

Abstract— This paper describes the modeling and use of a

reduced Colored Petri net for fault diagnosis and recovery in
embedded and control systems. The reduced or compact Colored
Petri net modeling approach can be extended to other classes of real
time systems, real time hardware, etc. A reduced colored Petri net is
a compact form of a Colored Petri net having complex token types
based on sets or complex sets containing the structured information
for error handling. The approach presented here will reduce the size
of the Colored Petri net because information is put in the token
instead of having many additional places and transitions as is
typically done. This approach is illustrated with a comprehensive
example of a computerized fuel control system for a combustion
turbine. The Colored Petri net is an executable model. It is analyzed
structurally and results are shown and interpreted.

Keywords— Fault Diagnosis, Petri nets, Colored Petri nets,

Embedded Systems, Control Systems

I. INTRODUCTION
AULT diagnosis and recovery have become increasingly
important over the past decade [5]. As hardware and

computer systems evolve in complexity, embedded systems,
real time controllers, control systems and real time systems
have more reliability requirements than before. Many modern
devices and systems exhibit behavior typical of embedded
controllers or IC based control. These systems are just a few
areas which require proper fault identification and handling.
Including solutions after the design phase is not an option.
The principle of ‘correct by construction’ should be applied.
This would solve any issues that might arise.
 In literature different methods and approaches are
suggested. Different models ranging from static block diagram
notations to discrete event models are used as required. Other
approaches like formal languages have been developed.

II. FAULT AND RECOVERY ISSUES
As software functionality in modern embedded devices and
control systems increase the system’s state space will also

Manuscript sent Dec 31, 2008: revised Feb 2009

A. Spiteri Staines is with the Department of Computer Information
Systems, Faculty of ICT, University of Malta, Msida, MSD 2080, Malta,
Europe. phone: 00356-21373402; fax: 21312110; (e-mail:
toni_staines@yahoo.com, tony.spiteri-staines@um.edu.mt)

increase accordingly. Increase in states also implies an
increase in complexity. The traditional models used to
represent these systems have limited modeling capabilities.
Most traditional models are based on block diagram notations
or some specific language set. Models and modeling
techniques based on diagrammatic notations are unsuitable for
the design stage because of the fact that the requirements of
the run-time need to be experimented with at the design stage.
The model needs to be executed and validated before actual
system construction.

Executable models that represent recovery or failsafe
principles based on auto recovery and self healing properties
are required at the design stage [4],[5],[11],[13],[14]. Intrinsic
management mechanisms, where functionality and
intelligence are represented, must be integrated into the final
application. Errors should be accounted for as they occur in
the real situation. A good system should manage them with
the least amount of external intervention.

III. A COLORED PETRI NET SOLUTION
A colored Petri net having a reduced number of places and
transitions using compound color sets can be used to solve
these issues. The proposed model still retains the main
properties and structure of P/T nets which is useful for other
forms of analysis.

A. Petri Nets, Colored Petri nets and Fault diagnosis
Discrete event models are used to model the error handling

and fault diagnosis for certain classes of embedded and
control systems. Petri nets offer extended modeling
capabilities over automata when representing system behavior
[3],[11]. Automata have limited capabilities. If unreduced
place transition nets are used, it is possible to end up with a
large state space making them unfeasible to represent complex
systems error handling. Colored Petri nets are proposed for
fault diagnosis in [1]. A special type of place called a latent
nestling place is used to store tokens.

Petri nets are a well proven formalism suitable for studying
the construction/design and behavior of discrete event systems
[2]-[11]. Different classes of Petri nets exist, ranging from
elementary nets (EN) to higher order nets and Object Oriented
nets. In literature Petri nets have been used to model different

A Compact Colored Petri Net Model for Fault
Diagnosis and Recovery in Embedded and

Control Systems
A. Spiteri Staines

F

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

222

forms of discrete processing in computing ranging from
communication networks to hardware components and real
time systems. Petri net models can be decomposed using rules
for fusion and augmentation of places and transition. Higher
order nets can contain a vast amount of information which is
encoded in the tokens, places and transitions.

 Simple place transition nets offer easy validation but are
not so useful for complex modeling. They are similar to
automata. Higher order nets [10] offer detailed complex
modeling at the disadvantage of validation and ease of use.
Petri nets are well supported with a vast amount of literature
and other formal methods.

B. Informal Description of Colored Petri Nets
Colored Petri nets are based on extensions to normal Petri

nets [12]-[13], [19]. Colored Petri nets extend the modeling
capabilities of the traditional place transition net. Colored
tokens can be defined from different types ranging from
simple to complex. The token in a colored Petri net can
encode a vast amount of information that determines transition
firing. A colored token is a token that has an associated data
value which may be of simple or complex type. This property
of Colored Petri nets is often overlooked. Places are
associated with color sets. The token types of places are
specified using a special language or functions. Transitions
also can be programmed using special constructs and
functions. Additional constructs can be used to enable or
disable transition firing. Input and output arcs can have
expressions and functions related to them. In short there is the
possibility to include different rules and conditions for
different components of the Petri net.

 For a transition to be enabled, the input arcs expressions
need to bind successfully with the tokens present in the input
places and the transition guard. Transition firing depends on
the binding and the resultant output is derived again from the
transition output arcs and the arc expressions. The tokens are
placed in the respective output places.

Colored Petri nets being a class of higher order nets [10]-
[13] offer the advantage of having a complex memory state
that can be controlled via the tokens themselves. Parameters,
complex data types, arc inscriptions, complex firing rules etc.
are programmable in functional languages like ML [12],[18].
These features offer a substantial degree of control.

 Colored Petri nets can be used for fault diagnosis and
investigation in control systems offering many advantages like
reduced model size, reduced marking graph, more realistic
execution, etc. over traditional FSMs and place transition nets.

C. Compact Colored Petri Net Model Approach
The idea for creating reduced or simplified Petri net models

is already known [20]-[22]. E.g. in [20] a task interaction
graph based Petri net (TBPN) is used to create a reduced size
Petri net for Ada task programs. As a general idea, a smaller
Petri net has a simpler reachability graph which is simpler to

construct. In Petri net theory various rules have been
established for the reduction of models by combing places or
transitions. Normally the approach is to create the complex
model and simplify later. A Colored Petri net still retains
structural similarity with other types of Petri nets.

A Colored Petri net can be structurally reduced more than a
place transition net and yet have more information. In this
work the idea presented is that of using a compact Colored
Petri net model from the start to keep the number of places,
transitions and arcs used to a minimum. The information
about the errors resides with the tokens. The tokens are based
on sets and can contain all error values or none. Here the same
token type is used thought the net hence simplifying it even
more than the Colored Petri net latent nestling method
presented in [1], [14]-[15] and other approaches where multi
token types are normally used. The result is that the final
Colored Petri net structure is kept simple and it is more
suitable for analysis and investigation.

D. Encoding Places with Information
A good process model should encode all possible

information about the system it is describing. Events bring
about state changes. States may be simple or compound. In the
latter case a global state is composed of several sub-states.
The states or errors that result from an event can be defined as
E= {e1,e2,e3,…,en}. E is a finite set of errors or states
where φ≠E . An event can be considered to be atomic i.e.
when an event is occurring another event cannot take place.
But an event can have one or more transitions. E is the global
state composed of a set of elements e, where each element e is
a sub-state or sub-state value, i.e. the state of a device or some
part of the system hence ei , ei ∈ E and ei is derived from a
fixed value range. A system event, transition or error can
bring about a change in the one or more of the sub-states
changing the global state.

 High level places are used. A product color set is defined.
The product color set is used to represent the sub-states of a
device. E.g. In the CPN ML language specification [18] colset
device_status = product exexexe. e is int type restricted to
100 values. The result is a compound color set created from
pre -defined sets.

 Given that the int type e contains a value from 0 – 100,
where 0 is no error and 1..100 are error values the resultant
sum of all possible error combinations is 100.100.100.100 =
1004. Hence it is possible to use a single place to model errors
having a set of 0..100 values. It is possible to increase the set
size and number of values in the set. This approach drastically
reduces the need for additional places in the Petri net.

E. Reduced Model Size
The Colored Petri net with the places used for error

combinations allows all the information about the system or
device states to be kept in a single token. The single transition
can model normal and all other abnormal conditions.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

223

IV. COMPREHENSIVE EXAMPLE

A. Gas Turbine Fuel Control System
The error handling of a computerized fuel control system

for a gas turbine is used to illustrate the compact or reduced
Colored Petri net approach.

 A gas turbine normally operates by using a burner or
combustor. Fuel is used to heat compressed air extracting

power form the hot air flow. The gas turbine is composed of
several control systems, one of them being the fuel control.
The gas turbine fuel control system is a example of an
embedded real time computerized control which has special
requirements. The gas/combustion turbine along with the fuel
control section which has been adapted from [18] and
modified is shown in figure 1.

Different diagrams and notations like UML activity
diagrams, data structured diagrams (DSD), block notations,
etc. can be used to show the operations and activities of the
fuel control system. Fig. 2 shows the UML activity diagram
constructed for this system.

 For the fuel control system the main sequential steps are i)
get engine parameters, ii) compute fuel requirements, iii)
compute fuel schedule, iv) compare requirements with
schedule and v) output estimated fuel command to actuator.
At each activity level an error discovery/handling routine is
introduced. This implies that if a step/action or activity fails
the system will try to auto recover from the error and try to
execute the step again. This is called a reset point and is
typical of embedded system behavior.

 For each activity it is possible to define a finite set of
errors that can occur prior, during or after that activity. The
errors will prevent the next activity from occurring until they

are rectified i.e. removed automatically or manually.
 At the first activity ‘get engine parameters’ there are at

least four sensor values to read in once or more times. See fig.
1. E.g. i) Fuel flow feedback FFlow, ii) Inlet pressure Pin, iii)
Compressor speed Cin and iv) demand signal Pdem. Each
particular sensor S1..S4 can have a set of error values e1..e4.
E.g. 1) no reading, 2) hardware error, 3) value too low, etc.
and also unknown errors or different categories of hardware

Fig. 1 Gas Turbine/ Compressor Fuel Control System

adapted and modified from [16]

GET
ENGINE

PARAMETERS

COMPUTE
FUEL

REQUIREMENTS

RESET 1

RESET 2

COMPUTE
FUEL

SCHEDULE
RESET 3

COMPARE
REQUIREMENTS

VS
SCHEDULE

RESET 4

OUTPUT
ESTIMATED

FUEL
COMMAND

RESET 5

TERMINATE

fc1:Fuel_control
[error]

fc1:Fuel_control
[error]

fc1:Fuel_control
[error]

fc1:Fuel_control
[error]

fc1:Fuel_control
[error]

fc1:Fuel_control
[ok]

fc1:Fuel_control
[ok]

fc1:Fuel_control
[ok]

fc1:Fuel_control
[ok]

fc1:Fuel_control
[ok]

[No Error]

[Error]

[Error]

[No Error]

[No Error]

[No Error]

[No Error]

[Error]

[Error]

[Error]

Fig. 2 Gas Turbine Fuel Control System Activity Diagram

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

224

errors. E.g. the sensor can have a value from 0-99 where 0 is
no error and all the other values record some error. If after
execution of ‘Get Engine Parameters’ we have a token with
(0,1,0,0) then an error has occurred in reading the Inlet
pressure value Pin . Other errors can be identified for the other
activities e.g. for ‘compute fuel schedule’ it is possible to
define i) hardware failure having different values e.g. 1-50, ii)
program errors having values 1-90, etc. These are again
represented using the common set {e1,e2,e3,e4}.

 The UML activity diagram in fig. 2 depicts the basic
activities that are taking place. Pin notations have been used in
the activity diagrams to indicate the states of the fuel_control
and enforce error handling control.

B. Reduced Colored Petri Net
The fuel control system main operations along with error

handling and recovery are modeled in the Colored Petri net
shown in fig. 4.

The Colored Petri net was built using the principles of
sequential composition of places. It can be proven that
sequential composition preserves soundness in certain classes
of Petri nets like P/T nets, workflow nets, etc. The Colored
Petri net was constructed using the CPN Tools and standard
ML functions [18]. The Colored Petri net is an executable
model that can be used for detailed system simulation and
property investigation.

When executing the Colored Petri net the error data values
can be entered manually or using specific functions. It was
opted to go for the second option where random error
generation was done using functions. For each error, error
values are randomly generated in the range from 1..99 or a 0
value, implying that there was no error. The error
combinations generated range from 0 combinations to a
maximum of 4 error combinations.

Fig. 4 Reduced CPN for Gas Turbine Fuel Control Faults

Fig. 3 CPN Functions for Random Error Generation

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

225

Error generation was randomized. The code fragment in fig.
3 depicts some of the functions that were created to randomize
error generation.

V. RESULTS

A. Execution of the Colored Petri Net
The Colored Petri net in fig. 4 was executed successfully

using the CPN Tools [18]. All transitions were fired including
all the reset ones. The tasks terminate successfully. The
random generation of errors was successful. It is possible to
program the function no_error() and error() to ignore trivial
errors that would not halt the next step from being executed.
During execution after a step it is possible to have errors or no
errors at all. The errors are then reset by the reset transitions.
Table I summarizes the token error or no error values
generated randomly after the execution of each step for four
successive runs.

If other runs are performed different values will be obtained
randomly. The data in Table I and II demonstrate the correct
functioning of the random error generation mechanism.

When a transition like ‘get engine parameters’ occurs the
output edge of this transition invokes the random_error()
function which generates an error or no error. This is placed in
the connected place defined as type status. The next step is
that one of the next two transitions are enabled but it is not
possible to enable both simultaneously. More detailed
analysis can be performed by including the time for the
transition firings.

Table I Random Token Data Run 1 and 2

TRANSITION EXECUTION RUN 1 RUN 2
1 GET ENGINE PARAMETERS (12,27,0,0) (0,0,0,0)
2 COMPUTE FUEL REQUIREMENTS (0,97,12,75) (0,0,0,40)
3 COMPUTE FUEL SCHEDULE (0,0,4,63) (0,0,77,30)
4 COMPARE REQUIREMENTS VS
SCHEDULE (0,0,0,72) (0,0,0,0)
5 OUT. ESTIMATED FUEL COMMAND (0,0,0,0) (0,0,96,0)

Table II Random Token Data Run 1 and 2

TRANSITION EXECUTION RUN 3 RUN 4
1 GET ENGINE PARAMETERS (0,0,85,9) (0,0,0,0)
2 COMPUTE FUEL REQUIREMENTS (0,0,74,29) (0,8,85,0)
3 COMPUTE FUEL SCHEDULE (32,0,0,0) (0,23,59,67)
4 COMPARE REQUIREMENTS VS
SCHEDULE (0,0,36,0) (0,0,27,28)
5 OUT. ESTIMATED FUEL COMMAND (0,6,67,0) (0,0,0,0)

B. Experimental Value of the Model
From execution of the Colored Petri net it is possible to

play with different scenarios and conditions. More functions
can be added for analyzing other scenarios.

C. Compactness and Patterns
The Colored Petri net model is more compact than most

other Petri net models used.

Fig. 5 Reduced CPN with Added Loop Showing Error

Fig. 6 Reduced CPN with Added Loop No Error

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

226

There are just 11 transitions and 7 places initially. It is
possible to reduce or simplify the model by combining
transitions or places. The Colored Petri net represents a
repeated sequential pattern that can be used for analysis and
converted into other formalisms and notations [17]. The
repeated pattern also indicates the equivalent UML 2 activity
diagram.

D. Colored Petri Net Analysis
Different methods can be used to analyze the Colored Petri

net [12]-[13],[18]-[19]. The Colored Petri net in fig. 3 is
modified, the start and termination places are connected using
an additional transition which creates a repetitive cycle. This
is shown in fig. 5 and 6 but not in fig. 4. In fig. 6 the
transition “output estimated fuel command” is shown enabled
for firing. This is because the token in fig. 6 does not contain
any error values i.e. it is (0,0,0,0) contrary to that in fig. 5
which reads (0,0,4,63), implying that there is error value 4 on
S3 and error value 64 on S4. The errors in fig. 5 disable the
next step from firing and instead the reset point is enabled.
Once the error is reset it is possible to continue normally with
the next transition. Fig. 7 shows successful termination of the
model. After termination the model is re-started again. Fig. 8
shows the initialization of the model and the token contains no
error.

The Colored Petri net can be reduced into a place transition
net and incidence matrix analysis, invariants etc. can be used
to determine basic properties like reachability, liveness,
deadlock, boundedness, cyclic behavior, home states, etc.
These properties represent the structural properties of the Petri
net. Here the Colored Petri net state space and strongly
connected component graph SCC-graph inbuilt tools were
used [13],[18].

 State space analysis can be used to formally verify the
model mathematically by identifying all the reachable states.
Normally the state space is a directed graph having a node for
each reachable marking connecting it to the next reachable
marking via an edge. This state space shows us some of the
properties of the Colored Petri net. I.e. a large state space
indicates that the model is more complex than one with a
small state space. There are less chances of problems if the
state space has a reduced size. For the model in fig.5 the state
space graph just has 10 nodes and 10 arcs which is very small.

Table III State Space and SCC Graph for modified CPN

STATE SPACE STRONGLY CONNECTED COMPONENT GRAPH
Nodes 10 1
Arcs 10 0
Time in seconds 0 0
Status FULL

Table III indicates that the state space for the modified

Colored Petri net is very small. The time to calculate this is
negligible hence the 0 seconds. This is indicates that the

Fig. 7 Reduced CPN Successful Termination

Fig. 8 Reduced CPN Initialization

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

227

model is reduced or simplified.
The strongly connected component (SCC-graph) is a sub-

graph of the state space telling us that we have just one cycle
in the state space. Similarly to the state space the reachability
graph or occurrence graph can be constructed.

Table IV Home and Dead Markings for modified CPN

H om e M ark ings ALL
D ead M ark ings N O N E

Table IV indicates that the modified Colored Petri net has

cyclical behavior. It has home markings and no dead
markings. This means that the behavior is repeatable and the
net has sound formal properties and behavior, i.e. it is
deadlock free. If the model is transformed or reduced into a
place transition net, place and transition invariants analysis
can be performed and similar results should be obtained.

These results would give further evidence of the
compactness of the model’s structural properties. These
properties are very important for embedded and control
system behavior.

If we consider the fairness properties of the net it has fair
and impartial results because there is the option to select one
transition for firing from two transitions, it is similar to a
choice.

VI. CONCLUSION
The idea of reducing or simplifying Petri nets is well known

in conventional and fundamental Petri net theory. Having a
reduced or simplified Petri net offers several advantages from
the analysis point of view. Ideally reducing or simplifying a
complex Petri net should be possible and the most important
properties need to be preserved. In this work the idea is to try
to construct a reduced Colored Petri net from the start. This is
possible for error handling because much of the error
information can refer to the same step or process.

 It has been shown how a reduced Colored Petri net model
can be constructed for modeling the error handling logic for
the fuel control system of a gas turbine or compressor. The
results obtained successfully indicate that it is possible to
construct a reduced Colored Petri net model for control and
embedded systems using a place type defined using sets. This
approach still caters for complex error handling. It is also has
been shown in the Colored Petri net analysis that the structure
has a limited small state space and small marking graph.
Models having a small state space are preferable to those with
a large state space. Complex models can have a large state
space making their analysis and control more difficult and
prone to problems.

The reduced Colored Petri net can be converted to other
formalisms and formal approaches such as Z or VDM.
Schemas can be created to represent various aspects of the
system’s behavior formally.

 The approach presented here opens up the possibility for
further experimentation. The results and analysis obtained are
just a brief summary of the possibilities that can be opened up
for investigation.

 If the Colored Petri net model is compared to a place
transition net that would model the errors, then we would
require a large numbers of places and transitions. In this work
the model obtained is quite compact. It can be reduced into a
standard place transition net for other forms of analysis. This
is done using place transition net rules for transition and place
fusion or augmentation.

This model can be used for other forms of simulation. The
time dimension can be included. This would open up the
possibility for more detailed simulation and modeling. It is
possible to include time transitions that could act as reset
points. E.g. if an error occurs it can be corrected in a given
period of time.

The transitions in the model can be decomposed further by
organizing them as a set of modules containing other levels of
transitions [13]. It can be used for added complexity e.g. if an
error occurs the next activity could still be allowed to take
place if the error is trivial. In this case the guard or a function
must be added to cater for this.

 Although the reduced Colored Petri net approach
presented can solve problems for certain classes of systems it
is still possible to encounter problems. If a complex system
needs to be modeled and the errors are not compacted we
could still end up having many places and transitions. Another
problem is that constructing the Colored Petri net is a time
consuming task. The idea of using compacted Petri net models
is definitely desirable because it simplifies the analysis issues
involved.

To conclude it is recommended to use this approach for
embedded systems and strict control systems, owing to the
advantages over other approaches.

REFERENCES
[1] E. Garcia, L. Rodríguez, F. Morant, A.Correcher, E.Quiles, R. Blasco,

“Fault Diagnosis with Colored Petri Nets using Latent Nestling Method”,
Proc. of ISIE08, Cambidge, UK, Jun 2008.

[2] B. Yang, S.K. Jeong, Y.M. Oh, A.C. Chiow Tan, “Case Based-Reasoning
systems for Induction Motor Fault Diagnosis”, Expert Systems with
applications, Elservier, Vol 27 issue 2, Aug 2004, pp. 301-311.

[3] J. Brusey, D. McFarlane, “Designing Communication Protocols for
Holonic Control Devices using Elementary Nets”, Holonic and Multi-
Agent Systems for Manufacturing, 2nd Int. Conf. on Industrial
Applications of Holonic and Multi-Agent Systems, Aug 2005, pp. 76-78.

[4] L. A. Cortes, P. Eles, Z. Peng , “A Petri Net Based Model for
Heterogenous Embedded Systems”, Proc. Norchip Conf., Oslo, Norway,
Nov 1999, pp. 248-255.

[5] V. Baggiolini, J. Harms, Generic Fault Management Techniques, Hpovua
Publications, Technical Report,Univ. of Geneva, Switzerland
www.hpovua.org/publications/proceedings/5_hpovuaws/62.ps.gz, 1998.

[6] K. Grigorova, “Process Modelling Using Petri Nets”, Int. Conf. on
Computer Systems and Technologies, CompSysTech’2003, Bulgarian
Computer Science Conference, Sofia, Bulgaria, Jun 2001.

[7] D.I. Kharitonov, G.V. Tarasov, “Towards Petri Nets application in Parallel
Programming Debugging”,6th Asian Computational Fluid Dynamics
Conf., Taiwan, Oct 2005.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

228

[8] M. Rautenberg, S.Chluep, M. Fjeld, “Modeling of Cognitive Complexity
with Petri Nets an Action Theoretical Approach”, R. Trappl(ed..)
Cybernetics and Systems’98, Vol2 , Wein, Austria, pp.842-847.

 [9] J. E. Hopcroft, R. Motwani, J.D. Ullman,Introduction to Automata
Theory, Languages and Computation,Addison-Wesley, 3rd ed., Jul 2006,
ISBN-13 9780321462251.

[10] K. Hoffmann, T. Mossakowski, “Algebraic Higher-Order Nets: Graphs
and Petri Nets as Tokens”, 16th Int. wsop WADT, Lecture notes in CS
Springer-Verlag, Vol. 2755, Nov 2003, pp.253-267.

[11] J.W. Janneck, R. Esser, “Higher-Order Petri Net Modeling – Techniques
and Applications”, ACM Int. Conf. on Application Theory of Petri Nets :
Formal Methhods in Software Engineering & Defence Systems, Vol. 12,
Adelaide, Australia, 2002, pp. 17-25.

[12] L.M. Kristensen, S. Christensen, K. Jensen, “The Practioner’s Guide to
Coloured Petri Nets”, International Journal On Software Tools for Tech.
Transfer (STTT), Vol. 2, Springer-Verlag,1998, pp. 98-132.

[13] K. Jensen, L. M. Kristensen, L. Wells, “Colored Petri Nets and CPN
Tools for Modelling and Validation of Concurrent Systems”,
International Journal On Software Tools for Tech. Transfer (STTT),
Springer- Verlag, Vol. 9, Springer-Verlag, 2007, pp. 213-254.

[14] E. Garcia, F. Morant, A. Correcher, E. Quiles, “Application of Latent
Nestling Method using Colored Petri Nets for Fault Diagnosis in the Wind
Turbine Subsets”, Proc. of EFTA08, Hamburg, Germany, Sep 2008.

[15] E. Garcia, L. Rodríguez, F. Morant, A.Correcher, E.Quiles, R. Blasco, “
Latent Nestling Method: A New Fault Diagnosis Methodology for
Complex Systems”, Proc. of IECON08, Orlando, Florida, USA, Nov
2008.

[16] J.E. Cooling, Software Design for Real-Time Systems, Chapman & Hall,
London, 1995.

[17] T. Gehrke, U. Goltz, H. Wehrheim, “The Dynamic Models of UML:
Towards a Semantics and its Application in the Development Process”,
Technical Report Informatik-Bericht 11/98, University of Hildesheim,
Germany, 1998.

[18] CPNTools, CPN Group, Department of Computer Science, University of
Aarhus, Denmark. http://www.daimi.au.dk/CPnets/

[19] K. Jensen, G. Rosenberg, High-Level Petri Nets: Theory and Application
, Springer – Verlag, Berlin, 1991.

[20] M.B. Dwyer, L.A.Clarke, “A Compact Petri Net Representation and Its
Implications for Analysis”, IEEE Transactions on Software Engineering,
Vol 22 no 11, Nov 1996, pp. 794-811.

[21]] M.B. Dwyer, L.A.Clarke, “A Compact Petri Net Representation for
Concurrent Programs”, Proc. 17th Int. Conf. Software Engineering,Apr.
1995, pp. 147-148.

[22] S.M. Shatz, S.Tu, T. Murata, S. Duri, “ Theory and Application of Petri
Net Reduction for Ada Tasking Deadlock Analysis”, Technical Report,
Dept. Of Electrical Enginnering and Computer Science, Univ. Of Illinois,
Chichago, USA, 1994.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

229

	ijcomputers-134
	I. INTRODUCTION
	II. Literature review
	A. RFID technology
	B. QR codes technology
	C. Traceability of supple chain system

	III. RFID-based cultivation value chain system model
	A. Cultivation Process Management
	B. Inspection Tracking
	C. Distribution Tracking
	D. Reverse Tracking for Retailing

	IV. Experiments
	A. Subject
	B. RFID-based Value Chain System

	V. Discussion and Conclusion

	ijcomputers-135
	References

	ijcomputers-136

