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Abstract—The  paper  presents  a  neuro-evolutionary  method 
called Assembler Encoding. The method was tested in the predator-
prey problem. To compare Assembler Encoding with another neuro-
evolutionary method, in the experiments,  a co-evolutionary version 
of simple connectivity matrix was also applied.

Keywords—evolutionary  neural  networks,  predator-prey 
problem. 

I.INTRODUCTION

rtificial  neural  networks  (ANNs)  constitute  a  sub–
domain of artificial intelligence that is broadly used to 

solve  various  problems  in  different  fields  (e.g.  pattern 
classification,  function  approximation,  optimization,  image 
compression,  associative  memories,  robot  control  problems, 
etc.).  The  performance  of  ANNs  highly  depends  on  two 
factors,  i.e.  network’s  topology  and  a  set  of  network’s 
parameters  (typically  weights).  Therefore,  to  develop  an 
appropriate  ANN it  is  necessary to determine  the  topology 
and  parameters.  There  are  many  different  ANN  learning 
algorithms  that  change  values  of  parameters  leaving  the 
structure completely intact [16]. In such a case, the process of 
searching  for  the  proper  ANN  topology is  the  task  of  a 
designer  who arbitrarily  chooses the  ANN structure,  starts 
ANN learning and finally puts ANN to a test. If the result of 
the test is satisfactory, the learning process is stopped. If not, 
it is continued further. The designer manually determines the 
next  potential  topology  and  runs  the  learning  algorithm 
again.  Such  loop – topology determination  and  learning  is 
repeated  until  ANN which  is  able to carry out  a  dedicated 
task  at  an  appropriate  level  is  found.  At  first  glance,  it  is 
apparent that such a procedure could be very time-consuming 
and,  what is worse, in  the case of more complex problems, 
can  lead  to a  situation  when  all  chosen  and  trained  ANNs 
would be incapable of solving the task.

A

In  addition to the learning concept presented above, there 
exist  other  approaches  that  can  be called  constructive  and 

destructive. The constructive ones use a learning philosophy 
that  consists  in  incremental  development  of  ANN starting 
from small architecture. At the beginning,  ANN has a small 
number  of  components  to  which  next  components  are 
gradually  added  until  a  resultant  ANN  fully  meets  the 
requirements  imposed.  On  the  other  hand,  the  destructive 
ones prepare  a  large  fully connected ANN and  then  try to 
remove individual elements of the network, such as synaptic 
connections and neurons.

Genetic Algorithm (GA) is a next technique that has been 
successfully  applied  to  search  for  optimal  ANNs 
[3],[4],[7],[15]  for  the  recent  years.  GA  processes  a 
population of genotypes that typically encode one phenotype 
although  encoding  several  phenotypes  is  also  possible.  In 
ANN evolution,  genotypes  are  encodings  of  corresponding 
ANNs  (phenotypes).  The  evolutionary  procedure  involves 
selecting genotypes (encoded ANNs) for reproduction based 
on their fitness, and then by introducing genetically changed 
offspring  (mutation,  crossover  and  other  genetic  operators) 
into a next  population.  Repeating the whole procedure over 
many generations causes the population of encoded ANNs to 
gradually  evolve  into  individuals  corresponding  to  high 
fitness phenotypes (ANNs). 

There are a lot of ANN encoding methods. Several of them 
are  briefly presented  further  in  the  paper.  In  principle,  all 
existing  encoding  methods  can  be  divided  into  two  main 
classes,  i.e.  direct encodings and  indirect  encodings.  As for 
the direct methods, the whole information necessary to create 
ANN  (e.g. weights,  number of neurons, number of layers) is 
directly  stored  in  a  chromosomes.  Thus,  to  encode  larger 
ANNs larger chromosomes are necessary, which is the main 
drawback  of  the  direct  methods.  As  regards  the  indirect 
methods, we deal with chromosomes which are recipes how 
to create ANN. Such encodings can be used to create larger 
neural  architectures  by  means  of  relatively  short 
chromosomes.

The paper presents a new indirect ANN encoding method 
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called Assembler Encoding (AE) [13]. AE originates from the 
cellular encoding [5], although, it also has features common 
with  Linear  Genetic  Programming  (LGP) [11].  In  AE,  the 
process of ANN construction consists of three stages (Fig. 1). 
First,  GA is used to produce Assembler Encoding Programs 
(AEPs).  Next,  each  AEP  creates  and  fills  up  Network 
Definition Matrix (NDM) which includes all the information 
necessary to create ANN. Then, once AEP stops working the 
matrix is transformed into ANN.

To  test  AE  simple  experiments  in  the  predator-prey 
problem were carried out. In the experiments, the task of AE 
was  to  generate  ANNs  controlling  a  set  of  cooperating 
predators whose common goal was to capture a fast moving 
prey.  Apart  from  AE,  for  the  purpose  of  comparison,  a 
modified version  of CM was also used in  the  experiments. 
The results of the experiments are presented at the end of the 
paper.

The paper is organized as follows: section 2 reviews related 
research;  section  3  presents  AE;  section  4  illustrates  the 
results of the experiments; section 5 is the summary.

II.RELATED WORK 

For the recent years many attempts have been made to define 
genotypes  for  ANNs  and  to  describe  the  genotype  into 
phenotype mapping process. One of the earliest concepts was 
proposed by Miller,  Todd and  Hedge [8].  In  their  approach 
ANN is represented in the form of the Connectivity Matrix. 
Each  element  of  the  matrix  informs  about  existence  of 
connection  between  two  neurons  or  about  lack  of  such 
connection.

Moriarty  and  Miikkulainen  [9]  proposed  a  Symbiotic 
Adaptive  NeuroEvolution  (SANE).  Their  concept  assumes 
that information necessary to create ANN is included in two 
types  of  individuals,  i.e.  in  blueprints  and  in  encoded 
neurons.  Both  types  of  individuals  evolve  in  separate 

populations. The task of the blueprints is to record the most 
effective combinations of neurons. Each blueprint specifies a 
set of neurons that cooperate well together. The population of 
neurons  includes  individuals  encoding  hidden  neurons  of 
two-layered  feed-forward  ANN  (FFANN).  Each  individual 
from the  population  of neurons  defines  connections  of the 
neuron  with  input  and  output  neurons  and  the  strength  of 
each connection.

Kitano [6] defined the matrix rewriting encoding scheme. 
Initially, the method assumes 2x2 matrix  that  contains non-
terminal  elements.  These  elements  are  subsequently 
substituted  for  matrices  including  other  non-terminal 
elements or terminal elements. This process is repeated until 
the resultant enlarged matrix contains only the terminals that 
indicate  either  existence  of connection  between  neurons  or 
lack of such connection.

In the Nolfi and Parisi model [10], the genotype defines the 
location  of  each  neuron  in  a  two-dimensional  space  and 
growth parameters  of each neuron’s axon.  Neurons that  are 
on  the  left  part  of  the  space  are  considered  to  be  input 
neurons and the ones placed on the right are considered to be 
output neurons. The remaining neurons are hidden neurons. 
After  the  location  phase,  axons  of  neurons  start  to  grow 
further  according to an assumed procedure.  The connection 
between  neurons  is  established  if  the  branching  axon  of a 
source neuron reaches another neuron.

Chromosome in Gruau’s  cellular  encoding [5] contains  a 
set of instructions that are applied to ANN consisting initially 
of one hidden  node. ANN evolves towards larger  structures 
during  successive executions of individual  instructions.  The 
instructions  are  organized  into  a  tree  and  include  such 
operations  as:  node  duplication,  node  division,  removal  of 
connectivity and many others. A very important feature of the 
cellular  encoding  is  its  potential  to  build  modular  ANNs 
consisting of similar  elements located in various places of a 
network. This potential  is a result of applying a set of trees 
(with  instructions)  instead  of  applying  a  single  tree,  and 
repeated  execution  of instructions  grouped in  each of them. 
The result  of such a procedure is analogous to the multiple 
procedure execution in the main body of a structural program. 
Another crucial characteristic of the cellular  encoding is the 
form of chromosome – a  tree.  Due to this  feature  the only 
evolutionary  technique,  which  is  applicable  to  process 
individuals constructed in this way, is genetic programming.
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III.ASSEMBLER ENCODING - FUNDAMENTALS

In  AE, ANN is represented in the form of AEP, which is 
composed of two parts,  i.e.  a part  including  operations  (the 
code part of AEP) and a part including data (the memory part 
of AEP). The task of AEP is to create and to fill in NDM with 
values.  To this  end,  AEP uses predefined operations  which 
are run  one by one. When working,  the operations use data 
located at the end of AEP. Once the last operation finishes its 
work, the process of creating NDM is completed. The matrix 
is then transformed into ANN.

A.Network Definition Matrix 

NDM, as  the  same name implies,  is  the matrix  defining 
ANN. It stores all the information necessary to create and to 
functioning ANN. In principle, NDM can have any structure, 
i.e.  it  can  define  ANN in  any way. Individual  elements  of 
NDM  can  inform  about  synaptic  weights  of  interneuron 
connections,  although  any  other  interpretation  is  also 
possible.  The way of representing  ANN by means of NDM 
always depends on the type of ANN we want to obtain. In the 
experiments, two types of ANNs were used, i.e. ANNs whose 
architecture was permanently fixed as a result of evolutionary 
process as well as dynamic ANNs with Hebb learning, whose 
weights  underwent  changes  during  ANNs’s  “life”  [4].  To 
define complete architecture of ANN, i.e. weights, topology, 
and  transfer  functions,  NDM  can  take  the  form  of  the 

classical  CM.  In  turn,  to  represent  ANN  with  Hebb self-
organization  somewhat  different  construction  of  NDM  is 
necessary. Two forms of NDM, used in the experiments, are 
described below.

NDM used as CM is organized as follows. Each element of 
NDM  determines  synaptic  weight  between  corresponding 
neurons.  For  example,  componenti,j defines  the  link  from 
neuron i to neuron j. Elements of NDM unimportant from the 
point  of  view  of  the  process  of  ANN  construction,  for 
example because of assumed feed-forward structure of ANN, 
are  neglected  during  building  ANN.  Apart  from  the  basic 
part,  NDM  also  contains  three  additional  columns  that 
describe parameters of neurons, i.e. type of neuron (sigmoid, 
radial, linear), parameter of neuron and bias.

NDM used to represent  a dynamic ANN with Hebb self-
organization  is  defined  as  follows.  It  includes  H rows and 
Z=2M+2 columns where H denotes the number of hidden and 
output  neurons  whereas  M is the number  of all  neurons in 
ANN. Extra  two columns,  as  in  the  previous case,  include 
additional information about neurons, i.e. bias and value of a 
single  parameter  of  a  neuron  (in  this  case  only  sigmoid 
neurons are considered).  The main part  of NDM consists of 
two sub-matrices of equal  size (HxM).  The first  sub-matrix 
determines  the  topology  of  ANN,  i.e.  it  indicates  which 
connections exist in ANN and which do not. Each element of 
this  sub-matrix  unequal  to zero informs about a connection 
between neurons. A sign of this element determines a sign of 
the connection while a value of the element determines a type 
of Hebb rule  assigned  to the  connection.  For  example,  the 
value  -0.2  of  the  element  NDM[n,m]  (n=1..H,  m=1..M, 
neurons are  indexed from 0 to  M)  informs  both  about the 
negative connection between mth and [n+(M-H)]th neuron and 
about a plain  Hebb rule assigned to that  connection.  In  the 
experiments, described further, five types of Hebb rules were 
used [4]:

1. Plain  Hebbian  rule:  strengthens  the  synapse 
proportionally to the correlated activity of the pre- 
and post-synaptic neurons.

xyww )1( −=∆   (1)
2. Postsynaptic  rule:  behaves  as  the  plain  Hebbian 

rule,  but in  addition  it  weakens the synapse when 
the postsynaptic neuron is active but the presynaptic 
is not.

xywyxww )1()1( −++−=∆    (2)
3. Presynaptic  rule:  weakening  occurs  when  the 

presynaptic neuron is active but the postsynaptic is 
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Fig. 2 NDM used as the CM
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not.
xywyywxw )1()1( −++−=∆    (3)

4. Covariance rule: strengthens the synapse whenever 
the  difference  between  the  activations  of  the  two 
neurons  is  less  than  half  their  maximum  activity, 
otherwise the synapse is weakened. In other words, 
this rule makes the synapse stronger when the two 
neurons have similar  activity and makes it  weaker 
otherwise:





Ψ
>ΨΨ−

=∆
otherwise ),(

0),( if ),()1(
yxw

yxyxw
w     (4)

where  )2)1(4(tanh),( −−−=Ψ yxyx is  a 

measure  of a  difference  between  presynaptic  and 
postsynaptic activity. 0),( >Ψ yx  if the difference 
is  higher  or  equal  to  0.5  and  0),( <Ψ yx if  the 
difference is smaller than 0.5.

5. “Zero”  rule:  a  synapse  does  not  change  strength 
during “life” of ANN.

0=∆ w    (5)
The second sub-matrix of NDM incorporates learning rates 

necessary to update the strength of each synaptic weight. For 
example,  NDM[n,m]=-0.2,  where  n=1..H and  m=M..2M, 
informs that  learning  rate  applied to update the connection 
between [m-M]th and [n+(M-H)]th neuron amounts to |-0.2|. If 
there  exists  a  connection  between neurons  but  the  learning 
rate  corresponding  to  this  connection  amounts  to  zero,  to 
update the strength of the connection, a default nonzero value 
of the learning rate is used (e.g. 0.5).

Hebb rules  from the first  part  of NDM and  the learning 
rates from the second part are necessary to determine changes 
that take place in each interneuron connection. Each synaptic 
weight in ANN alters according to the following formula [4]:

ijij
t
ij

t
ij www ∆+= − η1

  (6)

where  
1, −t

ij
t
ij ww are  synaptic  weights  between  jth and  ith 

neuron, respectively after and before update, and  10 ≤≤ ijη

is the learning rate.

First,  once  ANN  is  created,  all  weights  of  all  nonzero 
connections are fixed in some assumed manner,  for example 
at  random. Then,  synaptic weights change according  to the 
formula  (6).  All  synapses can  change the strength  but they 
cannot change the sign, which is determined permanently in 
NDM.  The  synaptic  strength  cannot  grow indefinitely.  All 
weights range <0,1>. This is possible thanks to application of 
the self-limiting  mechanism in all  of Hebb rules mentioned 
above.  An  update  of each  synaptic  weight  occurs  once  an 
input signal is propagated to output neurons, i.e. each time a 
decision has been taken by ANN.

B.Operations 

AEPs can use various operations.  The main  task of most 
operations is to modify NDM. The modification can involve a 
single element of the matrix  or a group of elements.  Fig.  4 
and  Fig.  5  present  the  implementation  of  two  example 
operations.

CHGC0 presented in Fig. 4 modifies NDM elements located 
in the column indicated by parameter p0 and register R2. The 
number of elements being updated is stored in parameter  p2. 
The  index  of the  first  element  being  updated  is  located in 
register  R1.  To update elements of NDM,  CHGC0 uses data 
from AEP.  The index to a  memory cell  including  the  first 
element of data used by CHGC0 is stored in p1.
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CHGC0(p0,p1,p2,p3) 
{ 
column=(abs(p0)+R2)mod NDM.height; 
numberOfIterations=abs(p2)mod NDM.width; 
for(i=0;i<=numberOfIterations;i++) 
 { 
 row=(i+R1)mod NDM.width; 
 NDM[row,column]=D[(abs(p1)+i)mod D.length] 

/Max_value; 
 } 

Fig.  4  CHGC0 operation  changing  a  part  of  column  of  NDM 
(NDM[i,j] is  element  of  NDM,  Ri i=1,2  is  value of  ith register, 
Max_value is scaling value which scales all elements of NDM to 
<-1,1>,  D[i]is  ith element  of  data,  D.length is  number  of 
memory cells)

Fig. 3 NDM used to define dynamic ANN

CHG_MEMORY(p0,list1,list2) 
{ 
for(i=0;i<list1.length;i++) 
 for(j=0;j<list2.length;j++) 
  { 
  row=(list1[i]+R1)mod NDM.width; 
  column=(list2[j]+R2)mod NDM.height; 
  NDM[row,column]= 

D[(abs(p0)+i*list2.length+j) 
mod D.length]/Max_value; 

  } 
Fig.  5  CHG_MEMORY operation  changing  elements  of  NDM 
indicated in list1 and list2
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CHG_MEMORY presented  in  Fig.  5  modifies  elements  of 
NDM indicated in  list1 and  list2. The lists mentioned 
include  numbers  of  columns  and  rows  of  NDM  (list1 
includes numbers of rows while list2 contains numbers of 
columns) which, in turn, indicate elements of the matrix that 
are  updated  as  a  result  of execution  of the  operation.  All 
possible  combinations  of  columns  and  rows  considered  in 
both lists determine a set of elements that  are altered by the 
operation.  p0 indicates a  place in  the memory part  of AEP 
where new values for updated elements can be found.

In addition to operations whose task is to modify a content 
of NDM AE also uses jump operation denoted as  JMP. The 
jump makes it  possible to repeatedly use the  same code of 
AEP in different places of NDM. 

C.Evolution in AE 

In  AE,  AEPs  and  in  consequence  ANNs are  created  by 
means GAs. The evolution of AEPs proceeds according the 
scheme which  is  an  adaptation  of the  idea  of evolving  co-
adapted subcomponents proposed by Potter and De Jong [12]. 
To create  AEP the  scheme mentioned  combines operations 
and data from various populations. Each population including 
chromosomes-operations  (each  chromosome-operation 
encodes the type of operation, e.g. CHGC0, and parameters of 
operation; implementations of operations do not evolve) has a 
number  assigned  determining  the  position  of the  operation 
from the population in AEP. In this approach, the number of 
operations  corresponds  to  the  number  of  populations 
including  chromosomes-operations.  Each  population 
delegates exactly one representative to each AEP.

At  the  beginning,  AEPs  have  only one  operation  and  a 

sequence of data. Both the operation and data come from two 
different  populations.  Further  populations  including 
operations  are successively added if generated AEPs cannot 
accomplish progress in performance over an assumed number 

of  co-evolutionary  cycles  (we  use  term  “co-evolutionary 
cycle” to differ it from the evolutionary generation that takes 
place inside  a  single  population  with  operations  and  data). 
Populations with operations and data can also be replaced by 
newly  created  populations.  This  can  happen  if  the 
contribution  of a  given  population  to AEPs is  considerably 
less than the contribution of the remaining populations.

Individual  operations in AE can be encoded in two ways. 
For example,  CHGC0 presented in Fig . 4 is encoded in the 
form of binary string including five blocks of genes. The first 
block determines a code of the operation (e.g.  binary 00000 
indicates  that  we deal  with  CHGC0),  while  the  remaining 
blocks contain  a binary representation of four parameters of 
the operation.

CHG_MEMORY (Fig.  5) is  represented  in  a  somewhat 
different way. The encoded form of this operation resembles 
classifier  from  Learning  Classifier  Systems  [2].  Similarity 
between classifier and the encoded operation results from the 
use of the so called don’t care symbol “#” in both cases. Each 
encoded CHG_MEMORY consists of four blocks of genes. The 
first single-bit block determines one of two possible variants 
of  the  operation.  The  second  and  the  third  block  indicate 
location of changes performed by the operation  (don’t  care 
symbol is used for this purpose). The last block specifies the 
value of the integer parameter of the operation. The example 
use  of  don’t  care symbol  to  locate  changes  in  NDM  is 
illustrated in Fig 7.

IV.EXPERIMENTS

The experiments  reported  in  the  paper  are  only the  first 
step in the whole research process that is necessary to be done 
to discover full potentials of the encoding method proposed. 
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Fig. 6 AEP encoding scheme

Fig. 7 Encoding CHG_MEMORY operation
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The main goal of the experiments was only to learn whether 
AE can be used to create simple “static” and dynamic ANNs. 
During the tests, the task of all ANNs was to solve a simple 
version of the predator-prey problem. Apart from AE, for the 
purpose of comparison, a modified version of CM  was also 
used in  the  experiments.  The  main  idea  behind  comparing 
AE with the concept of Miller et al.  was that  both solutions 
use CM to represent ANN (in AE CM is called NDM). Both 
methods differ only in the approaches to creating the matrix. 
While in  the classical  solution GA is used directly to form 
CM,  AE  uses,  for  the same purpose,  AEPs formed in  the 
evolutionary way.

In  the  experiments,  three  types  of  ANNs  were  used: 
FFANNs of constant  architecture,  FFANNs with  Hebb self-
organization,  recurrent  ANNs  (RANN)  with  Hebb  self-
organization.  The  task  of  all  ANNs  created  in  the 
experiments  was  to  control  a  set  of  cooperating  predators 
whose  common  goal  was  to  capture  a  fast  moving  prey 
behaving by a simple deterministic strategy. To create ANNs 
the  following  ANN  encoding  methods  were  used:  AEPs 
consisting  of  binary  encoded  operations  (AEPs01,  e.g. 
CHGC0), AEPs including  CHG_MEMORY operations (AEPs#), 
AEPs containing both types of operations (AEPs01#), and the 
co-evolutionary version of CM. In the experiments, CM was 
exclusively used to form FFANNs of constant architecture.

Evolution of ANNs encoded in the form of CMs went on in 
somewhat different way from the one assumed in the classical 
solution.  While in  the classical  approach,  we deal  with  one 
population including matrices, in the solution applied in the 
experiments the whole CM was divided into parts and each 
part  evolved in a separate population. Since CMs were used 
to  encode  FFANNs  only  fragments  of  CMs  above  the 
diagonal  underwent  evolution.  In  all  the  experiments  with 
CMs,  regardless  of  the  size  of  ANNs,  evolution  of  the 
matrices  took  always  place  in  five  populations,  i.e.  the 

matrices were always divided into five parts of more or less 
the same size (we decided to divide matrices into five parts 
because most of the most effective AEPs generated during the 
experiments  also  consisted  of  five  components:  four 
operations and a single sequence of data).

A.Environment

The  predators  and  the  prey  lived  in  the  common 
environment.  We used 20x20  square  without  any obstacles 
but with two barriers located on the left and on the right side 
of  the  square  to  represent  the  environment.  Both  barriers 
caused the predators as well as the prey to move right or left 
only to the point  at which they reached one of the barriers. 
Attempts to move further in the direction of the barrier ended 
up  in  failure.  In  order  to  ensure  infinite  space  for  the 
predators and the prey and for their  struggles,  we made the 
environment  open at the bottom and at the top. This means 
that every attempt of movement beyond upper or lower border 
of the square caused the object, making such an attempt,  to 
move to the opposite side of the environment. As a result, the 
simple strategy of predators,  consisting in chasing the prey, 
did not work. In such a situation, the prey, in order to evade 
predators, could simply escape upwards or downwards.

B.Residents of the artificial world

In the experiments, three predators and one prey coexisted 
in  the  artificial  environment.  The  predators  controlled  by 
ANN  could  select  five  actions:  to  move  in  North,  South, 
West, East direction or to stand still.  The length of the step 
made by each predator was 1, while the step made by the prey 
amounted either to 2 or to 1. In order to capture the prey the 
predators had to cooperate. Their speed was either two times 
lower or the same as the speed of the escaping prey so they 
could not  simply chase the prey to capture  it.  We assumed 
that the prey could be captured if the distance between it and 
the nearest predator was lower than 2.

In  the experiments,  we assumed that  the predators  could 
see the whole environment. The predators based the decision 
which  actions  to select on the  prey’s relative location  with 
reference to each of them. In order to perform the task ANN 
controlling the predators had to possess six inputs and three 
outputs. Outputs of ANN provided decisions to the predators 
whereas  inputs  informed  them  about  prey’s  location  in 
relation to each of them.

In the experiments, we used two types of prey – the simple 
prey and the advanced prey. The simple prey was controlled 
by a simple algorithm which forced it to move directly away 
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Fig. 8 Method for encoding CM used in experiments
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from the  nearest  predator  but  solely in  the  situation  when 
distance between it and the nearest predator was lower than 
or equal to 5. In  the remaining cases, i.e. when no predator 
was closer to the prey than the assumed distance, the prey did 
not  move.  In  the  situation  when  the  selected  prey’s action 
could  cause  hitting  the  barrier  another  move was  chosen. 
Alternative move prevented from hitting the wall, and at the 
same time, it  maximally increased the distance between the 
prey and the nearest predator.  The prey, when was running 
away could select four actions: to move in North, South, West 
or East direction. Making decision, the advanced prey, unlike 
its  simpler  counterpart,  always  took  into  consideration  the 
location of all predators that were situated close to it. Actions 
performed  by  the  advanced  prey  always  maximized  the 
average distance between the prey and all predators that were 
close to it. Other aspects of behavior of the advanced prey, i.e. 
behavior near  the barrier,  behavior away from the predators 
and actions which the prey could perform in each step, were 
the same as in the case of the simple prey.

C. Parameters of evolutionary process

In the experiments, two types of GAs were used: canonical 
GA and eugenic algorithm [1],[14].  Canonical GA was used 
to  process  data,  and  fragments  of  CMs.  In  turn,  eugenic 
algorithm was used to process operations. In the experiments, 
AEPs could posses maximum 12 operations.  Initially every 
AEP contained one operation  and  one set of data  from two 
different  populations.  Consecutive  populations  with 
operations were added every 5000 of co-evolutionary cycles if 
generated  AEPs  were  not  able  to  achieve  progress  in 
performance  within  this  period.  Populations  including 
operations and data could be also replaced by newly created 
populations when the contribution of substituted population to 
created AEPs was considerably less than  the contribution of 
the remaining populations. The same procedure could also be 
applied  with  regard  to  populations  including  fragments  of 
CMs.  The  contribution  of the  population  was measured  as 
average  fitness  of individuals  belonging  to that  population. 
The  remaining  values  essential  for  the  experiments  are 
presented below:

- each population size: 20 individuals;
- number  of  co-evolutionary  cycles  for  one  fixed 

structure of ANN: 50 000 (in the case when even one 
satisfactory solution was not found during the assumed 
period  all  ANNs were expanded  by one neuron  and 
evolutionary process started again).

Parameters of Canonical GA:
- crossover probability: 0.7;
- per-bit mutation probability: 0.01;
- cut-splice  probability:  0.1  (in  the  case  of 

chromosomes-data).
Parameters of Eugenic Algorithm:
- selection noise: 0.01, 0.2;
- creation rate: 0.01, 0.2;
- restriction operator: on.

D. Evaluation process

In  order  to  evaluate  ANNs ten  different  scenarios  were 
used. The tests were carried out in the following way. At first, 
each ANN was tested in the scenario no. 1. If the predators 
controlled  by ANN could  not  capture  the  prey  during  an 
assumed  period,  the  test  was  stopped  and  ANN  received 
appropriate evaluation that depended on the distance between 
the prey and the nearest predator.  However, if the predators 
grasped  the  prey,  they were  put  to  test  according  to  next 
scenario.  During  the  experiments,  we  assumed  that  the 
predators  could  perform  100 steps before the  scenario  was 
interrupted.

The  scenarios  used  in  the  experiments  differed  in  the 
initial  position of the prey, in the length of step of the prey 
and  in  the  type of the  prey applied  (simple  or  advanced). 
Consecutive scenarios were more and more difficult. At first, 
the predators had to capture the simple prey that was as fast 
as them. The predators, which passed the first exam, had to 
pit  against  the  simple  prey that  was  twice faster  than  the 
predators.  In  the  next  step,  the  speed  of  the  prey  was 
decreased once again. However, this time the predators had to 
face the advanced prey which took better  decisions than  its 
predecessor.  In the last stage, the predators which coped with 
all earlier scenarios had to capture the advanced, fast prey. In 
all the scenarios starting positions for all three predators were 
the same.  The predators  always started from position  (0,0). 
Below, described are all eight scenarios:
- Scenario no 1: simple prey (20,5), prey’s step = 1;
- Scenario no 2: simple prey(10,8), prey’s step = 1;
- Scenario no 3: simple prey (15,3), prey’s step = 2;
- Scenario no 4: simple prey (0,10), prey’s step = 2;
- Scenario no 5: advanced prey (16,0), prey’s step = 1;
- Scenario no 6: advanced prey (2,15), prey’s step = 1;
- Scenario no 7: advanced prey (10,19), prey’s step = 2;
- Scenario no 8: advanced prey (4,10), prey’s step = 2;
- Scenario no 9: advanced prey (10,10), prey’s step = 2;
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- Scenario no 10: advanced prey (20,0), prey’s step = 2.

To evaluate ANNs the following fitness function was used:
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where
fi–reward received in ith scenario;
dmax–  maximal  distance  between  two  points  in  applied 
environment;
si

100– the end state in ith scenario;
fcaptured–reward for grasping the prey in single scenario (in the 
experiments fcaptured amounted to 100);
mi–the number of steps which the predators needed to capture 
the prey (mi<100);
a – this value prevents the situation in which partial success 
would be better than success in all scenarios;
n – the number of scenarios.

E.Experimental results

30  evolutionary  runs  were  performed  for  each  ANN 
encoding method and for each type of ANN. The experiments 
showed  that  AEPs01 outperform  other  encoding  methods. 
Most ANNs produced by means  of AEPs01  were successful, 
i.e. they resulted in capturing the prey in all tested scenarios. 
ANNs generated by means of AEPs01 had fewer neurons than 
ANNs produced based on other methods. Unlike AEPs01 other 
methods often generated ANNs including maximal acceptable 
number of neurons. AEPs01 were the only method which was 
able to produce successful ANNs with Hebb self-organization. 
The remaining  methods were only able to generate effective 
ANNs of constant  architecture.  The only method which did 
not  produce  any  successful  ANN  was  CM.  Final  results 
obtained in the experiments are presented in Table 1.

Table 1 Results of experiments (column 1 - type of  ANN (encoding 
method);  column  2  -  average  fitness  (best  fitness);  column  3  - 
average  connectivity  in  successful  ANN (100%  -  fully connected 
ANN); column 4 - average number of neurons in successful ANN
(minimal  number  of  neurons);  column  5  -  average  length  of 
successful  AEP, number  of operations + number  of data  (shortest 
AEP);  column  6  -  average  number  of  co-evolutionary  cycles 
necessary  to  generate  successful  AEP  (minimal  number  of  co-
evolutionary cycles))

(1) (2) (3) (4) (5) (6)
FFANN 
(AEPs01)

1028.14
(1069.75)

84.7%
11.5
(9)

4.9 + 13.8
(2 + 21)

196834.3
(6614)

FFANN 
(AEPs#)

915.24
(1081.76)

67.3%
14.6
(12)

6.2 + 15.4
(3+14)

335692.4
(158808)

FFANN 
(AEPs01#)

998.98
(1088.65)

75.9%
13.2
(11)

5+13.3
(3+12)

286951.7
(108456)

FFANN
(CM)

682,28
(743.48)

FFANN 
Hebb 

(AEPs01)

836,79
(1055.66)

55.8%
14.7
(12)

5.8 + 14.5
(5 + 9)

347053.8
(179808)

FFANN 
Hebb 

(AEPs#)

480,41
(563.38)

FFANN 
Hebb 

(AEPs01#)

546,1
(659.27)

RANN 
Hebb 

(AEPs01)

728,07
(1065.33)

82.5%
14.5
(12)

5.7 + 15.7
(5 + 14)

339651.4
(183421)

RANN 
Hebb 

(AEPs#)

362,04
(441.32)

RANN 
Hebb 

(AEPs01#)

489,59
(648.32)
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a) 
 

b) 
 

Operations: 
1 111#11# 1##1##1 0011##0 
0 1##100# 1#0#011 00#0#1# 
0 1##1010 11000#1 10##0#1 
0 1#00011 1000#01 ##00101 
1 101#1## 11##111 0010### 
1 1#11010 #011##1 11#1#01 
Data: 
1010110 0011101 0100001 0101101 0011110 0010101 
1111000 1010010 1101110 1111110 0100001 1011111 
1111000 1110100 0010001 0000111 0011110 
 

-0.3 -0.06 0 -0.06 0 -0.06 0.47 -0.1 0 -0.06 0 -0.06 0 -0.06 0.66  
-0.98 -0.06 0.7 0.66 -0.3 -0.5 -0.3 -0.3 -0.3 -0.3 0.47 -0.1 -0.46 0.52 -0.5  
-0.3 0 -0.46 0 0 0 -0.1 0.66 0 -0.1 0 0 0 0 -0.17  
0.7 0 -0.98 -0.17 0.88 0.73 0.47 0.52 0 0 -0.1 0.53 0.47 0.52 0.73  
-0.3 -0.06 0 -0.06 0 -0.06 0.47 -0.1 0 -0.06 -0.76 -0.76 0 -0.06 0.66  
-0.98 -0.06 0 -0.06 0 -0.06 -0.46 0.52 0 -0.06 0 -0.06 0 -0.06 -0.5  
0.7 0 0.47 0 0 0 -0.1 0.73 0 0.52 0 0 0 0 -0.17  
0.7 0 0 0 0 0 0.47 0.52 0 0 0 0 0 0 0.73  
-0.2 0 0 0 0 0 0.47 -0.1 0 0 -0.76 -0.76 0 0 0.66  
-0.98 0 0.7 0.66 -0.2 -0.5 -0.3 -0.3 -0.3 -0.3 0.47 -0.1 -0.46 0.52 -0.5  
0.88 0 0.47 0 0 0 -0.1 -0.17 0 0.53 0 0 0 0 -0.17  
0.7 0 -0.98 -0.17 0.88 0.73 0.47 0.52 0 0 -0.1 0.53 0.47 0.52 0.73 

 
Fig.  9  (a)  Example  of successful  AEP#,  (b)  NDM generated  by 
AEP presented in point (a)
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V.SUMMARY

The paper presents a new indirect ANN encoding method 
called Assembler Encoding. In AE, each ANN is represented 
in  the  form  of  a  program  called  Assembler  Encoding 
Program. AEP is composed of operations and data arranged 
in the linear way. The task of AEP is to create and to fill in 
Network Definition Matrix with values. To do this, AEP uses 
the operations. The operations are run in turn. When working 
the operations use data located at the end of AEP. Once the 
last operation finishes its work the process of creating NDM 
is completed. NDM is then transformed into ANN. 

In order to test AE we made use of it to solve the predator-
prey problem.  During  the  tests,  the  task  of  AEPs  was  to 
generate  ANNs  controlling  a  set  of  cooperating  predators 
whose common goal was to capture a fast moving prey. In the 
experiments,  three  types  of  AEPs  were  tested,  i.e.  AEPs01 

using binary encoded operations, AEPs# using LCS-classifier 
like operations and AEPs01# using operations of both types. To 
compare  AE  with  another  ANN  encoding  method,  in  the 
experiments,  a co-evolutionary version of classical  Miller  et 
al. CM was also applied. Generally, the experiments showed 
that AE is able to create simple ANNs. The best ANNs were 
produced by means of AEPs01. AEPs01#  and AEPs# turned out 
to  be  somewhat  worse  solutions  than  AEPs01.  The  worst 
ANNs were produced by means of CM.  
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Fig. 10 Example behavior of predators and prey in scenario no. 8 . 
Circles indicate initial positions of predators and prey (black circle 
–prey,  circle  with  vertical  stripes  –predator  no.  1,   circle  with 
horizontal  stripes  –predator  no. 2),  round symbols with  diagonal 
lines  denote  final  positions,  arrowed lines  indicate  directions  of 
movement  (solid  line  –prey,  dashed  line  –predator  no.  1,  dotted 
line  –predator  no.  2)  whereas  black  boxes  determine  time  of 
occurrence of individuals in a given place.
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