

Abstract—Improving blind people comfort of life is a problem of

great importance. Fortunately, new technolgies provide us with
additional methods to improve everyday life of the blind and visually

impaired. The paper presents experimental system made by

researchers from Department of Geoinformatics of Gdansk University
of Technology, which is capable of finding the route from the

indicated source to chosen destination, using dedicated digital map

and a set of various sensors. Subsequently, it supports the movement
of the blind along the found route. The user's position is obtained

with the use of DGPS receiver. In order to further improve accuracy,

particle filtering method is used. The system operates on a casual
smartphone and communicates with the blind by the touch screen and

by the voice messages generated by voice synthesizer.

Keywords— blindness, GPS, graph, speech synthesis.

I. STATE OF THE ART

t is a problem of great importance to improve the

capability of independent, outdoor movement of the

blind. Usually, blind people are able to move independently

only along the routes which they have already learned together

with a sighted guide. That fact limits significantly their

everyday life. Blind people have a strong need to walk around

by themselves, even when they are in new location or

accidentally lost their way. Nowadays asking a passer-by for

help is the only solution, but we have to be aware of the fact,

that often there is nobody around ready to help.

The usefulness of GPS as well as digital charts applied for

navigation support was discovered years ago. Nowadays, the

wide variety of different software and hardware solutions is

used in order to make the land and street navigation easier.

However, they are mainly used for car navigation or tourist

support, and only a few companies or institutions have tried to

take advantage of the GPS in order to support the self-

dependent moving of the blind.

At present there are practically two products accessible on

the market which provide the functionality for supporting the

 Manuscript sent March 4, 2011.

 Łukasz Kamiński is with the Department of Geoinfromatics of

Gdansk University of Technology (phone: +48 58 3472178; e-mail:

kamyk@eti.pg.gda.pl).

 Andrzej Stepnowski is the head of Department of Geoinfromatics

of Gdansk University of Technology,11/12 Gabriela Narutowicza Street, 80-

233 Gdańsk-Wrzeszcz, Poland (phone: +48 58 3472939; fax: +48 58

3472090; e-mail: astep@eti.pg.gda.pl).

 Jerzy Demkowicz is with the Department of Geoinfromatics of

Gdansk University of Technology (e-mail: demjot@eti.pg.gda.pl).

independent, outdoor movement of the blind based on the

digital chart of the terrain and the GPS receiver. The first is the

Sendero GPS[1] developed by the Sendero Group LLC, based

on the Braille Note platform Fig. 1, and the second is the

Trekker [2] by HumanWare Group, based on palmtop with

dedicated set of buttons Fig. 2. Those systems are capable of

supporting the movement of the blind by finding a walk route

from the source to the destination point, assisting the user

during his walk, and allowing to explore the set of points of

interest (POI) in the surroundings.

However, it must be pointed out that:

1) Those systems are dedicated mainly for the North

American market.

2) They use only one sensor type the GPS receiver

which does not ensure very high accuracy of

positioning in urban area.

3) Those systems are characterized by very high

purchase cost of a few thousands of USD for a single

unit.

4) No dedicated direction sensors are used the GPS

receiver can be used to obtain azimuth, but that

method is highly inaccurate during very slow

movement of the pedestrian.

Fig. 1. A group of blind people learning how to use Sendero GPS

system [1]

I

Wearable system supporting navigation of the

blind
Łukasz Kamiński, Andrzej Stepnowski, Jerzy Demkowicz

kamyk@eti.pg.gda.pl

INTERNATIONAL JOURNAL OF GEOLOGY Issue 2, Volume 5, 2011

34

Fig. 2. Image of Trekker by the HumanWare Group, showing how to

use dedicated buttons [2]

 In Europe, several research projects have been realized for

last years on supporting the independent moving of the blind,

like Easy Walk in Italy or Tormes in Spain [3], but they have

not passed the experimental phase.

 In Poland, the Nawigator by MiGRAF is used [4], but its

functionality is poor in comparison with Sendero GPS or

Trekker. Nawigator utilizes the GPS receiver data and is able

to record in its memory the pedestrians route, in a form of the

coordinates of a set of points defining the path. Then the

system assists the blind during his walk along the route, but the

prior process of defining the route in situ must be performed

with help of a sighted person the guide.

Fig. 3. Nawigator by MiGRAF

II. SYSTEM CONCEPT AND ARCHITECTURE

The system architecture is presented in Fig. 4. The

developed system is composed of following parts:

1) Street Navigation Supporting System (the main

system) responsible for direct, automatic assistance in

moving of the blind user,

2) Database, responsible for collecting and delivering

necessary spatial data.

3) Application for in situ data acquisition, used by

operator that collect precise spatial data,

4) OpenStreetMap service, that is used as a data source

for area, which haven't been yet visited by operators.

The main system's crucial modules are:

1) Spatial Data Cache, that stores the data in the devices

persistent memory. There are three main types of

data: graph representing a network of road segments

accessible for pedestrians, Points of Interest (POI)

and Point of Attention(POA), representing obstacles,

dangers and any other objects that systems should

inform user about. All types of data are arranged in a

quadtree data structure in order to improve system's

efficiency.

2) System Kernel implementing the algorithms for path

finding and supporting the user's movement.

3) GPS Unit providing the position of the user, using

GPS and DGPS receivers, prototype version of

inertial unit for places, where signal from GPS

satellites is not available and particle filter, which

further improves accuracy.

4) Compass Unit delivering the user's azimuth, using

either built-in or external sensors, mainly

magnetometers and electronic compasses (it may

depend on platform)

5) Dedicated user interface, based on modern

smartphones capabilities (touch screen, vibrations,

speech synthesis etc.).

INTERNATIONAL JOURNAL OF GEOLOGY Issue 2, Volume 5, 2011

35

Fig. 4. Architecture of the system

 The system has a set of data pre-installed in its cache,

containing main districts of Gdansk city. As long as the user

won't leave that area, the application will work autonomously,

and no connection with an external database is required.

III. SUPPORTED DEVICES

A great impact was put on the portability of the system. The

current reports about smartphone market share were precisely

investigated and proved, that Java programming language is

the most common and wide-spread language used on modern

mobile platforms (Fig. 5 and Fig. 6). It's the main

programming language of Android and BlackBerry, and can be

also used to write applications for all JavaME phones,

including Symbian, most of Windows Mobile devices and

many less powerful phones with custom operating systems (so-

called feature phones).

Fig. 5. Smartphone market share between main operating systems.

Inner circle shows data from Q3 2009, outer circle data from Q3

2010. Other operating systems together have less than 4% of share in

global smartphone market [5]

The main problem are the differences between Java-enabled

platforms. For example, Android has its own JVM (Java

Virtual Machine), called Dalvik, and BlackBerry smartphones

use enhanced JavaME platform, with many custom packages

and libraries. To solve that issue, we decided two divide the

implementation on two parts:

1) system kernel, written using constrained set of Java

classes, accessible on all smartphone platforms,

2) implementation of elements specific to certain

platform (user interface, speech synthesis, memory

usage, communication with sensors).

Fig. 6. Percentage of JavaME, Dalvik and non-Java devices. Inner

circle shows data from Q3 2009, outer circle data from Q3 2010.

INTERNATIONAL JOURNAL OF GEOLOGY Issue 2, Volume 5, 2011

36

 After counting lines of code in both parts, we found out,

that size of source code of platform specific implementation

can be estimated as 10-15% of the size of system kernel's

source code, depending on the platform. Therefore, most of the

code is written only once, can be tested more precisely and

easily and portability of the system is achieved with a

relatively low cost.

 The Android platform, because of its greatest

capabilities (described in next paragraphs) has been chosen as

the main prototype platform. Other Java-based platforms are

intensively investigated, in order to keep level of portability

described above (Fig. 7).

Fig. 7. Prototype application on three different smartphones:

Nokia n97 mini (Symbian+JavaME), Motorola MileStone and T-

Mobile G1 (both Android).

IV. USER INTERFACE

The role of user interface is obvious it helps user to

communicate with the system. Of course, the process of

communication is bidirectional.

 Systems generates instructions using mainly speech

synthesis. The implementation of speech synthesis depends

greatly on the platform that is used. Android offers the simplest

solution it has build in Text-To-Speech mechanism, which can

be easily extended with cheap additional voices (for example,

polish voice implemented by SVOX company costs around 3$

on Android Market). TTS API is relatively easy, therefore

dynamic speech synthesis was easy to implement.

 JavaME platform is more problematic. We were unable

to find qualitative mechanism that works without troubles and

supports polish voice. Because of that, two alternative methods

were prepared. The first one uses remote speech generation.

Speech synthesis takes place on the central server, sound files

are generated on demand, send using wireless internet

connection and then read by the device. That approach was

tested with the Ivona Speech Synthesizer and API based on

web services (Software as a Service technique). The main flaw

is the fact, that system looses its autonomy it needs instant

internet connection in order to operate correctly. There is also

one more issue messages are read with additional delay, which

in certain conditions may reach a few seconds, what is

unacceptable.

 The second approach is to generate all the necessary

sound files before, keep them in device's memory and read

when they are needed. However, it requires more persistent

memory and excludes low-end devices. What's more, data files

become much bigger, as sound file needs to be generated for

every name or attribute. It makes data download or update

much more time consuming. The combination of those two

methods, where most common sound files are kept in memory

and other generated remotely, behaves better that any of the

approaches used separately, but dynamic speech synthesis,

available on the Android platform, is without a doubt much

better.

 Another interesting feature of Android is built-in

speech recognition mechanism. Of course, it is still far away

from being perfect and tends to recognize speech with

mistakes (especially when polish language is used), but can be

considered as a quick method of generating commands for the

system, which in case of a mistake can be substituted with any

of the more accurate methods described below.

 Users communicate with the systems using mainly

touch screen. The menu is arranged in a form of a tree. The

options of the current part of that tree (the part that the user

has entered) are placed on the screen, each of them occupies a

rectangular area of significant size. User moves his finger on

the touch screen, feels vibrations when he leaves one

rectangular area and enters another, and hears name of the

option that he has just moved to (Fig. 8). The last touched

option is considered as a selected one. Double taping on the

screen will activate selected option, either moving the user to

another sub-tree of the menu, or triggering certain action, f.e.

activating verbose mode of messages. On the right-bottom

corner of the screen there is also Back option, which takes the

user back to the upper/previous part of the menu. The menu

can be also used on devices without touch screens. In that case,

arrow keys are used to move around and one of the action keys

replaces double tapping.

If the speech recognition mechanism fails, there are more

precise ways to insert text. User can use either hardware

keyboard, or virtual touch screen keyboard. In both cases,

system reads loudly every letter that is written by the user, so

that he can identify his own mistakes and correct them quickly.

On Android platform there are two additional input

mechanism. One utilizes 8pen [6] approach of fast typing,

which is hard to learn, but very efficient if mastered. The

second method, implemented by authors, uses Android's

mechanism of gesture recognition and prototype version of

gesture alphabet, based on the Moon's alphabet.

INTERNATIONAL JOURNAL OF GEOLOGY Issue 2, Volume 5, 2011

37

Fig. 8. Touch menu example. User moves from one option to

another (selected option is always red). Menu can be easily used with

one hand user do not have to stop using white cane when selecting

menu options.

V. NAVIGATION AND USER TRACKING

In our system, provided with spatial data in a form of a

graph, we are able to implement the navigation algorithms.

The graph of pedestrian paths is sparse, therefore the best way

to represent it is to use the adjacency list. The graph is

weighted each edge (representing a path fragment) has some

data associated with it, that can be used to calculate the cost of

the walk from its beginning to its end. The bigger the length of

the edge or the narrower path, or the worse the surface the

higher the cost. All the data describing the difficulty of the

path are used in calculation of the cost of the graph edges in

order to prepare the graph for searching the optimal routes.

A. Optimal Route Searching

Once the weighted graph is prepared, the shortest path

algorithms are used to determine optimal route for the blind

user. The most widely known algorithm among the shortest

path algorithms family is Dijkstra's algorithm, having the worst

case performance of:

O(| E | + | V | log | V |) (1)

where is the number of edges, and is the number of

vertices.

However, the performance of Dijkstras algorithm is worse

than performance of algorithms using heuristics, like A*

algorithm [8]. A* calculates the heuristic of the distance

between two vertices and prefers the ones which are possibly

closer to the goal than others. Therefore, it may omit many

vertices that do not need to be examined in order to find

optimal route. That is why the performance of the A* is usually

much better than performance of Dijkstra's algorithm. What is

more, as long as an admissible heuristic is used, which means

that the statement (2) below is true, the A* algorithm always

computes the optimal route:

h(x, y) <= C(x, y) (2)

where x and y are vertices, h(x, y) is the heuristic of the cost

of route between them, and C(x, y) is the actual, real cost of

the route.

It is very easy to find the admissible heuristic it may be

defined as the straight line distance between two vertices, with

the assumption that the route between them has the lowest

possible difficulty.

Applying the different approach, it is possible to

overestimate the heuristic, breaking the rule (2). By doing so,

we risk that the output of the algorithm will not be optimal, but

on the other hand, we achieve further progress in improving

the algorithm performance [8].

Some tests were made in order to examine the differences in

algorithms speed, along with their correctness. Five algorithms

were tested, namely:

1) Dijkstra's algorithm (DIJKSTRA),

2) A* algorithm with admissible heuristic (ASTAR),

3) A* algorithm with heuristic overestimated by 50%

(ASTAR_POLT),

4) A* algorithm with heuristic overestimated by 100%

(ASTAR_2),

5) A* algorithm with heuristic overestimated by 300%

(ASTAR_4).

The average time required to find the result (Fig. 9) and

algorithms' correctness were tested (Table I and Table II).

INTERNATIONAL JOURNAL OF GEOLOGY Issue 2, Volume 5, 2011

38

Fig. 9. Average time (in microseconds) required by the tested

algorithms to find a path between two points in 10000-vertices (light)

and 100000-vertices (dark) graphs

The performed tests have proved that Dijkstra's algorithm

has significantly lower performance than the A* algorithms

family, and it should not be considered as a base algorithm for

finding optimal paths in the system. The non-admissible

heuristic causes many wrong answers, so in fact the A*

algorithms breaking rule (2) rarely produce an optimal answer.

However, as shown in the Table 2, the relative error may be

acceptable, if we consider A* algorithm with the low rate of

overestimation. The performance of classical A* algorithm

seems to be satisfying, and the idea of improving performance

by overestimating the heuristic should be considered only if

the system faced serious performance problems.

Table I. Percentage of non-optimal answers provided by

particular algorithms (in %) depending on graph size (in

number of vertices)

 100 1000 10000 100000

DIJKSTRA 0 0 0 0

ASTAR 0 0 0 0

ASTAR_POLT 21,92 67,98 85 86,5

ASTAR_2 39,93 81,15 93,2 94

ASTAR_4 44,37 88,2 96,4 97,5

Table II . Average relative error of particular algorithms

(in %) depending on graph size (in number of vertices).

 100 1000 1000

0

100000

DIJKSTRA 0 0 0 0

ASTAR 0 0 0 0

ASTAR_POLT 0,52 2,89 6,16 7,11

ASTAR_2 1,38 6,58 12,72 15,12

ASTAR_4 3,06 12,68 23,82 29,96

B. Supporting the User's Movement

Finding the optimal route from the current or indicated

user's position to the destination is an important, but initial

step of supporting the blind person's navigation process. The

next goal is to help the user walk safely and correctly along the

found route. We have applied the small steps strategy, guiding

the user to the successive route vertices, which usually

represent crossings and turns. Movement direction and user's

position are monitored continuously, and every significant and

mistaken change of user's movement direction or position

causes the system alert, and as a consequence, the short voice

message is given for the user. It describes the mistake and

suggests what to do at the moment to continue walking

correctly and safely. Once the next vertex is reached, the

following one is chosen to be the current aim, and the system

becomes to guide the user to reach it.

 It must be pointed out that anyway, the navigating

system cannot force the user to follow its instructions always.

It is possible for instance, that the optimal route will be

blocked by surprising, temporary obstacles that user cannot

overcome. He should be able to demand finding an alternative

route at any time. Even if he does not demand it independently

and openly, the system should adapt to his movement and find

another route when the user's movement suggest that he has

abandoned current path. Several examples of situations

occurring during the users walk have been shown in Fig. 10.

INTERNATIONAL JOURNAL OF GEOLOGY Issue 2, Volume 5, 2011

39

Fig. 10. System's hints depending on the user's behaviour – user

moving correctly (1), user with wrong direction (2), user getting far

away from the route (3) and user completely abandoning the route

(4), which causes new route search. Bright dot – the user, dark one –

the next vertex to reach within the route.

VI. PARTICLE FILTER

Particle filtering is an advanced model estimation technique

derived from a sequential version of Monte Carlo methods.

This technique generates a large number of candidate solutions

(particles) in search for the best solution to a complex

problem. An estimated system state is represented by a large

number of particles.

Every particle has an associated weight. The final system

state is a weighted average of particles states. With successive

iterations of the simulation, some particles assume negligible

weights and do not effectively take part in the simulation.

These particles are replaced with the ones that more accurately

converge to the optimal solution – this is a so called

resampling technique. The algorithm takes into account

inaccuracies by introducing measurement errors and DOP

information [10].

Fig. 11. Particle Filter Diagram

 The filter block diagram was presented in Fig. 11.

The initialization, performed only one time, sets the initial

position, process covariance and measurement covariance. The

last one is used in importance sampling step, during weight

determination. This step uses DOP information for weight

modification. The process covariance is used in resampling

step for particle coordinates prediction. As a results a better,

smoothed position is obtained.

VII. CONCLUSION

 The concept and the prototype application of the

system supporting the independent moving of the blind was

presented. All the main parts of the system were described.

Our solution is under heavy development, but first tests, taken

with the help of blind experts and volunteers, have proved

good direction of the experiments and works done so far. The

plan for the next months is to implement next version of the

prototype, that can be used by blind people independently,

without help and supervision of sighted people, and to collect

spatial data of wider area of Gdansk. Once it is achieved, more

intensive tests can be launched.

REFERENCES

[1] Sendero Group, http://www.senderogroup.com/support.htm.

[2] HumanWare, http://www.humanware.com/.

[3] European Space Agency,

http://www.esa.int/esaNA/SEMVQOS1VED_index_0.html

[4] Migraf, http://www.migraf.pl/opis.html

[5] Gartner, http://www.gartner.com/it/page.jsp?id=1466313

[6] The 8pen, http://www.the8pen.com/

[7] Walker, B.N., Lindsay, J.: “Navigation performance in a virtual

environment with bonephones”, International Conference on Auditory

Display, Limerick, Ireland, 2005

[8] DeLoura, M.A. : Game programming gems I, Cengage learning, 2000

[9] Kamiński, Ł., Łubniewski Z., Kowalik T., Stepnowski A.: “Voice Maps

 – portable, dedicated GIS for supporting street naviagtion and self-

 dependent movement of the blind”, Lecture Notes of ETI Faculty of

 Gdansk University of Technology - Vol. 18, No 8 (2010), p. 281-286 .

[10] Przemyslaw Baranski, Maciej Polanczyk, Pawel Strumillo, “Fusion of

 Data from Inertial Sensors, Raster Maps and GPS for Estimation of

 Pedestrain Geographic Location in Urban Terrain”, Metrology and

 Measurements Systems, 2010

INTERNATIONAL JOURNAL OF GEOLOGY Issue 2, Volume 5, 2011

40

