
INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

Abstract—The paper presents a neuro-evolutionary method
called Assembler Encoding. The method was tested in the predator-
prey problem. To compare Assembler Encoding with another neuro-
evolutionary method, in the experiments, a co-evolutionary version
of simple connectivity matrix was also applied.

Keywords—evolutionary neural networks, predator-prey
problem.

I.INTRODUCTION

rtificial neural networks (ANNs) constitute a sub–
domain of artificial intelligence that is broadly used to

solve various problems in different fields (e.g. pattern
classification, function approximation, optimization, image
compression, associative memories, robot control problems,
etc.). The performance of ANNs highly depends on two
factors, i.e. network’s topology and a set of network’s
parameters (typically weights). Therefore, to develop an
appropriate ANN it is necessary to determine the topology
and parameters. There are many different ANN learning
algorithms that change values of parameters leaving the
structure completely intact [16]. In such a case, the process of
searching for the proper ANN topology is the task of a
designer who arbitrarily chooses the ANN structure, starts
ANN learning and finally puts ANN to a test. If the result of
the test is satisfactory, the learning process is stopped. If not,
it is continued further. The designer manually determines the
next potential topology and runs the learning algorithm
again. Such loop – topology determination and learning is
repeated until ANN which is able to carry out a dedicated
task at an appropriate level is found. At first glance, it is
apparent that such a procedure could be very time-consuming
and, what is worse, in the case of more complex problems,
can lead to a situation when all chosen and trained ANNs
would be incapable of solving the task.

A

In addition to the learning concept presented above, there
exist other approaches that can be called constructive and

destructive. The constructive ones use a learning philosophy
that consists in incremental development of ANN starting
from small architecture. At the beginning, ANN has a small
number of components to which next components are
gradually added until a resultant ANN fully meets the
requirements imposed. On the other hand, the destructive
ones prepare a large fully connected ANN and then try to
remove individual elements of the network, such as synaptic
connections and neurons.

Genetic Algorithm (GA) is a next technique that has been
successfully applied to search for optimal ANNs
[3],[4],[7],[15] for the recent years. GA processes a
population of genotypes that typically encode one phenotype
although encoding several phenotypes is also possible. In
ANN evolution, genotypes are encodings of corresponding
ANNs (phenotypes). The evolutionary procedure involves
selecting genotypes (encoded ANNs) for reproduction based
on their fitness, and then by introducing genetically changed
offspring (mutation, crossover and other genetic operators)
into a next population. Repeating the whole procedure over
many generations causes the population of encoded ANNs to
gradually evolve into individuals corresponding to high
fitness phenotypes (ANNs).

There are a lot of ANN encoding methods. Several of them
are briefly presented further in the paper. In principle, all
existing encoding methods can be divided into two main
classes, i.e. direct encodings and indirect encodings. As for
the direct methods, the whole information necessary to create
ANN (e.g. weights, number of neurons, number of layers) is
directly stored in a chromosomes. Thus, to encode larger
ANNs larger chromosomes are necessary, which is the main
drawback of the direct methods. As regards the indirect
methods, we deal with chromosomes which are recipes how
to create ANN. Such encodings can be used to create larger
neural architectures by means of relatively short
chromosomes.

The paper presents a new indirect ANN encoding method

Using Assembler Encoding to Solve Predator-
Prey Problem

Tomasz Praczyk

251

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

called Assembler Encoding (AE) [13]. AE originates from the
cellular encoding [5], although, it also has features common
with Linear Genetic Programming (LGP) [11]. In AE, the
process of ANN construction consists of three stages (Fig. 1).
First, GA is used to produce Assembler Encoding Programs
(AEPs). Next, each AEP creates and fills up Network
Definition Matrix (NDM) which includes all the information
necessary to create ANN. Then, once AEP stops working the
matrix is transformed into ANN.

To test AE simple experiments in the predator-prey
problem were carried out. In the experiments, the task of AE
was to generate ANNs controlling a set of cooperating
predators whose common goal was to capture a fast moving
prey. Apart from AE, for the purpose of comparison, a
modified version of CM was also used in the experiments.
The results of the experiments are presented at the end of the
paper.

The paper is organized as follows: section 2 reviews related
research; section 3 presents AE; section 4 illustrates the
results of the experiments; section 5 is the summary.

II.RELATED WORK

For the recent years many attempts have been made to define
genotypes for ANNs and to describe the genotype into
phenotype mapping process. One of the earliest concepts was
proposed by Miller, Todd and Hedge [8]. In their approach
ANN is represented in the form of the Connectivity Matrix.
Each element of the matrix informs about existence of
connection between two neurons or about lack of such
connection.

Moriarty and Miikkulainen [9] proposed a Symbiotic
Adaptive NeuroEvolution (SANE). Their concept assumes
that information necessary to create ANN is included in two
types of individuals, i.e. in blueprints and in encoded
neurons. Both types of individuals evolve in separate

populations. The task of the blueprints is to record the most
effective combinations of neurons. Each blueprint specifies a
set of neurons that cooperate well together. The population of
neurons includes individuals encoding hidden neurons of
two-layered feed-forward ANN (FFANN). Each individual
from the population of neurons defines connections of the
neuron with input and output neurons and the strength of
each connection.

Kitano [6] defined the matrix rewriting encoding scheme.
Initially, the method assumes 2x2 matrix that contains non-
terminal elements. These elements are subsequently
substituted for matrices including other non-terminal
elements or terminal elements. This process is repeated until
the resultant enlarged matrix contains only the terminals that
indicate either existence of connection between neurons or
lack of such connection.

In the Nolfi and Parisi model [10], the genotype defines the
location of each neuron in a two-dimensional space and
growth parameters of each neuron’s axon. Neurons that are
on the left part of the space are considered to be input
neurons and the ones placed on the right are considered to be
output neurons. The remaining neurons are hidden neurons.
After the location phase, axons of neurons start to grow
further according to an assumed procedure. The connection
between neurons is established if the branching axon of a
source neuron reaches another neuron.

Chromosome in Gruau’s cellular encoding [5] contains a
set of instructions that are applied to ANN consisting initially
of one hidden node. ANN evolves towards larger structures
during successive executions of individual instructions. The
instructions are organized into a tree and include such
operations as: node duplication, node division, removal of
connectivity and many others. A very important feature of the
cellular encoding is its potential to build modular ANNs
consisting of similar elements located in various places of a
network. This potential is a result of applying a set of trees
(with instructions) instead of applying a single tree, and
repeated execution of instructions grouped in each of them.
The result of such a procedure is analogous to the multiple
procedure execution in the main body of a structural program.
Another crucial characteristic of the cellular encoding is the
form of chromosome – a tree. Due to this feature the only
evolutionary technique, which is applicable to process
individuals constructed in this way, is genetic programming.

252

Fig. 1 Diagram of AE

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

III.ASSEMBLER ENCODING - FUNDAMENTALS

In AE, ANN is represented in the form of AEP, which is
composed of two parts, i.e. a part including operations (the
code part of AEP) and a part including data (the memory part
of AEP). The task of AEP is to create and to fill in NDM with
values. To this end, AEP uses predefined operations which
are run one by one. When working, the operations use data
located at the end of AEP. Once the last operation finishes its
work, the process of creating NDM is completed. The matrix
is then transformed into ANN.

A.Network Definition Matrix

NDM, as the same name implies, is the matrix defining
ANN. It stores all the information necessary to create and to
functioning ANN. In principle, NDM can have any structure,
i.e. it can define ANN in any way. Individual elements of
NDM can inform about synaptic weights of interneuron
connections, although any other interpretation is also
possible. The way of representing ANN by means of NDM
always depends on the type of ANN we want to obtain. In the
experiments, two types of ANNs were used, i.e. ANNs whose
architecture was permanently fixed as a result of evolutionary
process as well as dynamic ANNs with Hebb learning, whose
weights underwent changes during ANNs’s “life” [4]. To
define complete architecture of ANN, i.e. weights, topology,
and transfer functions, NDM can take the form of the

classical CM. In turn, to represent ANN with Hebb self-
organization somewhat different construction of NDM is
necessary. Two forms of NDM, used in the experiments, are
described below.

NDM used as CM is organized as follows. Each element of
NDM determines synaptic weight between corresponding
neurons. For example, componenti,j defines the link from
neuron i to neuron j. Elements of NDM unimportant from the
point of view of the process of ANN construction, for
example because of assumed feed-forward structure of ANN,
are neglected during building ANN. Apart from the basic
part, NDM also contains three additional columns that
describe parameters of neurons, i.e. type of neuron (sigmoid,
radial, linear), parameter of neuron and bias.

NDM used to represent a dynamic ANN with Hebb self-
organization is defined as follows. It includes H rows and
Z=2M+2 columns where H denotes the number of hidden and
output neurons whereas M is the number of all neurons in
ANN. Extra two columns, as in the previous case, include
additional information about neurons, i.e. bias and value of a
single parameter of a neuron (in this case only sigmoid
neurons are considered). The main part of NDM consists of
two sub-matrices of equal size (HxM). The first sub-matrix
determines the topology of ANN, i.e. it indicates which
connections exist in ANN and which do not. Each element of
this sub-matrix unequal to zero informs about a connection
between neurons. A sign of this element determines a sign of
the connection while a value of the element determines a type
of Hebb rule assigned to the connection. For example, the
value -0.2 of the element NDM[n,m] (n=1..H, m=1..M,
neurons are indexed from 0 to M) informs both about the
negative connection between mth and [n+(M-H)]th neuron and
about a plain Hebb rule assigned to that connection. In the
experiments, described further, five types of Hebb rules were
used [4]:

1. Plain Hebbian rule: strengthens the synapse
proportionally to the correlated activity of the pre-
and post-synaptic neurons.

xyww)1(−=∆ (1)
2. Postsynaptic rule: behaves as the plain Hebbian

rule, but in addition it weakens the synapse when
the postsynaptic neuron is active but the presynaptic
is not.

xywyxww)1()1(−++−=∆ (2)
3. Presynaptic rule: weakening occurs when the

presynaptic neuron is active but the postsynaptic is

253

Fig. 2 NDM used as the CM

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

not.
xywyywxw)1()1(−++−=∆ (3)

4. Covariance rule: strengthens the synapse whenever
the difference between the activations of the two
neurons is less than half their maximum activity,
otherwise the synapse is weakened. In other words,
this rule makes the synapse stronger when the two
neurons have similar activity and makes it weaker
otherwise:

Ψ
>ΨΨ−

=∆
otherwise),(

0),(if),()1(
yxw

yxyxw
w (4)

where)2)1(4(tanh),(−−−=Ψ yxyx is a

measure of a difference between presynaptic and
postsynaptic activity. 0),(>Ψ yx if the difference
is higher or equal to 0.5 and 0),(<Ψ yx if the
difference is smaller than 0.5.

5. “Zero” rule: a synapse does not change strength
during “life” of ANN.

0=∆ w (5)
The second sub-matrix of NDM incorporates learning rates

necessary to update the strength of each synaptic weight. For
example, NDM[n,m]=-0.2, where n=1..H and m=M..2M,
informs that learning rate applied to update the connection
between [m-M]th and [n+(M-H)]th neuron amounts to |-0.2|. If
there exists a connection between neurons but the learning
rate corresponding to this connection amounts to zero, to
update the strength of the connection, a default nonzero value
of the learning rate is used (e.g. 0.5).

Hebb rules from the first part of NDM and the learning
rates from the second part are necessary to determine changes
that take place in each interneuron connection. Each synaptic
weight in ANN alters according to the following formula [4]:

ijij
t
ij

t
ij www ∆+= − η1

 (6)

where
1, −t

ij
t
ij ww are synaptic weights between jth and ith

neuron, respectively after and before update, and 10 ≤≤ ijη

is the learning rate.

First, once ANN is created, all weights of all nonzero
connections are fixed in some assumed manner, for example
at random. Then, synaptic weights change according to the
formula (6). All synapses can change the strength but they
cannot change the sign, which is determined permanently in
NDM. The synaptic strength cannot grow indefinitely. All
weights range <0,1>. This is possible thanks to application of
the self-limiting mechanism in all of Hebb rules mentioned
above. An update of each synaptic weight occurs once an
input signal is propagated to output neurons, i.e. each time a
decision has been taken by ANN.

B.Operations

AEPs can use various operations. The main task of most
operations is to modify NDM. The modification can involve a
single element of the matrix or a group of elements. Fig. 4
and Fig. 5 present the implementation of two example
operations.

CHGC0 presented in Fig. 4 modifies NDM elements located
in the column indicated by parameter p0 and register R2. The
number of elements being updated is stored in parameter p2.
The index of the first element being updated is located in
register R1. To update elements of NDM, CHGC0 uses data
from AEP. The index to a memory cell including the first
element of data used by CHGC0 is stored in p1.

254

CHGC0(p0,p1,p2,p3)
{
column=(abs(p0)+R2)mod NDM.height;
numberOfIterations=abs(p2)mod NDM.width;
for(i=0;i<=numberOfIterations;i++)
 {
 row=(i+R1)mod NDM.width;
 NDM[row,column]=D[(abs(p1)+i)mod D.length]

/Max_value;
 }

Fig. 4 CHGC0 operation changing a part of column of NDM
(NDM[i,j] is element of NDM, Ri i=1,2 is value of ith register,
Max_value is scaling value which scales all elements of NDM to
<-1,1>, D[i]is ith element of data, D.length is number of
memory cells)

Fig. 3 NDM used to define dynamic ANN

CHG_MEMORY(p0,list1,list2)
{
for(i=0;i<list1.length;i++)
 for(j=0;j<list2.length;j++)
 {
 row=(list1[i]+R1)mod NDM.width;
 column=(list2[j]+R2)mod NDM.height;
 NDM[row,column]=

D[(abs(p0)+i*list2.length+j)
mod D.length]/Max_value;

 }
Fig. 5 CHG_MEMORY operation changing elements of NDM
indicated in list1 and list2

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

CHG_MEMORY presented in Fig. 5 modifies elements of
NDM indicated in list1 and list2. The lists mentioned
include numbers of columns and rows of NDM (list1
includes numbers of rows while list2 contains numbers of
columns) which, in turn, indicate elements of the matrix that
are updated as a result of execution of the operation. All
possible combinations of columns and rows considered in
both lists determine a set of elements that are altered by the
operation. p0 indicates a place in the memory part of AEP
where new values for updated elements can be found.

In addition to operations whose task is to modify a content
of NDM AE also uses jump operation denoted as JMP. The
jump makes it possible to repeatedly use the same code of
AEP in different places of NDM.

C.Evolution in AE

In AE, AEPs and in consequence ANNs are created by
means GAs. The evolution of AEPs proceeds according the
scheme which is an adaptation of the idea of evolving co-
adapted subcomponents proposed by Potter and De Jong [12].
To create AEP the scheme mentioned combines operations
and data from various populations. Each population including
chromosomes-operations (each chromosome-operation
encodes the type of operation, e.g. CHGC0, and parameters of
operation; implementations of operations do not evolve) has a
number assigned determining the position of the operation
from the population in AEP. In this approach, the number of
operations corresponds to the number of populations
including chromosomes-operations. Each population
delegates exactly one representative to each AEP.

At the beginning, AEPs have only one operation and a

sequence of data. Both the operation and data come from two
different populations. Further populations including
operations are successively added if generated AEPs cannot
accomplish progress in performance over an assumed number

of co-evolutionary cycles (we use term “co-evolutionary
cycle” to differ it from the evolutionary generation that takes
place inside a single population with operations and data).
Populations with operations and data can also be replaced by
newly created populations. This can happen if the
contribution of a given population to AEPs is considerably
less than the contribution of the remaining populations.

Individual operations in AE can be encoded in two ways.
For example, CHGC0 presented in Fig . 4 is encoded in the
form of binary string including five blocks of genes. The first
block determines a code of the operation (e.g. binary 00000
indicates that we deal with CHGC0), while the remaining
blocks contain a binary representation of four parameters of
the operation.

CHG_MEMORY (Fig. 5) is represented in a somewhat
different way. The encoded form of this operation resembles
classifier from Learning Classifier Systems [2]. Similarity
between classifier and the encoded operation results from the
use of the so called don’t care symbol “#” in both cases. Each
encoded CHG_MEMORY consists of four blocks of genes. The
first single-bit block determines one of two possible variants
of the operation. The second and the third block indicate
location of changes performed by the operation (don’t care
symbol is used for this purpose). The last block specifies the
value of the integer parameter of the operation. The example
use of don’t care symbol to locate changes in NDM is
illustrated in Fig 7.

IV.EXPERIMENTS

The experiments reported in the paper are only the first
step in the whole research process that is necessary to be done
to discover full potentials of the encoding method proposed.

255

Fig. 6 AEP encoding scheme

Fig. 7 Encoding CHG_MEMORY operation

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

The main goal of the experiments was only to learn whether
AE can be used to create simple “static” and dynamic ANNs.
During the tests, the task of all ANNs was to solve a simple
version of the predator-prey problem. Apart from AE, for the
purpose of comparison, a modified version of CM was also
used in the experiments. The main idea behind comparing
AE with the concept of Miller et al. was that both solutions
use CM to represent ANN (in AE CM is called NDM). Both
methods differ only in the approaches to creating the matrix.
While in the classical solution GA is used directly to form
CM, AE uses, for the same purpose, AEPs formed in the
evolutionary way.

In the experiments, three types of ANNs were used:
FFANNs of constant architecture, FFANNs with Hebb self-
organization, recurrent ANNs (RANN) with Hebb self-
organization. The task of all ANNs created in the
experiments was to control a set of cooperating predators
whose common goal was to capture a fast moving prey
behaving by a simple deterministic strategy. To create ANNs
the following ANN encoding methods were used: AEPs
consisting of binary encoded operations (AEPs01, e.g.
CHGC0), AEPs including CHG_MEMORY operations (AEPs#),
AEPs containing both types of operations (AEPs01#), and the
co-evolutionary version of CM. In the experiments, CM was
exclusively used to form FFANNs of constant architecture.

Evolution of ANNs encoded in the form of CMs went on in
somewhat different way from the one assumed in the classical
solution. While in the classical approach, we deal with one
population including matrices, in the solution applied in the
experiments the whole CM was divided into parts and each
part evolved in a separate population. Since CMs were used
to encode FFANNs only fragments of CMs above the
diagonal underwent evolution. In all the experiments with
CMs, regardless of the size of ANNs, evolution of the
matrices took always place in five populations, i.e. the

matrices were always divided into five parts of more or less
the same size (we decided to divide matrices into five parts
because most of the most effective AEPs generated during the
experiments also consisted of five components: four
operations and a single sequence of data).

A.Environment

The predators and the prey lived in the common
environment. We used 20x20 square without any obstacles
but with two barriers located on the left and on the right side
of the square to represent the environment. Both barriers
caused the predators as well as the prey to move right or left
only to the point at which they reached one of the barriers.
Attempts to move further in the direction of the barrier ended
up in failure. In order to ensure infinite space for the
predators and the prey and for their struggles, we made the
environment open at the bottom and at the top. This means
that every attempt of movement beyond upper or lower border
of the square caused the object, making such an attempt, to
move to the opposite side of the environment. As a result, the
simple strategy of predators, consisting in chasing the prey,
did not work. In such a situation, the prey, in order to evade
predators, could simply escape upwards or downwards.

B.Residents of the artificial world

In the experiments, three predators and one prey coexisted
in the artificial environment. The predators controlled by
ANN could select five actions: to move in North, South,
West, East direction or to stand still. The length of the step
made by each predator was 1, while the step made by the prey
amounted either to 2 or to 1. In order to capture the prey the
predators had to cooperate. Their speed was either two times
lower or the same as the speed of the escaping prey so they
could not simply chase the prey to capture it. We assumed
that the prey could be captured if the distance between it and
the nearest predator was lower than 2.

In the experiments, we assumed that the predators could
see the whole environment. The predators based the decision
which actions to select on the prey’s relative location with
reference to each of them. In order to perform the task ANN
controlling the predators had to possess six inputs and three
outputs. Outputs of ANN provided decisions to the predators
whereas inputs informed them about prey’s location in
relation to each of them.

In the experiments, we used two types of prey – the simple
prey and the advanced prey. The simple prey was controlled
by a simple algorithm which forced it to move directly away

256

Fig. 8 Method for encoding CM used in experiments

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

from the nearest predator but solely in the situation when
distance between it and the nearest predator was lower than
or equal to 5. In the remaining cases, i.e. when no predator
was closer to the prey than the assumed distance, the prey did
not move. In the situation when the selected prey’s action
could cause hitting the barrier another move was chosen.
Alternative move prevented from hitting the wall, and at the
same time, it maximally increased the distance between the
prey and the nearest predator. The prey, when was running
away could select four actions: to move in North, South, West
or East direction. Making decision, the advanced prey, unlike
its simpler counterpart, always took into consideration the
location of all predators that were situated close to it. Actions
performed by the advanced prey always maximized the
average distance between the prey and all predators that were
close to it. Other aspects of behavior of the advanced prey, i.e.
behavior near the barrier, behavior away from the predators
and actions which the prey could perform in each step, were
the same as in the case of the simple prey.

C. Parameters of evolutionary process

In the experiments, two types of GAs were used: canonical
GA and eugenic algorithm [1],[14]. Canonical GA was used
to process data, and fragments of CMs. In turn, eugenic
algorithm was used to process operations. In the experiments,
AEPs could posses maximum 12 operations. Initially every
AEP contained one operation and one set of data from two
different populations. Consecutive populations with
operations were added every 5000 of co-evolutionary cycles if
generated AEPs were not able to achieve progress in
performance within this period. Populations including
operations and data could be also replaced by newly created
populations when the contribution of substituted population to
created AEPs was considerably less than the contribution of
the remaining populations. The same procedure could also be
applied with regard to populations including fragments of
CMs. The contribution of the population was measured as
average fitness of individuals belonging to that population.
The remaining values essential for the experiments are
presented below:

- each population size: 20 individuals;
- number of co-evolutionary cycles for one fixed

structure of ANN: 50 000 (in the case when even one
satisfactory solution was not found during the assumed
period all ANNs were expanded by one neuron and
evolutionary process started again).

Parameters of Canonical GA:
- crossover probability: 0.7;
- per-bit mutation probability: 0.01;
- cut-splice probability: 0.1 (in the case of

chromosomes-data).
Parameters of Eugenic Algorithm:
- selection noise: 0.01, 0.2;
- creation rate: 0.01, 0.2;
- restriction operator: on.

D. Evaluation process

In order to evaluate ANNs ten different scenarios were
used. The tests were carried out in the following way. At first,
each ANN was tested in the scenario no. 1. If the predators
controlled by ANN could not capture the prey during an
assumed period, the test was stopped and ANN received
appropriate evaluation that depended on the distance between
the prey and the nearest predator. However, if the predators
grasped the prey, they were put to test according to next
scenario. During the experiments, we assumed that the
predators could perform 100 steps before the scenario was
interrupted.

The scenarios used in the experiments differed in the
initial position of the prey, in the length of step of the prey
and in the type of the prey applied (simple or advanced).
Consecutive scenarios were more and more difficult. At first,
the predators had to capture the simple prey that was as fast
as them. The predators, which passed the first exam, had to
pit against the simple prey that was twice faster than the
predators. In the next step, the speed of the prey was
decreased once again. However, this time the predators had to
face the advanced prey which took better decisions than its
predecessor. In the last stage, the predators which coped with
all earlier scenarios had to capture the advanced, fast prey. In
all the scenarios starting positions for all three predators were
the same. The predators always started from position (0,0).
Below, described are all eight scenarios:
- Scenario no 1: simple prey (20,5), prey’s step = 1;
- Scenario no 2: simple prey(10,8), prey’s step = 1;
- Scenario no 3: simple prey (15,3), prey’s step = 2;
- Scenario no 4: simple prey (0,10), prey’s step = 2;
- Scenario no 5: advanced prey (16,0), prey’s step = 1;
- Scenario no 6: advanced prey (2,15), prey’s step = 1;
- Scenario no 7: advanced prey (10,19), prey’s step = 2;
- Scenario no 8: advanced prey (4,10), prey’s step = 2;
- Scenario no 9: advanced prey (10,10), prey’s step = 2;

257

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

- Scenario no 10: advanced prey (20,0), prey’s step = 2.

To evaluate ANNs the following fitness function was used:
() ∑

=

=
n

i
ifANNf

1
 (7)

()

()

−+

−

=

∈

scenario previous in the
 capturednot prey 0

scenario in

 capturedprey 100
scenario in

 capturednot prey ,min

th

th

100max

i
a

mf

i

spdd

f
i

captured

i

Pp

i

 (8)

where
fi–reward received in ith scenario;
dmax– maximal distance between two points in applied
environment;
si

100– the end state in ith scenario;
fcaptured–reward for grasping the prey in single scenario (in the
experiments fcaptured amounted to 100);
mi–the number of steps which the predators needed to capture
the prey (mi<100);
a – this value prevents the situation in which partial success
would be better than success in all scenarios;
n – the number of scenarios.

E.Experimental results

30 evolutionary runs were performed for each ANN
encoding method and for each type of ANN. The experiments
showed that AEPs01 outperform other encoding methods.
Most ANNs produced by means of AEPs01 were successful,
i.e. they resulted in capturing the prey in all tested scenarios.
ANNs generated by means of AEPs01 had fewer neurons than
ANNs produced based on other methods. Unlike AEPs01 other
methods often generated ANNs including maximal acceptable
number of neurons. AEPs01 were the only method which was
able to produce successful ANNs with Hebb self-organization.
The remaining methods were only able to generate effective
ANNs of constant architecture. The only method which did
not produce any successful ANN was CM. Final results
obtained in the experiments are presented in Table 1.

Table 1 Results of experiments (column 1 - type of ANN (encoding
method); column 2 - average fitness (best fitness); column 3 -
average connectivity in successful ANN (100% - fully connected
ANN); column 4 - average number of neurons in successful ANN
(minimal number of neurons); column 5 - average length of
successful AEP, number of operations + number of data (shortest
AEP); column 6 - average number of co-evolutionary cycles
necessary to generate successful AEP (minimal number of co-
evolutionary cycles))

(1) (2) (3) (4) (5) (6)
FFANN
(AEPs01)

1028.14
(1069.75)

84.7%
11.5
(9)

4.9 + 13.8
(2 + 21)

196834.3
(6614)

FFANN
(AEPs#)

915.24
(1081.76)

67.3%
14.6
(12)

6.2 + 15.4
(3+14)

335692.4
(158808)

FFANN
(AEPs01#)

998.98
(1088.65)

75.9%
13.2
(11)

5+13.3
(3+12)

286951.7
(108456)

FFANN
(CM)

682,28
(743.48)

FFANN
Hebb

(AEPs01)

836,79
(1055.66)

55.8%
14.7
(12)

5.8 + 14.5
(5 + 9)

347053.8
(179808)

FFANN
Hebb

(AEPs#)

480,41
(563.38)

FFANN
Hebb

(AEPs01#)

546,1
(659.27)

RANN
Hebb

(AEPs01)

728,07
(1065.33)

82.5%
14.5
(12)

5.7 + 15.7
(5 + 14)

339651.4
(183421)

RANN
Hebb

(AEPs#)

362,04
(441.32)

RANN
Hebb

(AEPs01#)

489,59
(648.32)

258

a)

b)

Operations:
1 111#11# 1##1##1 0011##0
0 1##100# 1#0#011 00#0#1#
0 1##1010 11000#1 10##0#1
0 1#00011 1000#01 ##00101
1 101#1## 11##111 0010###
1 1#11010 #011##1 11#1#01
Data:
1010110 0011101 0100001 0101101 0011110 0010101
1111000 1010010 1101110 1111110 0100001 1011111
1111000 1110100 0010001 0000111 0011110

-0.3 -0.06 0 -0.06 0 -0.06 0.47 -0.1 0 -0.06 0 -0.06 0 -0.06 0.66
-0.98 -0.06 0.7 0.66 -0.3 -0.5 -0.3 -0.3 -0.3 -0.3 0.47 -0.1 -0.46 0.52 -0.5
-0.3 0 -0.46 0 0 0 -0.1 0.66 0 -0.1 0 0 0 0 -0.17
0.7 0 -0.98 -0.17 0.88 0.73 0.47 0.52 0 0 -0.1 0.53 0.47 0.52 0.73
-0.3 -0.06 0 -0.06 0 -0.06 0.47 -0.1 0 -0.06 -0.76 -0.76 0 -0.06 0.66
-0.98 -0.06 0 -0.06 0 -0.06 -0.46 0.52 0 -0.06 0 -0.06 0 -0.06 -0.5
0.7 0 0.47 0 0 0 -0.1 0.73 0 0.52 0 0 0 0 -0.17
0.7 0 0 0 0 0 0.47 0.52 0 0 0 0 0 0 0.73
-0.2 0 0 0 0 0 0.47 -0.1 0 0 -0.76 -0.76 0 0 0.66
-0.98 0 0.7 0.66 -0.2 -0.5 -0.3 -0.3 -0.3 -0.3 0.47 -0.1 -0.46 0.52 -0.5
0.88 0 0.47 0 0 0 -0.1 -0.17 0 0.53 0 0 0 0 -0.17
0.7 0 -0.98 -0.17 0.88 0.73 0.47 0.52 0 0 -0.1 0.53 0.47 0.52 0.73

Fig. 9 (a) Example of successful AEP#, (b) NDM generated by
AEP presented in point (a)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

V.SUMMARY

The paper presents a new indirect ANN encoding method
called Assembler Encoding. In AE, each ANN is represented
in the form of a program called Assembler Encoding
Program. AEP is composed of operations and data arranged
in the linear way. The task of AEP is to create and to fill in
Network Definition Matrix with values. To do this, AEP uses
the operations. The operations are run in turn. When working
the operations use data located at the end of AEP. Once the
last operation finishes its work the process of creating NDM
is completed. NDM is then transformed into ANN.

In order to test AE we made use of it to solve the predator-
prey problem. During the tests, the task of AEPs was to
generate ANNs controlling a set of cooperating predators
whose common goal was to capture a fast moving prey. In the
experiments, three types of AEPs were tested, i.e. AEPs01

using binary encoded operations, AEPs# using LCS-classifier
like operations and AEPs01# using operations of both types. To
compare AE with another ANN encoding method, in the
experiments, a co-evolutionary version of classical Miller et
al. CM was also applied. Generally, the experiments showed
that AE is able to create simple ANNs. The best ANNs were
produced by means of AEPs01. AEPs01# and AEPs# turned out
to be somewhat worse solutions than AEPs01. The worst
ANNs were produced by means of CM.

REFERENCES

[1] M. Alden, A. Van Kesteren and R. Miikkulainen, Eugenic Evolution
Utilizing a Domain Model, In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO-2002), (San Francisco,
CA, Morgan Kaufmann, 2002).

[2] M. V. Butz, Rule-based Evolutionary Online Learning Systems:
Learning Bounds, Classification, and Prediction, University of Illinois,
IlliGAL Report No. 2004034, 2004.

[3] D. Curran and C. O’Riordan, Applying Evolutionary Computation to
Designing Networks: A Study of the State of the Art, National University
of Ireland, technical report NUIG-IT-111002, 2002.

[4] D. Floreano and J. Urzelai, Evolutionary robots with online self-
organization and behavioral fitness, Neural Networks, Vol.13, 2000, PP.
431-443.

[5] F. Gruau, Neural network Synthesis Using Cellular Encoding And The
Genetic Algorithm,. PhD Thesis, Ecole Normale Superieure de Lyon,
1994.

[6] H. Kitano, Designing neural networks using genetic algorithms with
graph generation system, Complex Systems, Vol. 4, 1990, pp. 461-476.

[7] B. Kusumoputro, Mixture Odor Classification using Fuzzy Neural
Network and Its Optimization through Genetic Algorithm, WSEAS
Transactions on Systems, Issue 2, Volume 3, 2004, pp.426-431.

[8] G. F. Miller, P. M. Todd and S. U. Hegde, Designing Neural Networks
Using Genetic Algorithms, Proceedings of the Third International
Conference on Genetic Algorithms, 1989, pp. 379-384.

[9] D. E. Moriarty and R. Miikkulainen, Forming Neural Networks Through
Efficient and Adaptive Coevolution. Evolutionary Computation, 5(4),
1998, pp. 373-399.

[10] S. Nolfi and D. Parisi, Growing neural networks, In C. G. Langton, ed.,
Artificial Life III, Addison-Wesley, 1992. Available:
http://citeseer.ist.psu.edu

[11] P. Nordin, W. Banzhaf and F. Francone, Efficient Evolution of Machine
Code for {CISC} Architectures using Blocks and Homologous
Crossover, Advances in Genetic Programming III, L. Spector and W.
Langdon and U. O'Reilly and P. Angeline, 1999, pp. 275-299.

[12] M. A. Potter and K. A. De Jong, Cooperative coevolution: An
architecture for evolving coadapted subcomponents. Evolutionary
Computation, 8(1), 2000, pp. 1-29.

[13] T. Praczyk, , “Using assembler encoding to solve inverted pendulum
problem,” Computing and Informatics., to be published

[14] J. W. Prior, Eugenic Evolution for Combinatorial Optimization, Master’s
thesis, The University of Texas at Austin. TR AI98-268, 1998

[15] M. Rocha, P. Cortez and J. Neves, Evolutionary Neural Network
Learning Algorithms for Changing Environments, WSEAS Transactions
on Systems, Issue 2, Volume 3, 2004, pp.596-601.

[16] R. Sundararajan, A. K. Pal, A Conservative Approach to Perceptron
Learning, WSEAS Transactions on Systems, Issue 2, Volume 3, 2004,
pp.375-380.

259

Fig. 10 Example behavior of predators and prey in scenario no. 8 .
Circles indicate initial positions of predators and prey (black circle
–prey, circle with vertical stripes –predator no. 1, circle with
horizontal stripes –predator no. 2), round symbols with diagonal
lines denote final positions, arrowed lines indicate directions of
movement (solid line –prey, dashed line –predator no. 1, dotted
line –predator no. 2) whereas black boxes determine time of
occurrence of individuals in a given place.

http://citeseer.ist.psu.edu/

	I.INTRODUCTION
	II.RELATED WORK
	For the recent years many attempts have been made to define genotypes for ANNs and to describe the genotype into phenotype mapping process. One of the earliest concepts was proposed by Miller, Todd and Hedge [8]. In their approach ANN is represented in the form of the Connectivity Matrix. Each element of the matrix informs about existence of connection between two neurons or about lack of such connection.

	III.ASSEMBLER ENCODING - FUNDAMENTALS
	A.Network Definition Matrix
	B.Operations
	C.Evolution in AE

	IV.Experiments
	A.Environment
	B.Residents of the artificial world
	C. Parameters of evolutionary process
	D. Evaluation process
	E.Experimental results

	V.SUMMARY

