traffic
which triggered by newly generated signature contains any
malicious feature or not. We can say that the former is a
validation concept about the past and current traffic, the
latter is a validation one about future suspicious traffic using
newly-made signature. That is, each concept deals with
just different input traffic and applies same methodologies
for its validation. The AVE in the ZASMIN has various
methodologies to validate the suspicious traffic.

1) Recognition of Executables:In the process to detect the
malicious code on the network, the key element is to determine
the presence of the executable code within a payload. The
method to distinguish the program-like payload from noncode
data and non-exploit code, that is, in order to decide the
presence of the executable code, we assume that all of payload
are executable. Because Intel instruction set (IA-32) is simple
structure, its codes can’t be distinguished from data bytes by
using only the disassembly method. If the static disassembling
is performed about all byte data, the complete assembly code
can be generated, and if the emulation of the execution level
is not performed, it is very difficult to determine that it is
executable code. Because the Intel IA32 OP-Code uses the
CISC format, all OPcode encodings can be expressed as 1byte
(256 encodings) size. Therefore all kinds of data, which are
the ASCII format or the binary, can be translated into the
assembly language with the IA-32 static disassembler. It means
that it is very difficult to determine whether it is executable
or not through the syntax examination of the disassembled
code. The challenge of this thesis is to look for the method
for determining the executable part within network payload
without the emulation of the execution level.

The AVE has two parallel detectors for recognize any
executable binary code in reassembled payload. The AVE
has two parallel detectors , FCED (Function Call-based Exe-
cutable code Detection) [12] and ICED (Instruction Coloring-
based Executable code Detection) [15], which provide the
functionality of high-speed recognition of executable codes
by eliminating the emulation of the execution level. The
presented methods can detect the executable shellcodes and

Payloadof a packet

or

Reasseambled payloads

Match
Counter

Similarity
Evaluator

High Similarity
(Executables)

Low Similarity
(Non-Executables)

Match count about each pattern

Fig. 3: Theworkflow of the function call-based detection.

TABLE I: Instruction patterns according to the function call mechanism. ‘esp
ops.’ means instructions that include ‘%esp’.

Function Notation 1 2 3
Fn. Call ec eps ops. call(s)

pc push call(s)
Fn. Start pm push ebp mov ebp, esp

Fn. Return mpr mov esp,ebp pop ebp ret(s)
pr pop ebp ret(s)
lr leave ret(s)

executableparts in any types of files and also they would
be complementary to improve the detection rate. The first
method (FCED) detects the instruction patterns of function call
mechanism within executable codes; that is, this function call
mechanism must be an obvious feature of executable codes.
For this, the FCED calculates the matching probabilities of
five instruction patterns – ec, pc, pm mpr, pr and lr – which
are corresponding to the function call mechanism, and then
determines the existence of executable codes in packets using
the similarity evaluator as shown Figure 3. We also explore
the optimization of parameters including the detection window
size, allowable instruction gap, minimal matching trial count
and decision threshold to improve the detection rate.

Whilst the FCED detects most shellcodes in malwares, it
could fail to identify in the case that the attack codes do not
contain the pattern of the function call mechanism. In order
to overcome this drawback, we propose another method called
ICED that uses an instruction spectrum analysis methodology;
that is, each instruction set is represented as a unique color,
and then the whole sequence of instructions is analyzed by the
translated color pattern. In order to generalize it, we introduce
an instruction transition probability matrix (ITPX) which is
comprised of the IA-32 instruction sets and reveals the char-
acteristics of executable code’s instruction transition patterns.
Finally, we use a simple algorithm to detect executable code
inside network flows using a reference ITPX which is learned
from the known Windows Portable Executable (PE) files.

In order to find the executable part within a payload,
we propose the instruction spectrum analysis of which each
instruction set is represented its color and then the whole
sequence of instructions is analyzed by the translated color
pattern. We assume two things; (i) there is the tendency that
some instruction set are consecutively repeated and others are
not so, (ii) in terms of the context between an instruction group
and the other instruction group, there is any correlation pattern.
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Fig. 4: Instructionspectrum for nine different types of payload.

So if these relations are expressed with a color, a pattern
toward the correlation of the executable instruction group can
become visible and we can found the executable instruction
spectrum. The instruction spectrum analysis method of this
thesis could be expressed by the form visually classifying the
characteristic of the instruction pattern of executable codes.

First, we classify the several hundreds of IA-32 OP-codes
into 109 instruction groups using the libdasm linear disassem-
bler [11], which consist of arithmetic and logical instructions
of the integer and floating point, privileged mode and NOP
instructions, and so on. Every instruction group is represented
by its corresponding color. In order to check the feasibility
of basic idea, we disassembled the some kinds of files and
we confirmed whether the correlation of the each instruction
group is discernable visually.

Figure 4 shows an example of instruction spectrum for nine
different types of payload. In Figure 4, a slot indicates an
instruction cycle and the color represents its corresponding
instruction group. In the Hangul text file (Han), the slots of
the blue-green color showing the transfer instruction group are
mainly repeated. In case of DOC file (Windows Office), there
are many repetitions of the brown and reddish brown slots
showing arithmetic and logical calculations respectively. In
case of text file (ASCII), there are many repetitions of a bunch
of green slots. And in case of non-executable files, there is the
tendency that the instruction belonging to the float calculation

Pi,j Pi,j
Pi,j

EES0

EES1

EESn-MDR

Fig. 5: Theexpectation value of instruction sequence.

or the others group periodically show up. However, in case of
Windows execution PE files, we can see that the instruction
sets of control, transfer, stack, logical, arithmetic, and etc are
distributed in a rate, and we note that their color spectrums
are visually different from ones of the previous three non-
executable data files.

As shown in simple example, we can find some different
points of instruction spectrum between executable code and
non-executable code. So we can say that the basic idea
of this thesis could be feasible. However there are some
challenging points how to generalize the visual differences in
the instruction spectrum and how to automatically determine
the executable region.

Now we drive an one-step homogeneous ITPXP (1) as
follows,

p(1) =

 p0,0 . . . p0,108

...
. . .

...
p108,0 . . . p108,108

 , (1)

where pi,j = P (Xn = j|Xn−1 = i), i, j = 0, . . . , 108, n > 0
are the transition probabilities from instruction groupi to j.
In order to get the reference ITPX of executable codes, we
scrutinized the sequences of 230,000 instructions in the exe-
cution code area (.txt section) of 80 Windows PE(Portable Ex-
ecutable) files stored at windows/system32 folder in Windows
System using the libdasm linear disassembler, and then we
determined the average transition probabilities from instruction
group i to j.
We define two new terminologies as follows,

• Definition 1. MDR(Minimum Decision Range) : The
number of minimum instructions required for the determi-
nation in which the instruction sequence of the executable
code exists.

• Definition 2. EES(Expectation of Executable Sequence) :

EESn = Pr (yn, yn+1, · · · , yn+MDR−1|ITPX), (2)

where n is from 1 to (length(payload) − MDR) and yi’s
are the observedith instruction transitions ofnth chunk of
an IP packet as Figure 5. From the assumption, individual
observationyi’s are statistically independent of one another,
and we estimateEES by the log function for computational
convenience [25] as follows,

log−EESn = −
n+MDR−1∑

k=n

ln pk
i,j , (3)
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Fig. 6: Typical structure of exploit code using buffer overflow vulnerability.

wherepk
i,j is the correspondingpi,j in Eq. 1 of the reference

ITPX when the k-th instruction is i and the (k + 1)-th
instruction is j. We note that we chooseMDR = 50
according to the smallest size of shellcodes of which very
short executable codes [36]. Because the optimization of
the MDR size is crucial to the shellcode detection, we will
consider the optimization problem of MDR in next section.

2) Recognition of Polymorphism:The AVE has the
method [13] to be able to detect the polymorphic shellcode
in which the disassembly thwarting and shlf-modifying code
techniques are used through the static anlysis method. This
method performs the disassembly per every byte to detect the
seedinstruction for GetPC so that it is not influenced by the
disassembly thwarting technique. Moreover, before the self-
modifying code is just operated, the feature of the decyption
routine is analyzed and the decyption is detected. The whole
idea of this method detects whether the program counter value
which the decryption routine stores through the static analysis
method is used in accessing the memory or not. In first step,
the method finds theseedinstruction playing the role of storing
the program counter value on a stack. As the second, the
method detects a register loading the value. The third step is
to trace the relation between the register and others. Finally,
if the loaded program counter value is used for accessing a
memory, the input data is determined to the decryption routine
of polymorphic shellcode.

The first step to find the decryption routine is the seed
instruction detection for GetPC. The instruction stores the
current program counter value on a stack and it is necessary
code to find the access address of encrypted code and to
use the self-decrypting technique. If an attack already knows
the information about the specific register value when the
polymorphic shellcode is put on in memory of the remote
host, the instruction is unnecessary. However, it is not in
an attacker the easy task to predict a situation. Therefore,
by using the instruction, in a general way, an attack draws
up the decryption routine. As the second step, a description
routine loads the program counter value stored in the virtual
stack space into the specific register. If the instruction which
accesses the memory which is not a stack shows up, it is not
the description routine. It is due to the attacker’s knowledge
limit about the remote host. As the last step, the connection
relationship tracing between the other registers and the
register in which the program counter value is stored.

3) Recognition of Malicious String:Figure 6 shows the
structure of a typical exploit code, which consists of three dis-
tinct components – 1) a return address block, 2) a NOOP sled,

Internet 
Exchange

ZASMIN

Virtual Machine-based
HoneyNet

ISP-A

ISP-B

ISP-C

Attack Traffic

Fig. 7: HoneyNet Testbed in the National Internet Exchange Point (IX).

and 3) the payload. The main purpose of such a construction
is that when a function returns following a buffer overflow,
the return address block directs execution on to the NOOP
sled, which eventually reaches the payload. The AVE has very
simple method to detectNOOP sledand return address. It is
similar to pattern matching like signature-based IDS. There are
so many NOOP instruction in IA32, so it need to be checked
how many similar instructions consecutively appeared. In case
of detecting return address, it also check how many 4-byte
pattern consecutively show up in the payload. If this kind of
simple method is applied to normal network packet, it has very
high false rate. However, because this methods are operated
with recognition of executables and polymorphicstechnique
mutually, its false rate would be very low.

V. CASE STUDY ON THE HONEYNET TESTBED

A. Honeynet Testbed in the IX

In order to evaluate the ZASMIN system in real network
environment, we installed it in front of the honeynet, which
was constructed in the internet exchange (IX) point as shown
in figure 7. This honeynet has been observed by the ASEC1

in the AhnLab, Inc. It has over 1,500 public IP addresses and
various network application services on the virtual machine
are launched for inducing attack traffic. It doesn’t have any
protection appliance like a firewall to temp attack traffic as
many as possible. And also, in order that the CERT expert
group can analyze the induced traffic, a network monitoring
equipment was set up inside honeynet. We want to know as
follows through the this experiment.

- Whether the attack information detected in the ZASMIN
are real or not.

- The number of the attacks which aren’t recognized by
CERT out of the attacks detected by the ZASMIN.

- The number of the attack which is recognized by CERT
and can generate a signature out of the attacks detected
by the ZASMIN.

We have expected to get the system-level false positive rate,
and confirmed the capability to detect unknown attacks and the
feasibility of the signature generated by the ZASMIN system
through the real environmental case study.

1AhnLab security emergency response center in the AhnLab, Inc.
http://www.ahnlab.com
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Min Max Average
Flow Count(per 8 sec. period) 0 1,600 29
ConnectionTrial Count 0 3,451 26
ConnectionSuccess Rate (%) 0 100 32.7

TABLE II: Basic traffic characteristics in the honeynet.

B. Suspicious Traffic& Signature

This experiment had been performed for 48 hours. Table II
shows basic traffic characteristics which are monitored on the
STD in the ZASMIN system. In the table, the number of
flow means the number of the 3-tuple⟨source IP, protocol,
destination port⟩flow measured for 8 seconds. In average,
29 3-tuple flows appeared and partially, there was the period
which doesn’t have traffic at all. The connection trial count
means the number of SYN packet excluding duplicates. The
attempts of the maximum 3,451 and average 26 were moni-
tored for 8 seconds. With regards to TCP connection success
rate, average 32.7% and maximum 100% were observed
for each duration. The traffic volume is a little low, and also
these traffic characteristics would be relatively abnormal when
it compares with normal traffic monitoring. We consider the
reason of this as the characteristics of the honeynet traffic.

As previous mentioned, the STD in the ZASMIN system
makes a decision on the suspicious traffic using the dispersion
degree of destination IP address, TCP connection trial count,
TCP connection success rate and stealth scan trial count.
And then, the SEG generates the signature candidates in the
suspicious traffic through the content prevalence feature of
attack code. As shown in the figure III, total 975 suspicious
alerts occurred within 58 flows for 48 hours. The total number
of destination port is 11 and the number of source IP addresses
is 48. The reason that the number of source IP addresses
is less than that of flows is that a source IP address has
multiple connections with various TCP destination IP address.
As shown in the table III, we can see the most many flows
in the destination port 135 (secure shell), and there are many
flows in the 445, 139 TCP port. Totally we get 1,105 signatures
excluding the duplicate signatures repeatedly generated for 5
minutes. As shown in the table III, there are many signatures
at TCP destination port 135 and 445 which are ports for
Microsoft server service. When we consider the basic traffic
characteristics of the honeynet environment, the volume of
traffic is not so much, but the probability to be attack would
be very high.

C. Attack Validation

As previous mentioned, the validation functions in the AVE
were performed to recognize executables, polymorphics and
malicious string. As the result of the attack validation, the
number of signature is reduced to 53 attacks at destination
port 135, 445 and 9988 as shown table VI. The rest suspicious
alerts besides 53 attacks could be any trace of attack scenario,
but doesn’t have any direct attack evidence like a shellcode
of worm. In the table, The number of signature doesn’t mean
the number of final verdict of the validation but the number of
signature about the suspicious attack having at least one more
positive result through several validation methods.

dst. port # of # of # of sig. description
alert flow (unique)

21 1 1 – FTPcontrol
22 17 4 – SecureShell
135 309 19 74(11) Secure Shell
139 115 10 9(3) NETBIOS
445 492 11 1013(22) Microsoft-DS
1089 11 3 – ff-annunc
1433 16 3 3(2) Microsoft SQL
2100 1 1 – Amiganefts/Oracle XDB
2433 5 1 1 (1) codasrv-se
4899 5 2 – RAdmin Port
9988 3 3 5 (4) –

TABLE III: Suspicious traffic information and the number of signature for
each port in the honeynet.

dst. port # of signature # of unique signature
135 8 6
445 43 11
9988 2 1

TABLE IV: After validation, the number of signature for each destination
port.

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

90 90 90 90 90 90 90 90 EB 15 B9 8B E6 13 41 81 ..............A.

F1 39 E6 13 41 5E 80 74 31 FF 85 E2 F9 EB 05 E8 .9..A^.t1.......

E6 FF FF FF B6 5E E1 0E C6 B5 0E C5 89 0E F5 99 .....^..........

28 0E FD 8D 6D C0 85 85 85 D6 D3 0E DA B9 0E D9 (...m...........

BE FD 86 5A D6 0E DE A5 86 5A D6 06 46 81 0E B6 ...Z.....Z..F...
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0E DB 99 86 5A 0E 81 0E 86 42 DB DE 7A 65 DB ED ....Z....B..ze..

B6 B7 85 85 ED F2 F6 B7 DA D1 3F 17 EB 81 01 7A ..........?....z

Fig. 8: Somepart of the payload sample which are used for attack validation.

00402000

00402001

00402002

00402003

00402004

00402005

00402006

00402007

00402008

0040200A

0040200F

00402015

00402016

0040200B

0040201D

0040201F

00402024

00402026

00402028

00402029

0040202B

00402031

00402032

00402033

00402036

0040203C

00402042

00402045

00402046

0040204C

90

90

90

90

90

90

90

90

EB 15

B9 8BE61341

81F1 39E61341

5E

807431 FF 85

E2 F9

EB 05

E8 E6FFFFFF

E6 5E

E1 0E

C6

B5 0E

C589 0EF59928

0E

FD

8D6D C0

8585 8506D30E

DAB9 0ED9BEFD

865A D6

0E

DEA5 865AD606

46

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

JMP SHORT 1.0040201F

MOV ECX,4113E68B

MOV ECX,4113E639

POP ESI

XOR ByTE PTR DS:[ECS+ESI-1],85

LOOPD SHORT 1.00402016

JMP SHORT 1.00402024

CALL 1.0040200A

MOV DH,5E

LOOPDE SHORT 1.00402036

???

MOV CH,0E

LDS ECS,FWORD PTR DS:[ECS+2899F50E]

PUSH CS

STD

LEA EBP,DWORD PTR SS:[EBP-40]

TEST DWORD PTR SS:[EBP+ED3D685],EAX

FIDIVR DWORD PTR DS:[ECX+FDBED90E]

XCHG BYTE PTR DS:[EDX-2A],BL

PUSH CS

FISUB WORD PTR SS:[6D65A86]

INC ESI

NOP Sled Part

Decyption Code

Encypted Shellcode

1

2

3

4

5

6

7

8

Fig. 9: After disassembling the payload sample, NOOP sled, decrption code
of polymorphics and encrypted shellcode are recognised by AVE’s
validation functionality.

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 3, 2009

111



Name of Vulnerability # of detection
MS06-040 10

(MS05-039)
MS04-011 16
MS04-007 9
MS04-026 3
MS03-039 3

LSASS 3
Not Attack 1

Not Deterministic 7

TABLE V: The number of attacks for each vulnerability.

We would like to show the details of a representative
verification sample out of 53 attacks. Figure 8 show the
some part of the payload dumped from the suspicious traffic
through the TCP port 135. It is composed of 4 packets and
its total length is 1818 bytes, which are reassembled by the
preprocessing of the AVE. With regards with the recognition
of executables in the AVE, because it doesn’t contain the
calling function in the shellcode, the call mechanism [12]
couldn’t detected, but ITPX-based method [15] recognized the
executable codes. In the recognition of malicious string, so
many NOP codes are detected, but return address couldn’t
be found out. In this sample, the remarkable point is the
recognition of polymorphics. In the figure 8, the red-colored
text is the part which are recognized as the decryption codes
of the polymorphic shellcode. As shown in the figure 9, after
disassembling the payload sample, we can clearly confirm
the NOP sled, the decryption codes of polymorphics and
encrypted shellcodes. In case of the decryption codes, we
can see that just 8 machine instructions can make a effect
on decrypting the encrypted shellcode. After the decryption
codes following NOP sled codes decode the encrypted codes at
address 0x402024 using XOR instruction, instruction pointer
jump to the address. Figure 10 shows the shellcode to be
executed after decryption. If the payload in the suspicious
traffic contains the NOP operation and decryption codes like
this, the ZASMIN system can guarantee the suspicious traffic
has attack evidence. As the result of the analysis by the CERT
team, this suspicious traffic is related to the vulnerability of a
name called MS03-039. This is a typical polymorphic worm
code using MS03-039 vulnerability, which cause that buffer
overrun in RPCSS service could allow code execution. After
the validation of attack, the final signature on this attack is
released with of the signature syntax of the SNORT as follows.
It can be applied to various security appliances with minor
change.

ALERT TCP any any→ any 135 (msg:”” content:“|57 00 00 00
00 04 5d 88 8a eb 1c c9 11 9f e8|” reference: class-type :0 sigid
:186024 revision :0;)

Through this case study, we found several attacks using
some vulnerabilities without any well-known signature. Ta-
ble V show the vulnerabilities used in 53 attacks. In case
of not-deterministic, the CERT expert couldn’t prove it is an
attack or not. Even if these vulnerability was released long
time ago, we can confirm that these kinds attacks still exist
in the public domain with polymorphic form. As the final
decision of the ZASMIN, it determined that 44 alerts are an
attack out of 53 attack candidates. The CERT expert group

00402024    33DB           XOR EBX,EBX

00402026    64:8B43 30     MOV EAX,DWORD PTR FS:[EBX+30]

0040202A    8B40 0C        MOV EAX,DWORD PTR DS:[EAX+C]

0040202D    8B70 1C        MOV ESI,DWORD PTR DS:[EAX+1C]

00402030    AD             LODS DWORD PTR DS:[ESI]

00402031    8B78 08        MOV EDI,DWORD PTR DS:[EAX+8]

00402034    E8 45000000    CALL 1.0040207E

00402039    53             PUSH EBX

0040203A    56             PUSH ESI

0040203B    8B5F 3C        MOV EBX,DWORD PTR DS:[EDI+3C]

0040203E    8B5C3B 78      MOV EBX,DWORD PTR DS:[EBX+EDI+78]

00402042    03DF           ADD EBX,EDI

00402044    53             PUSH EBX

00402045    8B5B 20        MOV EBX,DWORD PTR DS:[EBX+20]

00402048    03DF           ADD EBX,EDI

0040204A    53             PUSH EBX

0040204B    83C3 04        ADD EBX,4

0040204E    8B33           MOV ESI,DWORD PTR DS:[EBX]

00402050    03F7           ADD ESI,EDI

00402052    33C9           XOR ECX,ECX

00402054    AC             LODS BYTE PTR DS:[ESI]

00402055    32C8           XOR CL,AL

00402057    C1C1 05        ROL ECX,5

0040205A    84C0           TEST AL,AL

0040205C  ^ 75 F6          JNZ SHORT 1.00402054

0040205E    2BCA           SUB ECX,EDX

00402060  ^ 75 E9          JNZ SHORT 1.0040204B

00402062    58             POP EAX

Fig. 10: After decryption by decryptor, executable shellcode in the payload.

concluded that just one out of 44 attacks is not an attack. It
is hard to figure out the exact rate with the small data set
like this, the ZASMIN system has the false positive of 2.3%
approximately.

# of valid # of final
attack evidence attack verdict

ZASMIN System 53 44
CERT Analysis 48 43

False Rate 9.4 % 2.3 %

TABLE VI: False rate of ZASMIN system in this experiment.

VI. CONCLUSION

We have introduced the Zeroday-Attack Signature Man-
agement Infrastructure(ZASMIN) system for novel network
attack detection. This system provides early detection function
and validation of attack at the moment the attacks start to
spread on the network. After we installed the ZASMIN on
real honey-net environment in the internet exchange point (IX),
we have analyzed the results of the ZASMIN about detection
of unknown attack for two days with CERT expert group.
Even if two-day analysis is not enough long to detect various
unknown attacks, we could find some attacks without any
well-known signature through the case study. Even if these
vulnerabilities which the attacks used were released long time
ago, these kinds of attacks still exist in the public domain
with polymorphic form. Through the this case study, we have
convinced that new attack or polymorphic known attack can
be detected by the ZASMIN system. It’s hard to evaluate the
exact system-level false positive rate in the real environment,
but we can say that the ZASMIN system has relatively low
false rate with this case study. And also, we need to focus on
reducing the its false rate as the further study.
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