
 

 

  
Abstract— The well-known fact about linear time-invariant time-

delay systems (LTI-TDS) is that these systems have an infinite 
spectrum. Not only plants themselves but also the whole control 
feedbacks then have this undesirable feature in most cases. The aim 
of this contribution is to present algebraic controller design in a 
special ring of proper and stable meromorphic functions followed by 
an optimal pole assignment minimizing the spectral abscissa. The 
main problem is how to place feedback poles to the prescribed 
positions exactly by a finite number of free (controller) parameters. 
Clearly, it is not possible to place all poles but the idea is to push the 
rightmost ones as left as possible, which gives rise to the task of the 
spectral abscissa minimization. The spectral abscissa is a nonsmooth 
nonconvex function of free controller parameters in general. 
Moreover, there is a problem of its sensitivity to infinitesimally small 
delay changes. Four advanced iterative algorithms; namely, Quasi-
Continuous Shifting Algorithm, Nelder-Mead algorithm, Extended 
Gradient Sampling Algorithm and Self-Organizing Migration 
Algorithm, are described as a possible numerical tools when 
minimization. Only two of them have already been used for the 
spectral abscissa minimization and none of them with the 
combination with algebraic controller design. 
 

Keywords— Time-Delay Systems, Optimization, Spectral 
Abscissa, Pole Placement, Iterative Algorithms, Artificial 
Intelligence.  

I. INTRODUCTION 

number of processes and systems are affected by any form 
of delay which unambiguously deteriorates the quality of a 

feedback control performance, namely stability and periodicity. 
Modern system and control theory has been dealing with this 
problem for longer than five decades starting by the idea of 
delay compensation by the Smith predictor [1]. LTI-TDS are 
frequently comprehended with lumped (pointwise) delays in the 
input-output relation only, which results in shifted arguments on 
the right-hand side of a set of ordinary differential equations 
(ODEs); however, this conception is rather restrictive in real-
world applications since inner feedbacks can often be of time-
distributed or delayed nature. 
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LTI-TDS in its modern meaning as anisochronic or 
hereditary models, in the contrary, offer a more universal 
dynamics description applying both integrators and delay 
elements on the left-hand side of a differential equation, either 
in a lumped or distributed form, yielding functional differential 
equations (FDEs). These models belonging to the class of 
infinite dimensional systems have been largely studied during 
last decades due to their interesting and important theoretical 
and practical features, see e.g. [2]–[6]. The most significant 
attribute of LTI-TDS is that due to transcendental nature of the 
characteristic equation, the system spectrum is infinite. So 
called retarded systems can only have a finite number of 
unstable system poles whereas the neutral ones may have poles 
formed in vertical strips along the imaginary axis. One can 
understand that dealing with analysis and synthesis of such 
systems is a rather involved. 

These systems and models can be found in many theoretical 
and practical applications covering various fields of human 
activity, such as technology, informatics, biology, economy 
etc. Already Volterra [7] formulated differential equations 
incorporating the past states when he was studying predator-
pray models. Aftereffect phenomenon is included in many 
processes, e.g. in chemical processes [8], heat exchange 
networks [9], [10], in internal combustion engines with 
catalytic converter [11], in metallurgic processes [12], in 
plastic industry [13] etc. Plenty of references to examples of 
processes with internal delays are introduced in [5], [6], [14]. 

Using the Laplace transform, LTI-TDS in a single-input 
single-output (SISO) case can be represented by a ratio of so 
called quasipolynomials [15] in one complex variable s, 
formed as linear combinations of products of s-powers and 
exponential terms, rather than polynomials which are usual in 
system and control theory. Hence, the Laplace transform of 
LTI-TDS is no longer rational and so called meromorphic 
functions have to be introduced. The transfer function 
denominator decides about the systems stability as usual, 
except cases of input-output or internal distributed delays [16], 
[17]. 

However, a transfer function representation in the form of 
quasipolynomial fractions is not suitable for controller design. 
A possibility is to introduce so called pseudopolynomials [16], 
or a meromorphic function representation can be extended to 
any type of the fractional description [18]. In order to meet 
natural requirements of asymptotical stability and controller 
properness (realizability), one may introduce the ring of stable 
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and proper quasipolynomial (RQ) meromorphic functions 
(RMS) [19]–[21]. Originally, the ring was developed for 
retarded systems only; however, the conception can be easily 
extended to neutral ones [4] as presented in this paper. 
Algebraic control design in this ring then employs the Bézout 
identity to obtain stable and proper controllers along with the 
Youla-Kučera parameterization for reference tracking and load 
disturbance rejection. The approach usually yields a delayed 
(anisochronic) controller. 

Pole placement is a very favourite controller tuning method 
throughout the control theory and applications. As for 
delayless systems, the closed loop asymptotic stability (and 
even strong one, see [22]) is specified by the closed-loop 
characteristic (quasi)polynomial – whether a polynomial or a 
quasipolynomial is obtained, it is given by the particular 
controlled plant stability and factorization and by the control 
system structure – except the case of distributed delays, as 
mentioned above, where roots of the characteristic 
(quasi)polynomial do not coincide with closed loop poles. 
Since a controller can have only a finite number of coefficients 
representing selectable parameters, only some zeros of a 
characteristic quasipolynomial can be placed exactly. 

In this paper, we define the pole placement problem as the 
minimization of the spectral abscissa function which means the 
real part of the right-most pole, instead of usual quasi-
continuous shifting algorithms (QCSA) [23]–[26]. The 
presented methodology extends results by Vanbiervliet et al. 
[27] where state feedback controller design and the Extended 
Gradient Sampling Algorithm (EGSA) [28] for the abscissa 
minimization have been used. Unlike the cited paper, we do 
indtroduce three advanced optimization algorithms, namely the 
Nelder-Mead algorithm (NM) [29], the EGSA and the Self-
Organizing Migration Algorithm (SOMA), e.g. in [30]. The 
NM and SOMA are used here to solve the presented problem 
for the first time. The QCSA is included into the presentation 
since it is intended to be used as an “initial” algorithm for 
primary poles shifting. The novelty is the combination of these 
optimal tuning principles with the algebraic controller 
structure design in RMS. 

Dealing with neutral LTI-TDS, moreover, brings about the 
problem of sensitivity of a vertical strip of poles to small delay 
changes which leads to the concept of so called strong 
stability, as mentioned above. Michiels and Vyhlídal [24] 
introduced a notion of the save upper bound which expresses 
the guaranteed real part of the right-most strip even 
infinitesimal delays shifts happen. In this sense, a spectral 
abscissa function value ought to be sought to the right from 
this line.  

The paper is organized as follows. Possible state and input-
output LTI-TDS models are introduced in Section II. Basic 
preliminaries about asymptotic, formal and strong stability 
LTI-TDS are presented in Section III. In Section IV, the RMS 
ring is defined. Section V contains main steps of controller 
design in the ring. The main part of the contribution, i.e. the 
definition of the spectral abscissa and objective function for 

optimal pole placement and descriptions of the QCSA, NM, 
EGSA and SOMA, are introduced in Section VI.  

 

II. LTI-TDS MODELS 

A state space description of LTI-TDS can be given by a set 
of state and output FDEs in the form 
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where ∈x Rn  is a vector of state variables, ∈u Rm stands for a 
vector of inputs, ∈y Rl represents a vector of outputs, Ai, 

A(τ), Bi, B(τ), C, Hi are real matrices of appropriate 
dimensions, Li ≤≤ η0  stand for lumped delays and 

convolution integrals express distributed delays. If 0H ≠i for 

any i = 1,2,...NH, model (1) is called neutral; contrariwise, if 
0H =i for every i = 1,2,...NH, a so called retarded model is 

obtained. It should be noted that the state of model (1) is given 
not only by a vector of state variables in a time instant, but 
also by a segment of the last model history of state and input 
variables 
 

( ) ( ) [ ]0,,, Ltt −∈++ τττ ux  (2) 

 
Integrals in (1) can be exactly reformulated as sums using 

the Laplace transform or by the addition of a state variable, for 
details see e.g. [31], [32], or approximated via standard 
numerical approximation methods [6]. 

Regarding input-output description of LTI-TDS, the 
following general multi-input multi-output (MIMO) system in 
the form of the transfer matrix from (1) and considering zero 
initial conditions using the Laplace transform is obtained  
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All transfer functions in G(s), or a transfer function in a 

single-input single-output (SISO) case, have identical 
denominator in the form 
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where prefix num means the numerator of the determinant, and 

( )∑
=

≠−
nh

j
njnj sm

1

constantexp η holds for a neutral system; 

otherwise, the system is retarded. The expression on the right-
hand side of (4) represents a so called quasipolynomial [15]. 
Indeed, ( )sM  is a ratio of quasipolynomials (i.e. a 

meromorphic function) in general due to distributed state 
(internal) delays, and all roots of the polynomial denominator 
of ( )sM  are those of the numerator in this case. As a 

consequence, a transfer function (in a SISO case) can be 
expressed as a meromorphic function as well. 

Note that input-output distributed delays yield the transfer 
function with a denominator polynomial factor the roots of 
which are those of the (quasi)polynomial numerator. Vice 
versa, for internal distributed delays, there is a polynomial 
factor in the transfer function numerator which zeros are those 
of the denominator. 

III. STABILITY OF LTI-TDS 

LTI-TDS is said to be asymptotically stable if all poles are 

located in the open left half plane, C −
0 , i.e. there is no s 

satisfying 
 
( ) 0Re,0 ≥= ssM  (5) 

 
In the case of neutral systems, one has to be more careful 

when deciding about the stability since there may exist infinite 
strips of system poles tending to the imaginary axis. Moreover, 
these strips can be sensitive to even infinitesimally small 
deviations in delays. Hence, strictly negative roots of the 
characteristic (quasi)polynomial ( )sm  (or the meromorphic 

function ( )sM ) do not guarantee a satisfactory stable behavior 

of a system from the asymptotic (and robust) point of view. 
Let us now introduce the associated difference equation and 
two stability notions for neutral LTI-TDS which are close to 
each other in the meaning. 

Given a SISO neutral LTI-TDS (1), an associated difference 
equation is defined as 
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A neutral TDS is said to be formally stable if 
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see e.g. [16], [33]. It also means that a neutral LTI-TDS has 

only a finite number of poles in the (closed) right-half complex 

plane (C + ) [34]. Clearly from (6) and (7), a system is formally 

stable if the characteristic equation  
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expressing the spectrum of the difference equation has all its 

solutions in C −
0 . The feature of a neutral LTI-TDS that 

rightmost solution of (8) is not continuous in delays, see e.g. 
[22], gives rise to a germane stability notion. 

The difference equation (6) is strongly stable if it remains 
asymptotically stable when subjected to small variations in 
delays (i.e. a LTI-TDS remains formally stable). A necessary 
and sufficient strong stability condition in the Laplace 
transform can be formulated as 
 

1
1

<∑
=

ih

j
njm  (9) 

 
according to e.g. [4], [35],  where njm  are real coefficients for 

the highest s-power in (4). 
Clearly, strong stability implies formal stability; 

contrariwise, a formally stable LTI-TDS can be destabilized in 
the formal sense by an infinitesimal change in delays. 

IV. RMS RING 

Algebraic approaches for analysis and control of LTI-TDS 
can be performed either in the state space or in the realm of 
input-output models where fields, modules and rings as 
principal algebraic notions and tools are utilized. Usually, 
commensurate delays, i.e. those which can be expressed as 
integer multiples of the smallest one, are assumed; however, 
delays are naturally real-valued and thus this assumption is 
rather restrictive for real applications. 

As we are focused on Laplace transform models, hence, 
they are subjected below. A model with commensurate delays 
or that under some rational approximation yields the transfer 
function representation in the form of a fraction of 
polynomials over real numbers which is the most frequently 
used ring even for LTI-TDS. Non-commensurate or rationally 
unapproximated delays results in a fraction of 
quasipolynomials as presented above. However, these transfer 
function representations are not suitable in order to satisfy 
some basic control requirements, e.g. controller feasibility, 
feedback strong and asymptotic stability.  

Rather more general approaches [18], [36] utilize a field of 
fractions where a transfer function is expressed as a ratio of 
two coprime elements of a suitable ring. A ring is a set closed 
for addition and multiplication, with a unit element for 
addition and multiplication and an inverse element for 
addition, i.e. division is not generally allowed. A powerful 
algebraic tool ensuring requirements above is a ring of stable 
and proper RQ-meromorphic functions (RMS). Since the 
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original definition of RMS in [19] does not constitute a ring, 
some minor changes in the definition were made in [20]. 
Namely, although the retarded structure of LTI-TDS is 
considered only, the minimal ring conditions require the use of 
neutral quasipolynomials at least in the numerator as well. The 
ring was completely redefined and some its properties were 
introduced in [21] comprising models of neutral type and those 
with distributed delays. 

An element ( )sT  of RMS ring is represented by a ratio of two 

(quasi)polynomials ( ) ( )sxsy /  where the denominator is a 

(quasi)polynomial of degree n and the numerator can be 
factorized as 
 

( ) ( ) ( )ssysy τ−= exp~  (10) 

 
where ( )sy~  is a (quasi)polynomial of degree l and 0≥τ . Note 

that the degree of a quasipolynomial means its highest s-
power. 

The element lies in the space ∞H (C + ), providing the finite 

norm defined as 
 

( ){ }0Re:sup: ≥=
∞

ssTT  (11) 

 

i.e. it is analytic and bounded in C + , particularly, there is no 

pole s0 such that 0Re 0 ≥s  for a retarded denominator or 

0,Re 0 >−≥ εεs  for a neutral one. If the term includes 

distributed delays, all roots of ( )sx  in C +  are those of ( )sy  

(i.e. removable singularities). Moreover, ( )sT  is formally 

stable. The strong stability condition (9) for (quasi)polynomial 
( )sx  is a sufficient but not necessary condition guaranteeing 

that. 
In addition, the ratio is proper, i.e. l ≤ n. More precisely, 

there exists a real number R > 0 for which holds that 
 

( ) ∞<
≥>

sT
Rss ,0Re
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see [37]. 

Let the plant be initially described by the transfer function 
 

( ) ( )
( )sa

sb
sG =  (13) 

 
where ( )sa , ( )sb  are quasipolynomials in general. Hence, 

using a coprime factorization, a plant model has the form 
 

( ) ( )
( )sA

sB
sG =  (14) 

 
where ( ) ( )∈sBsA , RMS are coprime, i.e. there does not exist a 

non-trivial (non-unit) common factor of both elements. Details 
about divisibility can be found in [21]. Note that a system of 
neutral type can induce problem since there can exist a 
coprime pair ( ) ( )sBsA ,  which is not, however, Bézout 

coprime – which implies that the system can not be stabilized 
by any feedback controller admitting the Laplace transform 
[16]. More precisely, two coprime elements ( ) ( )∈sBsA , RMS 

form a Bézout factorization if and only if 
 

( ) ( )( ) 0,inf
0Re

>
≥

sBsA
s

 (15) 

 
It was, moreover, proved there that a strictly proper system 

which is not formally stable cannot be bounded input bounded 
output (BIBO) and even H∞ stabilizable. 

V. CONTROLLER DESIGN IN RMS 

The aim of this section is to outline controller design based 
on the algebraic approach in the RMS ring satisfying the closed 
loop stability in that sense that all transfer functions in the 
feedback are from RMS (i.e. they lies in H∞, are proper and 
strongly stable) controller feasibility, reference tracking and 
load disturbance rejection. As a control system, the simple 
feedback loop is chosen for the simplicity, see Fig. 1.  

For algebraic controller design in RMS it is initially supposed 
that not only the plant is expressed by the transfer function 
over RMS but a controller and all system signals are over the 
ring. Let ( )sW  be the Laplace transform of the reference 

signal, ( )sD  stands for that of the load disturbance, ( )sE  is 

transformed control error, ( )sU0  expresses the controller 

output (control action), ( )sU  represents the plant input 

affected by a load disturbance, and ( )sY  is the plant output 

controlled signal in the Laplace transform. The plant transfer 
function is depicted as ( )sG , and ( )sGR  stands for a controller 

in the scheme. 
 

 
Fig. 1 Control feedback structure  
 
External inputs, reference and load disturbance signals, 

respectively, have forms 
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where ( )sHW , ( )sH D , ( )sFW , ( )sFD ∈RMS. 

The following important feedback transfer functions can be 
derived 
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where the controller transfer function is factorized as follows 
 

( ) ( )
( )sP

sQ
sGR =  (18) 

 
and the common denominator meromorphic function reads 
 

( ) ( ) ( ) ( ) ( )sQsBsPsAsM +=  (19) 

 
Meromorphic functions ( )sQ , ( )sP  are from RMS and the 

fraction (18) is (Bézout) coprime. The numerator of 
( )sM ∈RMS agrees with the characteristic quasipolynomial of 

the closed loop defined in (4). 
A brief description of basic control design steps follows. 

A. Closed Loop Stabilization 

Given a Bézout coprime pair ( ) ( )sBsA , ∈RMS the closed-

loop system is stable if and only if there exists a (coprime) pair 
( ) ( )∈sQsP , RMS of the controller denominator and numerator, 

respectively, satisfying the Bézout identity 
 

( ) ( ) ( ) ( ) 1=+ sQsBsPsA  (20) 

 
A particular stabilizing solution of (20), say ( ) ( )sQsP 00 , , can 

be then parameterized as 
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where ( )∈sZ RMS. Parameterization (21) is used to satisfy 

remaining control and performance requirements, such as 
reference tracking, disturbance rejection etc. 

The proof of the statement above can be done analogously 
as in [19] where a three-step proof for a similar ring was 
presented. Condition (15) ensures i.a. that there can exist the 
ring inversion of ( )sM  since it proves that there is no common 

zero of ( )sA , ( )sB  in C +  (including infinity). 

B. Reference Tracking 

The task of this subsection is to find ( ) MSRsZ ∈ in (21) so 

that the reference signal is being tracked. The solution idea 
results the form of ( )sGWE defined in (17). Consider the limit 
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where W⋅ expresses that the signal is a response to the 

reference not influenced by other external inputs. Limit (22) 
reaches zero if ( ) ∞<→ sEWs 0lim  and ( )sEW  is analytic and 

bounded in the open right half-plane, i.e. ( )∈sEW ∞H (C + ). 

Moreover, it must hold that ( )sGWE  is proper (or, equivalently, 

( )sEW  is strictly proper) because of the feasibility (impulse 

free modes) of ( )teW . If one want to prevent the closed loop 

stability from the sensitivity to small delays, the denominator 
of ( )sEW  must be a (quasi)polynomial satisfying (9). This 

implies, in other words, that the reference tracking is fulfilled 
if ( )sEW ∈ MSR . 

Alternatively, ( )sFW  must divide the product ( ) ( )sPsA  in 

MSR . Hence, all unstable zeros (including infinity) of ( )sFW  

must be those of ( ) ( )sPsA  and, moreover, the quasipolynomial 

numerator of ( )sFW  is strongly stable. It means that one has to 

set all unstable zeros of ( )sFW  (with corresponding 

multiplicities) as zeros of ( )sP  - if there is no one already 

contained in ( )sA . Recall that zeros mean zero points of a 

whole term in MSR , not only those of a quasipolynomial 

numerator. 

C. Load Disturbance Attenuation 

The attenuation of the load disturbance signal entering a 
plant can be done analogously as for reference tracking. Thus, 

( )sZ  is chosen so that ( )sYD ∈ MSR  which is clear from 
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where D⋅  means that the output is influenced only by the 

disturbance. Or, ( )sFD  must divide the product ( ) ( )sPsB  in 

MSR . 

One has to be careful when deciding about the form of ( )sZ  

since both divisibility conditions must be fulfilled 
simultaneously. A detailed procedure of reference tracking and 
disturbance rejection briefly described above was presented 
e.g. in [38]. 

VI. SPECTRAL ABSCISSA AND MINIMIZATION TECHNIQUES 

Definition of the spectral abscissa, which gives rise to the 
objective function, and description of NM, EGSA and SOMA 
optimization techniques are topics of this section. First, let us 
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give the motivation for the controller parameters optimization. 

A. Motivation 

The presented controller design in MSR  yields a controller 

in so called anisochronic form, which means that it contains 
internal (state) delays as well. Using a simple feedback loop 
for an unstable controlled plant results in a characteristic 
quasipolynomial instead of polynomial, i.e. the closed loop 
system is infinite-dimensional having the infinite spectrum 
(that is, all transfer functions have quasipolynomial 
denominator). For stable controlled plants, some feedback 
transfer functions are finite-dimensional, yet, some others do 
not; hence, the whole feedback is infinite-dimensional (with 
the characteristic quasipolynomial instead of a polynomial). 
Pole assignment philosophy, which places closed-loop poles to 
the prescribed positions, can not be adopted as for finite-
dimensional systems since the controller owns only a finite 
number of free (selectable) parameters. Here we have the 
infinite number of poles which can not be place exactly. A 
possibility is to optimize the whole spectrum so that the right-
most (i.e. “least stable”) pole is moved to the left as much as 
possible. 

Analogously, one can not ensures that the numerator of the 
reference-to-output transfer function, ( )sGWY , is a polynomial. 

Thus, the closed-loop zeros can be optimized in the similar 
way as poles are, because of the fact that zeros placed too right 
in the complex plane cause undesirable high oscillations, see 
details e.g. in [26]. 

B. Spectral Abscissa 

Let the controller obtained by the approach described in 
Section V has r selectable parameters K = {k1, k2, ..., kr}. The 
spectral abscissa function, ( )Kα , is defined as 

 
( ) ( )isRemax=Kα  (24) 

 
where is  are system poles and ( )Kα  is strictly negative, see 

e.g. [27], [39]. As presented in the motivation above, the 
objective is to solve the optimization problem 
 

( ) ( )KK
KK

αminmin =Φ  (25) 

 
The question is why a complex optimization algorithm 

ought to be used instead of a standard one, say, the well known 
steepest descent algorithm. The reason lies in some spectral 
abscissa function properties. The first problem arises from the 
fact that ( )Kα  is non-convex, i.e. it may have multiple local 

minima. It is clear that with such behavior the global minimum 
is hard to find, and many optimization algorithms will 
converge to a local minimum. The second difficulty is that 

( )Kα  is non-smooth w.r.t. parameter changes in points where 

are more the one real poles or conjugate pairs with the 
maximum real part [23], [27]. At this point the function ( )Kα  

is hence not differentiable. As third, the function is non-

Lipschitz, for example, at points where the maximum real part 
has multiplicity greater than one [28]. However, it is assumed 
that the spectral abscissa is differentiable almost everywhere. 

Analogously, if the feedback is finite-dimensional, zeros 
rather than poles can be considered in (24), (25). 

C. Objective Function for Neutral LTI-TDS 

However, the objective function ( )KΦ  defined in (25) is 

not suitable form for neutral LTI-TDS since one has to take 
into account the notion of the strong (or formal) stability. It 
means that condition (9) has to be included into objectives, 
either as a restriction for the objective function (25) or as a 
penalty subfunction as a part of the final objective function as 
presented in [39]. The latter idea yields the objective function 
e.g. in the form 
 

( ) ( ) ( )
2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

ih

j
njmΦ KKK λα  (26) 

 
where λ  represents a weighting parameter. This conception, 
however, does not guarantee that the restriction (9) holds true. 
Alternatively, a barrier logarithmic function  
 

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

− ih

j
njmΦ

1

1log KKK λα  (27) 

 
might be used instead of (26), which can solve this problem. 
Obviously, an addition of condition (9) into the objective 
function makes sense only if some of ( )Knjm  can be adjusted 

by controller parameters, which is not quite frequent. 
A neutral LTI-TDS brings other problem related to generic 

properties of such class of systems. Since there exist vertical 
strips of characteristic roots the position of which in the real 
axis is not continuous w.r.t. delays, the so called safe upper 
bound has been defined [24]. The notion expresses the real 
number that is definitely higher than the real part of the 
rightmost strip. If such number is strictly negative, the system 
is strongly stable and thus it can be stabilized safely. 

More precisely, define ( )ηDc  as 

 
( ) ( ){ }0:Resup: == smsc DD η  (28) 

 
where η  is the vector of NH delays and ( )smD  is the 

characteristic quasipolynomial (8) related to the associated 
difference equation (6). As mentioned above, ( )ηDc  is not 

continuous w.r.t. ηand it expresses the real part of the 

rightmost strip of poles of a neutral LTI-TDS. The safe upper 
bound ( )∈ηDC R is defined as follows 

 

( ) ( ){ }εδδ
ε

<+=
+→

ηηηη :suplim:
0

DD cC  (29) 
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It holds that ( )∈ηDC ≥ ( )ηDc  and ( )ηDC  is continuous in 

the delays. It has been proved in [24] that the quantity ( )ηDC  

is the unique zero of the strictly decreasing function 
 

∈c R ( ) 1, −→ ηcf  (30) 

 
where ( )η,cf  is defined as 

 

( )
[ ]

( )⎟
⎠
⎞

⎜
⎝
⎛ −= ∑

=∈

H

HN

N

i
iii ccf

12,0
jexpmax:, ηθρ

π
Hη

θ
 (31) 

 
where ( )⋅ρ  means the spectral radius. It is possible to estimate 

an upper bound on ( )ηDC  using the fact that 

 

( ) ( )∑
=

−≤
HN

i
ii ccf

1

exp, ηHη  (32) 

 
as the unique solution of the equation 
 

( ) 1exp
1

=−∑
=

HN

i
ii cηH  (33) 

 
If the control law can not change any of iH  (or, 

equivalently any of njm ), one can concentrate on the 

characteristic roots (poles) with the real part larger than 
( )ηDC , since the value of ( )ηDC  can not be adjusted in this 

case. It holds that all poles in the half plane 
Re 0, >+≥ εεDCs , lie in a compact set and the number of 

these roots is finite [22], [24]. Hence when minimizing the 
objective function (or when pole placement, in general), only 

isolated poles right from the value of ( )ηDC  can be taken into 

account (shifted). In the contrary, if iH  can be changed, the 

value of ( )ηDC  varies and it must be recalculated in every 

iteration step; however, there is still no reason deal with the 

characteristic roots left from ( )ηDC . The knowledge of ( )ηDC  

prevents to spend much control action to poles with smaller 
real part which are useless when stabilization and the 
minimizing of the spectral abscissa. 

The case ( ) 0>ηDC agrees with the strong instability, and if 

it not possible to improve ( )ηDC , one can give the controller 

tuning up. 

D. Minimization Techniques 

Description of some numerical optimization techniques we 
decided to utilize for the minimization of the objective 
function (spectral abscissa) follows. All these approaches 
enable to overcome all the difficulties with non-convexity and 
non-differentiability of the spectral abscissa function. 

1) Nelder-Mead (NM) algorithm 

The NM algorithm belonging to the class of comparative 
(direct search) algorithms, also called irregular simplex search 
algorithm, was originally published in [29]. This easy-to-use 
method does not require derivatives of the objective function 
and thus it is suitable for non-smooth functions. It is very 
popular and can be implemented in many different ways. 

The method typically requires only one or two function 
evaluations per iteration, which is useful especially in 
applications where each function evaluation is time-
consuming. On the other hand, the algorithm can fail since the 
convergence for non-smooth or discontinuous functions have 
not been proved yet [40]. It can also require an enormous 
amount of iterations to obtain a significant improvement in 
function value. 

Consider a nonlinear objective function 
∈K R ( )∈→ KΦ Rr to be minimized. The basic steps of the 

general algorithm can be done as follows. 
Input: Objective function ( )KΦ . 

Step 1: Construct the initial working simplex S, set 
transformation and termination parameters. 

Step 2: Calculate the termination test information. If the test 
is satisfied, stop the algorithm. 

Step 3: Order simplex vertices as the worst, second worst 
and the best one. 

Step 4: Calculate the central point and reflex the worst 
vertex. If the reflection is successful, accept the reflected point 
in the new working simplex and go to Step 3. 

Step 5: Try to use contraction or expansion. If this succeeds, 
the accepted point becomes the new vertex; otherwise, shrink 
the simplex towards the best vertex. Go to Step 3. 

Output: The best vertex and its function value. 
Let us describe each step of the algorithm in more details. 

Note that we keep the notation for the objective function 
(spectral abscissa). 

The working simplex construction 

A simplex S in Rr is a convex hull of 1+r  vertices 
∈+121 ,..., r, KKK Rr 

 
{ }121 ,...,conv += r,S KKK  (34) 

 
The initial (non-degenerate) simplex can be constructed 

either as a regular or as a right-angled simplex. The latter is 
easier to handle as 
 

1,...,2,1 +=+= rjh jjj eKK  (35) 

 
where 1K is a “starting” point, jh  stands for a stepsize and je  

is a unit (Euclidean) vector in Rr. 

Termination parameters 

During the minimization the simplex changes in its size and 
shape as well. The algorithm terminates when either the 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 7, 2013 69



 

 

simplex is sufficiently small or the function values at the 
vertices are close to each other or the number of iterations 
reaches the prescribed number. Usually some of these three 
conditions are combined together and the procedure ends when 
at least one of the conditions becomes true. We use the limit 
number of iterations, say ni. Moreover, for discontinuous 
functions the termination test has to include the information of 
the simplex size [40] whereas the function values test is 
useless. Let Sε is the limit simplex size defined by the user, 

and then the termination test related to the simplex size can be 
formulated as 
 

S

r

i
i ε<−∑

+

=

1

2
1KK  (36) 

 

Ordering 

Determine the best (Kmin), second worst (Ks) and the worst 
vertex (Kmax) as 
 

( ) ( ) ( )i
maxi

si
i

maxi
i

min ΦΦΦΦΦΦ KKK
≠

=== max,max,min  (37) 

 

Reflection 

The central point can be imagined as the “mean” coordinate 
of all vertices except the worst one, i.e. 
 

∑
≠
=

=
r

maxi
i

ic r 1

1
KK  (38) 

 
The calculation of the new simplex then continues by 

reflecting Kmax over cK to a new position Kref  according to 

the formula 
 

( )maxccref KKKK −+= α  (39) 

 
where 0>α  is a reflection control parameter, usually 1=α . 

If it holds that srefmin KKK <≤ , the iteration is finished 

and refK becomes a new simplex point instead of maxK . 

Contraction and expansion 

If the reflection does not succeed, one has to perform 
expansion or contraction, depending on the value of ( )refΦ K  

relation to ( )minΦ K , ( )sΦ K  and ( )maxΦ K . Hence, if 

( ) ( )minref ΦΦ KK < , i.e. the reflected point is the best one, the 

expansion point is computed as follows 
 

( )crefcexp KKKK −+= β  (40) 

 
where 1>β  is an expansion control parameter, usually 

2=β . There are more ways how to construct the new 

working simplex; however, to avoid premature termination of 

iterations for non-smooth functions, see (Rowan 1990), expK  

becomes the new simplex vertex if ( ) ( )minexp ΦΦ KK < . 

Otherwise, refK is accepted. 

There are two types of contractions; first, if 
( ) ( ) ( )maxrefs ΦΦΦ KKK <≤ , compute the contracted point as 

 
( )crefccon KKKK −+= γ  (41) 

 
where 10 << γ  is a contraction control parameter mostly set 

as 5.0=γ . If ( ) ( )refcon ΦΦ KK < , conK  becomes a vertex in 

the new working simplex; otherwise, shrinkage has to be 
made. On the contrary, if ( ) ( )maxref ΦΦ KK ≥ , i.e. refK  is the 

worst point, one ought to perform contraction according to 
 

( )cmaxccon KKKK −+= γ  (42) 

 
If it holds that ( ) ( )maxcon ΦΦ KK < , accept conK ; otherwise, 

perform shrinkage. 

Shrinkage 

In the case that expansion or contraction fails, one has to 
shrink the current simplex towards the best vertex minK . This 

operation is given by the formula 
 

( ) minriminimini ≠+=−+= 1,...,2,1,KKKK δ  (43) 

 
Experiences with the algorithm show that shrink 

transformations almost never happen in practice [40]. A non-
shrink iteration of the algorithm is fast, since only one or two 
function values are computed. 

2) Extended Gradient Sampling Algorithm (EGSA) 

The second optimization approach presented here is the 
Extended Gradient Sampling Algorithm (EGSA), see [27], 
[39] which is based on the gradient sampling algorithm 
developed by Burke et al. [28]. The original algorithm is 
essentially an extension of the well-known steepest descent 
method. The basic difference lies in the computation of the 
non-smooth search direction. Thus, EGSA requires, with 
comparison to NM algorithm, a numerical estimation of the 
gradient, even in points where the objective function is not 
differentiable. It is expected that ( )KΦ  is differentiable almost 

everywhere. The basic steps of EGSA can be given as follows. 
Input: Objective function ( )KΦ . 

Step 1: Initialize a starting point 0K arbitrarily. Set control 

and termination parameters. 

Step 2: Choose 1+r  points near by 0K . Compute the 

Clarke subdifferential and the (non-smooth) steepest descent 
direction using the gradient sampling method. If the norm of 
the direction is very small, then terminate the algorithm. 

Step 3: Calculate the step length along the direction from 
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Step 2. If it fails choose another (substitute) direction. If all 
possible directions fail, stop. 

Step 4: Update the current position iK  to 1+iK  and go to 

Step 2. 
Output: The best position and its function value. 

Starting point selection 

The initial point 0K  can be selected freely, or there is a 

possibility to utilize the quasi-continuous poles shifting 
algorithm (QCSA) to obtain a convenient position in the 
hyperspace of control tuning parameters. For details about the 
CQSA, the reader is referred to [23], [24]. 

Computing the non-smooth steepest descent direction 

The advantage of EGSA compared to the classical steepest 
descent direction lies in the ability to compute (estimate) 
gradient even for non-smooth objective functions. The 
generalized gradient, also called Clarke subdifferential, is 
given by 
 

( ) ( )
⎭⎬
⎫

⎩⎨
⎧ ∈∇=∂

→
NΦΦ

i
ic KKK

KK
:limconv  (44) 

 
where ∇  denotes the gradient of Φ in any point from a subset 
of a neighborhood N around the current position iK , in ith 

iteration, where Φ  is differentiable. 
The non-smooth steepest descent direction can defined as 

the negative of the vector with the smallest norm in the Clarke 
subdifferential, i.e. 
 

( )
vd

Kv ic

i
Φ∂∈

−= minarg  (45) 

 
The Clarke subdifferential can be approximated as follows 

[28] 
 

( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=∈
∇∇∇

≈∂ +

1,...2,1,

:,...,,

,

1,2,1,

rjN

ΦΦΦ
Φ

ji

riii

ic K

KKK
K  (46) 

 
It means that the subdifferential can be expressed as a 

bundle of 1+r  gradients calculated at some points on the 
hypersphere around iterate iK , under the assumption that the 

objective function is differentiable almost everywhere. If one 
of the sampled points is not differentiable, it is discarded and 
re-sampled. In [27] it is suggested that taking r2 points from 
the neighborhood of iK instead of 1+r  is a save choice for 

the calculation of the gradient which is described in the next 
subsection.  

The neighborhood is typically chosen to be a ball with the 
centre at iK and radius ρ . The choice of ρ  is a difficult task; 

one possibility is to decrease the radius during iterations. 
As mentioned above, the non-smooth steepest descent 

direction agrees with the negative of vector from the bundle 
with the smallest norm. This can be calculated by a simple 

quadratic program 
 

( )( ) ( )( )

( )( ) 22

min,

min,

minargminarg

minarg

iiic

ic
T

ic
T

i

Φ

ΦΦ

dvK

vKKvv

vv

v

=∂=

∂∂=
 (47) 

 
i.e. ( )( ) iici Φ min,vKd ∂−= . There is, however, the mishmash 

between sizes of v  and ( )( )icΦ K∂ ; therefore, we suggest to 

exclude a particular v  from (47) when evaluation. Moreover, 
if ( )( )icΦ K∂  is not positive definite, one can obtain an 

undesirable direction (towards the maximum). Hence, it is 
possible to take ii min,vd −= . 

Usually, the direction is normalized as 
 

i

i
inorm d

d
d =,  (48) 

 
to avoid large jumps in the space of K . 

Then K is updated as follows 
 

inormii ,1 dKK λ+=+  (49) 

 
where λ  is the step length the searching of which is described 
in a subsection below. 

The iterations are terminated if so called Clarke stationary is 
reached, which occurs when the norm of the non-smooth 
steepest descent is exactly zero (theoretically). We omit test 
presented in [39], see there for details, and perform the 
following simple test instead 
 

ε<id  (50) 

 
where 0>ε  is a sufficiently small termination parameter and 
the gradient in not normed. Alternatively, one can terminate 
the algorithm if the prescribed number of iterations is reached. 

Gradient estimation 

Numerical approximation of the gradient at differentiable 
points in the vicinity of the current iteration can be performed 
e.g. as described in [39] using the simplex gradient method. 
Apparently, the subset N must constitute a simplex defined 
above. Define the matrix ( )∈1,iKV Rr x l of simplex directions 

 
( ) [ ]1,,1,3,1,2,1, ,...,,: iliiiiii KKKKKKKV −−−=  (51) 

 
where 1,iK is an arbitrary point from N in which the gradient is 

calculated. 
The value of l equals the number of points around iK minus 

one, i.e. it may be in most cases rl =  or 12 −= rl , see the 
remark in the previous subsection. 

A vector of objective function differences is defined as 
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iiii

i ΦΦ
ΦΦΦΦ

Φ
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⎦

⎤

⎢
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⎣

⎡

−
−−

=
1,,

1,3,1,2,

1, ...,

,,
:

KK

KKKK
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Finally, the simplex gradient ( )1,iΦ KD  as a numerical 

approximation of the gradient ( )1,iΦ K∇  reads 

 

( ) ( )( ) ( )( ) ( )1,1,1,1, ii
T

ii ΦΦΦ KKKVKD ∇≈=
+
δ  (53) 

 

where ( )+⋅  denotes the so called Moore-Penrose pseudoinverse 

[41] which equals the standard matrix inverse for rl = . 

Step length selection 

The task is to set λ  in (49) appropriately. There are many 
ways how to solve the problem, e.g. in (Vyhlídal 2010) a 
sufficient decrease in Φ  is given by 
 

( ) ( ) i
m

iinormi ΦΦ min,
1

, vKdK +−>−+ βλ  (54) 

 
where ( )1,0∈β  and 1≥m  is the smallest integer such that 

(54) holds. However, such solution can fail for convex 
functions. 

We decided, in the contrary, to perform an easy test as 

follows. First, discretize λ  into small steps, say 
,...2,1,0, =Δ= kkk λλ . Then find 

 
( ) ( ) 0:max: ,,1max <+−+= + inormkiinormki ΦΦ dKdK λλλλ  (55) 

 
Naturally, it is possible to set an upper bound on maxλ , say 

maxλ , to avoid large jumps. 

If this method fails, i.e. 0max =λ , the second best vector in 

(47) is accepted, etc. If all directions fail, try to do (55) with 

inorminorm ,, dd −= . 

3) Self-Organizing Migration Algorithm (SOMA) 

SOMA is ranked among evolution algorithms, more 
precisely genetic algorithms, dealing with populations 
similarly as differential evolution does, see e.g. [30]. The 
algorithm is based on vector operations over the space of 
feasible solutions (parameters) in which the population is 
defined. In SOMA, every single generation, in which a new 
population is generated, is called a migration round. 
Population specimens cooperate while searching the best 
solution (the minimum of the cost function) and, 
simultaneously, each of them tries to be a leader. They move 
to each other and the searching is finished when all specimens 
are localized on a small area. 

The method converges very fast; however, the number of 
function evaluations in every iteration can be very high - 
depending on the number of specimens and step length when 
moving on the hyperspace. 

The main steps of the basic algorithm strategy called “All to 

One” can be formulated as follows. 
Input: Objective function ( )KΦ . 

Step 1: Set control and termination parameters. Generate a 
population based on a selected prototypal specimen. 

Step 2: Find the best specimen (leader), i.e. that with the 
minimal function value. 

Step 3: Move all other specimens towards the leader and 
evaluate their function values in each step. 

Step 4: Select the new population and test the minimal 
divergence of the population. If it succeeds, stop. Otherwise, 
go to Step 2. 

Output: The leader and its function value. 
Look at these steps in more details again. 

Prototypal specimen 

A population described below in a separate subsection must 
be generated based on a prototypal specimen. This specimen is 
a vector of (controller free) parameters K which can be found 
e.g. by the quasi-continuous poles shifting algorithm. 

Control and termination parameters 

Specific control and termination parameters, which have to 
be set before the rest of the algorithm starts, are explained in 
this subchapter. 

Two parameters, the initial radius (Rad) and the size of the 
population (PopSize), control the construction of an initial 
population based on the prototypal specimen. Rad > 0 should 
be chosen high enough to cover the range of all acceptable 
parameters. PopSize > 0 means the number of specimens in the 
population – the higher value yields a higher chance to find a 
global minimum yet the computational time increases. 

The moving of specimens on the hyperspace of searched 
parameters is given by four control parameters: PathLength, 
Step, PRT and PRTv . PathLength should be within the interval 

]5,1.1[  and it expresses the length of the path when 

approaching the leader. For instance, PathLength = 1 means 
that the specimen stops its moving exactly at the position of 
the leader. The value of Step ],11.0[ PathLength∈  represents 

the sampling of the path. E.g. a pair of settings PathLength = 1 
and Step = 0.2 agrees with that the specimen makes five steps 
until it reaches the leader. [ ]1,0∈PRT  enables to calculate the 

perturbation vector PRTv  which indicates whether the active 

specimen moves to the leader directly or not. PRTv  is defined 

as 
 

[ ] { }

rj

v

PRTrndv

vvv

jPRT

jjPRT

rT
rPRTPRTPRTPRT

1,2,...,

else0

if1

1,0,...,,

,

,

,2,1,

=

=

<=
∈=v

 (56) 

 
where [ ]1,0∈jrnd  is a randomly generated number for each 

coordinate of a specimen. The perturbation vector enters 
stochasticity to the specimens moving as it is apparent from a 
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subsection below. 
There are two termination parameters in the algorithm: M, 

MinDiv. The value of M means the maximal number of 
migration rounds defined by the user, and MinDiv expresses 
the selected minimal diversity, i.e. the algorithm running is 
terminated if  
 

( ) ( ) MinDivΦΦ ji
j

ji
j

<− ,, minmax KK  (57) 

 
where a subscript i means the current iteration (migration 
round) and j denotes the jth specimen in the current 
population. 

Population construction 

As mentioned above, population { }PopSizeP ΚΚΚ ,...,, 21=  

has to be generated based on a prototypal specimen controlled 
by parameters Rad and PopSize. Let 1Κ  be the prototypal 

specimen, then other specimens can generated as 
 

[ ] PopSizejrndrndrndRad T
rj ,...,3,2,,...,, 211 =+= ΚΚ  (58) 

 
where [ ] rirndi ,...,2,1,1,1 =−∈ , is a random number. Each 

specimen in the population is then evaluated by the cost 
function. 

Movement of specimens on the hyperspace 

Once the population is generated (or generally after every 
migration round in the ith iteration) the best valued specimen, 
so called leader, Li,Κ , which is determined as 

 
( ) PopSizejΦ ji

j
Li ,...,2,1,minarg ,, == ΚΚ  (59) 

 
All other specimens are then moved towards the leader 

during the migration round. The movement randomness is 
given by PRTv . Although the authors of SOMA suggest to 

calculate PRTv  only once in migration round for every 

specimen, we try to do this in every step of the moving to the 
leader. Hence, the path is given by 

 

 
( )( ) ( )( )[ ]

( ) 1/round,...,2,1;,...2,1

diag1 0,,,0,,,0,,,,

−=≠=

−+−−+=

StepPathLengthkLPopSizej

jStep jiLiPRTjiLijikji KKvKKKK
 

 (60) 
 
where ( )PRTvdiag  means the diagonal square matrix with 

elements of PRTv  on the main diagonal and k is the kth step in 

the path of the jth specimen in the current population (in ith 
iteration). 

The role of PRTv  is evident, for instance, if [ ]TPRT 1,...,1,1=v , 

the active specimen goes to the leader directly without “zig-
zag” moves. 

For every specimen of the population in a migration round, 

the cost function (i.e. value of the specimen) is calculated in 
every single step during the moving towards the leader. If the 
current position is better then the actual best, it becomes the 
best now. Hence, the new position of an active specimen for 
the next migration round is given by the best position of the 
specimen from all steps of moving towards the leader within 
the current migration round, i.e. 

 
 ( ) ( ) 1/round,...,1,0,minarg ,,,1 −==+ StepPathLengthkΦ kji

k
ji ΚΚ  

(61) 
 

These specimens then generate the new population for the 
next migration round (iteration). 

E. Cost Function Evaluation 

For the evaluation of the cost (objective) function, it is 
crucial to compute the rightmost poles of the feedback system. 
There are several numerical techniques solving this task. 
Control system characteristic roots can be found either as a 
solution of the characteristic equation, or pairs of a 
characteristic root and the corresponding eigenvector (for 
reasons of numerical stability). 

Poles can be efficiently found e.g. by the quasipolynomial 
mapping rootfinder (QPMR) algorithm, see [42], which is the 
gridding method based on the searching of zero points of real 
and imaginary parts of the characteristic quasipolynomial in a 
prescribed area. 

VII. CONCLUSION 

The presented paper has introduced and presented the three 
iteration minimization algorithms, namely, Nelder-Mead 
method, Extended Gradient Sampling Algorithm and Self-
Organizing Migration Algorithm as suitable optimization 
methods for tuning of controllers for LTI-TDS obtained by the 
algebraic approach in the RMS ring. 

In the first part, LTI-TDS systems and models have been 
presented, followed by various stability notions related to such 
systems. Then, the RMS ring for a description of and controller 
design for LTI-TDS has been introduced. The algebraic 
controller design in this ring for the simple feedback loop 
satisfying closed-loop stability in RMS sense, reference tracking 
and step disturbance rejection has followed. The spectral 
abscissa as the maximum of real parts of the spectrum has been 
then defined, which has given rise to the objective function. 

A thorough description of the three minimization techniques 
has been the next part of the contribution. 

A comparative study based on the principles described in 
this paper has been presented in a very brief and concise form 
in [43].  
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