
 

 

  

Abstract—The article focuses on volatility change point 

detection using SPC (Statistical Process Control), specifically 

through time series control charts, and stochastic differential 

equations (SDEs). In the paper, recent advances in timechange point 

for process volatility component satisfying a stochastic differential 

equation (SDE) based on discrete observations and also using time 

series control charts will be reviewed. Theoretical part will discuss 

the methodology of time series control charts and SDEs driven by  

a Brownian motion. Research part will demonstrate the 

methodologies using a case study focusing on analysis of Slovak 

currency during the period of 2000 – 2004 from the perspective of its 

usefulness for generating profits for company management through 

time series control charts and SDEs. The aim of the paper is to 

demonstrate use of change point detection in time series of the 

Slovak crown. It also aims to highlight versatility of control charts 

not only in manufacturing but also in managing financial stability of 

cash flows. 

 

Keywords— Change point, Statistical process control, Stochastic 

differential equations, Time series control charts. 

I. INTRODUCTION 

n finance, the volatility of the market or of the asset prices 

plays a crucial role in many aspects. For example, in option 

pricing, although the very basic Black and Scholes (1973) [1] 

and Merton (1974) [2] model assumes a constant volatility, it 

is well known that this assumption is unrealistic when one 

works with real financial data. This fact causes well-known 

effects like implied volatility and volatility smiles. Change 

point analysis was initially introduced in the framework of 

independent and identically distributed data (see, e.g., Hinkley, 

1971 in [3]; Inclan and Tiao, 1994 in [4]; Bai, 1994, 1997 in 

[5], [28]; Csörgö and Horváth, 1997 in [34]), and quickly 

applied to the analysis of time series (see, e.g., Kim, Cho and 

Lee, 2000 in [6]; Lee, Ha and Na, 2003 in [7]; Chen, Choi and 

Zhou, 2005 in [8]). Kutoyants (1994, 2004) in [39], [40]; Lee, 

Nishiyama and Yoshida, (2006) in [9] studied structural 

change point problems for the drift term for continuous 

observations from ergodic diffusion processes. Due to the fact 

that volatility can be estimated without error in continuous 
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time, the change point analysis in this setup is not very 

interesting. 

In this paper, there will be review recent advances for the 

problem of timechange point for the volatility component of  

a process satisfying a stochastic differential equation (SDE) 

based on discrete observations (Chapter V) and also using time 

series control charts (Chapter IV).  

II.  LITERATURE REVIEW 

In fact, change point problems have originally arisen in the 

context of quality control, but the problem of abrupt changes 

in general arises in many contexts like epidemiology, rhythm 

analysis in electrocardiograms, seismic signal processing, 

study of archeological sites and financial markets. In 

particular, in the analysis of financial time series, the 

knowledge of the change in the volatility structure of the 

process under consideration is of a certain interest. 

Various authors have studied change point detection 

problems using parametric and non-parametric procedures 

quite extensively. In some cases, the study was carried out for 

known underlying distributions, namely the binomial, Poisson, 

Gaussian and normal distributions, amongst others. This 

chapter discusses some of the work that has been done on 

change point detection.  

CUSUM is one of the widely used change point detection 

algorithms. Basseville & Nikiforov (1993) in [10] described 

four different derivations for the CUSUM algorithm. The first 

is more intuition-based, and uses ideas connected to a simple 

integration of signals with an adaptive threshold. The second 

derivation is based on a repeated use of a sequential 

probability ration test. The third derivation comes from the use 

of the off-line point of view for multiple hypotheses testing. 

The fourth derivation is based upon the concept of open ended 

tests. The principle of CUSUM stems from stochastic 

hypothesis testing method. 

Nazario, Ramirez and Tep (1997) in [11] developed  

a sequential test procedure for transient detections in  

a stochastic process that can be expressed as an autoregressive 

moving average (ARMA) model. Preliminary analysis shows 

that if an ARMA(p,q) time series exhibits a transient behavior, 

then its residuals behave as an ARMA(Q,Q) process, where:  

Q ≤ p + q. They showed that residuals from the model before 

the parameter change behave approximately as a sequence of 
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independent random variables - after a parameter change, the 

residuals become correlated. Based on this fact, they derived  

a new sequential test to determine when a transient behavior 

occurs in a given ARMA time series. 

Blazek, HongJoong, Boris and Alexander (2001) in [12] 

developed efficient adaptive sequential and batch-sequential 

methods for an early detection of attacks from the class of 

“denial-of-service attacks". Both the sequential and batch-

sequential algorithms used thresholding of test statistics to 

achieve a fixed rate of false alarms. The algorithms are 

developed on the basis of the change point detection theory: to 

detect a change in statistical models as soon as possible, 

controlling the rate of false alarms. There are three attractive 

features of the approach. First, both methods are self-learning, 

which enables them to adapt to various network loads and 

usage patterns. Second, they allow for detecting attacks with  

a small average delay for a given false alarm rate. Third, they 

are computationally simple, and hence, can be implemented 

online. For more about false alarm rates e.g. for the Shewhart 

control charts see in [29]. 

Huat and Midi (2010) in [33] examine a process-monitoring 

tool that not only provides speedy detection regardless of the 

magnitude of the process shift, but also provides useful change 

point statistics. 

Lund, Xiaolan, Lu, Reeves, Gallagher and Feng (2007) in 

[13] looked at the change point detection in periodic and auto 

correlated time series using classic change point tests based on 

sums of squared errors. This method was successfully applied 

in the analyses of two climate changes. 

Moskvina and Zhigljavsky (2003) in [14] developed an 

algorithm of change point detection in time series, based on 

sequential application of the singular-spectrum analysis (SSA). 

The main idea of SSA is performing singular value 

decomposition (SVD) of the trajectory matrix obtained from 

the original time series with a subsequent reconstruction of the 

series. 

Mboup, Join and Fliess (2008) in [15] presented a change 

point detection method based on a direct online estimation of 

the signal’s singularity points. Using a piecewise local 

polynomial representation of the signal, the problem is cast 

into a delay estimation. A change point instant is characterized 

as a solution of a polynomial equation, the coefficients of 

which are composed by short time window iterated integrals of 

the noisy signal. The change point detector showed good 

robustness to various types of noises. 

Auret and Aldrich (2010) in [16] used random forest models 

to detect change points in dynamic systems. Wei, Hanping, 

Yue and Wang (2010) in [17] used Lyapunov exponent and 

the change point detection theory to judge whether anomalies 

have happened. Aldrich and Jemwa, (2007) in [18] used phase 

methods to detect change in complex process systems. 

Vincent (1998) in [19] presented a new technique for the 

identification of inhomogeneities in Canadian temperature 

series. The technique is based on the application of four linear 

regression models in order to determine whether the tested 

series is homogeneous. Vincent’s procedure is a type of 

“forward regression” algorithm in that the significance of the 

non-change point parameters in the regression model is 

assessed before (and after) a possible change point is 

introduced. In the end, the most parsimonious model is used to 

describe the data. The chosen model is then used to generate 

residuals. It uses the autocorrelation in the residuals to 

determine whether there are inhomogeneities in the tested 

series. At first, it considers the entire period of time and then it 

systematically divides the series into homogeneous segments. 

Each segment is defined by some change points, and each 

change point corresponds to either an abrupt change in mean 

level or a change in the behavior of the trend. 

III. PROBLEM FORMULATION 

The aim of the paper is to demonstrate use of change point 

detection in time series of the Slovak crown through the time 

series control charts and SDEs. 

Slovak crown was analyzed due to accessibility of primary 

statistical data (currency rates, interest rates on whole time 

scale from Overnight to 1 year) and also due to availability of 

fast communication channels with the statistical department of 

the National bank of Slovakia in case there was a need for any 

clarification.  

Box-Jenkins methodology was utilized as the main 

analytical and mathematical-statistical method to analyze time 

series. The output will be used to construct SPC control charts 

for detection of change in variance structure. Furthermore, this 

approach will be confronted with change point detection by 

modeling the SDEs, covered in Chapter VI. 

The following theoretical chapters (Chapter IV and Chapter 

V) provide a description of mathematical-statistical tools used 

to verify the formulated research aim.  

IV. TIME SERIES CONTROL CHARTS 

A. ARIMA control charts  

Classic Shewhart SPC concept assumes the measured data 

are not autocorrelated. Even very low degree of 

autocorrelation causes failure of the classic Shewhart control 

charts in a form of a large number of points outside the 

regulatory limits in control diagram [30]. The phenomenon is 

not unique to continuous processes, where the inertia processes 

determine the autocorrelation data in time (chemical and 

climate processes etc.). Autocorrelation of data becomes 

increasingly frequent in discrete processes, in particular 

manufacturing with short production cycles, high speed 

production with high degree of production automation and also 

in test and control operations. In these conditions, it is possible 

to obtain data about each product, with the consequence that 

the time interval between measurements (recording) of two 

consecutive values of the monitored variables is very short. 

One of the ways to tackle autocorrelated data is the concept of 

stochastic modeling of time series using autoregressive 

integrated moving average models, the ARIMA model. Linear 

stochastic autoregressive models (models AR), moving 
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average (model MA), mixed models (the ARMA models), and 

ARIMA models, based on Box-Jenkins methodology are seen 

as a time series realization of stochastic process. Box-Jenkins 

methodology represents a modern analysis of stationary and 

nonstationary time series based on probability theory. Linear 

models AR, ARMA and MA are modeling tool for the 

stationary processes. These models have a characteristic shape 

of the autocorrelation function (Autocorrelation Function – 

ACF) and partial autocorrelation function (Partial 

Autocorrelation Function – PACF), essential tools for 

providing information about the stochastic process. ACF and 

PACF estimates are used to identify the time series model. 

Very often, there are non-stationary processes in practice. 

Nonstationarity can be present due to the mean value changing 

over time or process variance changing over time. If, after the 

transformation of nonstationary process variance of "random 

walk" (so-called integrated process) using differential d-th 

order is the final process model to describe the stationary 

ARMA (p, q), the original integrated process is called an 

autoregressive integrated moving average process of order p, 

d, q, i.e. ARIMA (p, d, q) [44]. 

ARIMA control chart (Autoregresive Integrated Moving 

Average) is based on the principle of finding a suitable time 

series model and the use of control chart for the model’s 

residuals (deviations from the values actually measured values 

from calculated values with the model use). 

The general shape of the model ARIMA (p, d, q) is such 

( ) ( ) ,d

p t q t
B x B εΦ ⋅∇ ⋅ = Θ

                   
(1) 

where 

( ) ( )2

1 21 ... p

p pB B B Bφ φ φΦ = − − −  is autoregressive 

polynomial of p-th order, 

( ) ( )2

1 21 ... q

q qB B B Bθ θ θΘ = − − −  is moving averages 

polynomial of q-th order, 

∇  operator denoted a backward difference (introduced when 

the model exhibits nonstationarity of the process), 

d difference order, 

t time, 

B back shift operator ( )1t tB x x −⋅ = , 

1 2, , ..., pφ φ φ  parameters of autoregressive model, 

1 2, , ..., qθ θ θ  parameters of moving averages model, 

tε is a white noise, unpredictable, normally distributed 

fluctuations in the data with mean equal to zero and constant 

variance, and uncorrelated values. 

If ˆ
tx  is an estimate of empirical value of

tx  calculated with 

help of right chosen ARIMA model, residuals of the model 

ˆ
t t te x x= −  will be uncorrelated, normally distributed random 

variables. 

Most commonly used in applications are ARIMA models. Let 

us consider the model 

1t t tx xξ φ ε−= + +
                      

(2) 

where ξ a ( )1 1ϕ φ− < <  are unknown constants and εt is 

normally distributed and uncorrelated variable with the mean 

equal to zero and the constant standard deviation σ. This 

model is called autoregressive model of the first order and is 

denoted as AR(1). The values of the reference mark of quality, 

which are mutually shifted of k time periods (xt and xt–k) have 

the correlation coefficient ϕ
k
. This means that autocorrelation 

function ACF should fall exponentially. If we expand the 

previous equation in the form 

1 1 2 2t t t tx x xξ φ φ ε− −= + + + ,                      (3) 

we get equation of second order autoregressive model AR(2). 

Generally, variable xt is directly dependent on the values 

preceding xt–1, xt–2, etc. in the autoregressive model AR (p). If 

we model the dependence of data using the random component 

εt, then we get moving average model MA (q). Moving 

average model first order has an equation: 

1t t tx µ ε θε −= + − .             (4) 

There is some correlation only between two values xt  

and xt–1. It can be described as follows: ρ1 = – θ / (1 + θ
2
). This 

corresponds to the shape of the autocorrelation function ACF 

[44]. For modeling of practical problems, it is often suitable to 

model compound containing both autoregressive and the 

moving averages component. The model is generally known as 

ARMA (p, q) [45]. ARMA of the first order, i.e., ARMA (1, 1) 

is described by the equation: 

1 1t t t tx xξ φ ε θε− −= + + − .                            (5) 

It is often suitable for chemical and other continuous 

processes, where many quality characteristics can be easily 

modeled by AR (1). Measurement errors are described by 

model’s random component we assume to be random and 

uncorrelated. The ARMA model assumes process stationarity, 

i.e., that the character quality reference values are around  

a stable mean. But often, in practice, there are processes (e.g. 

in the chemical industry), where the values of monitored 

variable are "running away". It is then convenient to model 

processes using appropriate model with the operator of 

backward difference ∇ , such as the ARIMA model (0, 1, 1) 

whose equation is 

1 1t t t tx x ε θε− −= + − .             (6) 

ARIMA are different from Shewhart model (
t tx µ ε= +  for 

t = 1, 2, …). However, if we put φ = 0 in the 

equation
1t t tx xξ φ ε−= + +  or 0θ =  in the equation 

1t t tx µ ε θε −= + − , we get the Shewhart model process. 

Another important step in the use of ARIMA models is the 

choice of the appropriate SPC control chart. When residuals 

testing are deemed not autocorrelated and coming from  

a normal distribution, it is possible to use them to verify 

whether or not the process is statistically stable. Because the 

number of observations equals one (original empirical 

values
tx  were detected by each unit) control charts for 

individual values and moving range takes priority. Location of 
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the mean value CL and upper and lower control limits (UCL, 

LCL) for the ARIMA chart for individual values can be 

determined from the formula 

( )0CL e= ≅ ,               (7) 

3

1,128
klUCL e R= + ,            (8) 

3

1,128
klLCL e R= − ,            (9) 

where 

e  is average value of residuals, 

klR  is average moving range. 

Values CL , UCL  and LCL  can be calculated as follows 

klCL R= ,                 (10) 

3, 267
kl

UCL R= ⋅ ,           (11) 

0LCL = .              (12) 

To increase the sensitivity of control charts ARIMA, it is 

recommended to use two-sided CUSUM control chart with the 

decision interval ±H or standard EWMA chart, both applied to 

the residuals of the model. If we pursue more quality 

characteristics simultaneously on a single product to multiple, 

we can apply Hotelling chart or CUSUM or EWMA charts for 

more variables [44]. 

B. CUSUM control chart  

CUSUM (Cumulative Sum) is a sequential analysis 

technique that is used in the detection of abrupt changes [32]. 

When applying CUSUM method, a diagram is constructed. 

On x axis of this diagram a selective order is recorded. On axis 

y test criterion values Yk are recorded. The value of test 

criterion after k-th selective yk can be defined by formula 

( ) ( )0 1 0 0

1

,  C 0,
k

k j k k

j

C x C xµ µ−
=

= − = + − =∑            (13)  

where k is the selective order k = 1, 2, ...), jx  is the selective 

average from values of regulated value in j-th selection (j = 1, 

2, …, k). The study of CUSUM will not answer the question 

whether the change of diagram progression signals  

a significant deviation (indicating a definable influence on 

process) or whether the influence is random. Therefore 

decision criteria need to be added.  

There are two basic types of criteria, through which  

a decision can be made, whether the process is statistically 

viable or not. These are: 

I. decision mask, 

II. decision interval. 

These procedures are described in detail in publication [7]. 

• CUSUM chart for individual values and for samples 

means from normally distributed data 

Values of xi are independent with the same normal 

distribution N(µ, σ2
) with the known population mean and with 

the known population standard deviation σ. We assume logical 

subgroups with the same volume n. Cumulative sum – 

CUSUM Cn is defined for individual values (n = 1) as:  

On a base of original scale: 

∑
=

−=
n

j

jn xC
1

)( µ .            (14) 

On a base of normal distribution where the mean µ = 0 and 

the standard deviation σ = 1: 

σ

µ )( −
= j

j

x
U , ∑

=

=
n

j

in US
1

.         (15) 

The CUSUM Cn is almost the same as CUSUM Sn measured 

in the units of standard deviation σ. Equation for Cn can be 

rewritten recurrently [20]: C0 = 0, Cn = Cn–1 + (xn – µ); and 

with the same principle for Sn: S0 = 0, Sn = Sn–1 + Un. 

Suppose that the original distribution of observed variable 

N(µ, σ2
)  changes into N(µ + δ, σ2

) distribution for integer t (at 

arbitrary moment). It means that the population mean µ will 

face a certain shift of δ.  

It also means that the shift starts at point (m, Cm) and grows 

linearly with the slope δ. But the population means shift can be 

more complicated. The CUSUM control chart can reflect all 

these changes [21]. 

• CUSUM for sample means  

We have considered mainly the individual values until now. 

Now, we will consider subgroups with m observations and 

calculate the sample means from subgroups. We have to work 

with the sample mean standard deviation 
m

x

σ
σ = . 

A shift of mean ∆ will not be measured in the units of σ but 

in the units of 
xσ  in this case. We will substitute the 

individual values of xi with the sample means 
jx  and the 

process standard deviation σ with the sample mean standard 

deviation 
xσ  in abovementioned formulas [22]. 

 

New Process Mean Estimate  

If there is a shift we can estimate a new process mean from 

the next formula:  

   

+
+I

0 I+

I
0 I

C
µ K+ pro C  > H

N
ˆ

C
µ K+ pro C  < H

N

µ
−

−
−


+

= 
 − −

,              (16) 

where N
+
  and  N

–
  is a number of  selected points from  

a moment [23], when
+
nC = 0, resp. when 

−
nC = 0. 

• Comparsion of CUSUM and Shewhart´s Control Charts 

This example shows practically sensitivity of the CUSUM 

control chart in comparison with the Shewhart´s control chart 

for the sample means. The CUSUM control chart detects 

process mean deviation towards the lower values (around the 

subgroup 20 – see Fig. 1) while the Shewhart´s control chart 

does not detect this deviation [21]. It does not detect a shift 

towards the upper values (around the subgroup 56). It only 
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detects a big shift around the subgroup 70 (see both Fig. 1 and 

Fig. 2) [22]. 

 

Fig. 1 Shewhart´s Control Chart. Source: QC Expert 2.5Cz 

 

Fig. 2 Control Chart CUSUM. Source: QC Expert 2.5Cz 

C. EWMA control charts 

 Similarly to CUSUM diagram, also EWMA diagram is 

feasible for situations in which the process is impacted by 

sudden, small but prevailing changes and the values of 

observed characteristic are not dependent. Unlike standard 

diagrams, the regulation bounds depend on the selective 

moment. 

 The author of the EWMA diagram is Roberts (1959) in 

[24]. This diagram works with test criterion Yk. The value after 

k-th selection is defined as follows: 

( ) ( ) ( )0

1

1 1
k

k k j

k j

j

y Y f xλ λ λ −

=

= − ⋅ + ⋅ − ⋅∑                 (17) 

for j = 1, 2, …, k and for 0 < λ < 1, f(xj) is the value of 

selective characteristic, k is the selection order, Y0 is the 

required level of distribution parameter of regulated value. 

When dealing with Shewhart regulation diagrams for 

individual values, we observed that the diagram for individual 

values is very sensitive to data non-normality in the sense that 

real, under the ARL (ARL0) control, would be significantly 

smaller than the expected value based on the assumption of 

normal distribution. Borror, Montgomery and Runger (1999) 

in [25] compared the behavior of ARL Shewhart diagrams for 

individual values and EWMA diagrams for the case of 

asymmetric distribution. Features of individuals control charts 

for Burr distributed and Weibull distributed data see in [31]. 

In the following text a specific gamma distribution 

representing the case of asymmetric distribution and t 

distribution representing symmetrical distribution  

N(0, 1) will be utilized. ARL0 values of Shewhart regulation 

diagrams for individual values and EWMA diagrams for these 

distributions are denoted in the following tables.  

Two aspects in these tables are bewildering. Firstly, even 

slight non-normality in distribution leads to significant 

decrease of ARL value in Shewhart diagram for individual 

values. Subsequently the number of false alarms increases. 

Secondly EWMA with λ = 0.05 or λ = 0.10, and appropriately 

selected regulation bound can work very well on both 

symmetric and asymmetric distribution. 

With parameters λ = 0.05 and K = 2.492 the ARL0 value for 

EWMA is approximately 8% of the limit emphasized by 

theory of normal distribution of value ARL0 = 370, with the 

exception of extreme cases [26]. 

 

Tab. 1 ARL values for the EWMA chart 

and a chart of individual values for different gamma 

distribution. Source: [26] 

   EWMA    Shewhart 

λ 0.05 0.1 0.2  1 

K 2.492 2.703 2.86   3.00 

Standard 370.4 370.8 370.5  370.4 

Gamma (4, 1) 372 341 259  97 

Gamma (3, 1) 372 332 238  85 

Gamma (2, 1) 372 315 208  71 

Gamma (1, 1) 369 274 163  55 

Gamma (5, 1) 357 229 131   45 

 

Tab. 2 ARL values for the EWMA chart 

and a chart of individual values for different t distribution. 

Source: [26] 

   EWMA    Shewhart 

λ 0.05 0.1 0.2  1 

K 2.492 2.703 2.86   3.00 

Standard 370.4 370.8 370.5  370.4 

t50 369 365 353  283 

t40 369 363 348  266 

t30 368 361 341  242 

t8 358 324 259  117 

t6 351 305 229  96 

t4 343 274 188   76 

 

Based on this information the properly designed EWMA is 

recommended as a control chart for individual values in a wide 

range of applications, particularly in process monitoring. It is 

almost a completely nonparametric (independent of 

distribution) procedure. In addition, EWMA charts are 

definitely better than Shewhart charts for individual values as 

well as for the features of the mean shift detection [26], [27].  
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V.  CHANGE POINT DETECTION USING STOCHASTIC DIFFERENTIAL 

EQUATIONS 

Change point estimation consists in the identification of the 

instant in which a change occurs in the parameter of some 

model. There are several approaches to the solution of this 

problem, and here we consider a least squares solution (see, 

e.g., [4], [5], [8]), but other approaches, such as maximum 

likelihood change point estimation, are also possible (see, e.g., 

[28], [34]). We assume we have a diffusion process
1
 solution 

to 

( ) ( )t t t tdX b X dt X dWθσ= + ,       (18) 

where b(·) and σ(·) are known functions and θ ∈Θ ⊂ℝ  is the 

parameter of interest. As in [36], given discrete observations 

from (18) on [ ]0, nT n= ∆ , we want to identify retrospectively 

if and when a change in value of the parameter θ occurred and 

estimate consistently the parameter before and after the change 

point. The asymptotics is 0n∆ →  as n → ∞  and 
nn T∆ =  

fixed.
2
 For simplicity, we assume that the change occurs at 

instant k0, which is one of the integers in 1, …, n. This is  

a problem of volatility change point estimation that frequently 

occurs in finance applications. We assume that 
1θ θ=  before 

the time change and 
2θ θ=  after the time change with 

1 2θ θ<  (but this does not matter in the final results). In order 

to obtain a simple least squares estimator, we use Euler 

approximation. So, from now on, we assume all the hypotheses 

necessary to have the Euler approximation in place. Namely, 

we can write the Euler scheme as 

( ) ( )( )1 1i i i n i i iX X b X X W Wθσ+ += + ∆ + −   

and introduce the standardized residuals 

( ) ( )
( )

( )1 1 .i i i n i i

i

n i n

X X b X W W
Z

X
θ

σ
+ +− − ∆ −

= =
∆ ∆

 
The Zi's are i.i.d. (independent and identically distributed) 

Gaussian random variables. The change point estimator is 

obtained as 

( ) ( )
1 2

2 2
2 2 2 2

0 1 2
,

1 1

ˆ arg  min min
k n

i i
k

i i k

k Z Z
θ θ

θ θ
= = +

  
= − + −  

  
∑ ∑ ,    (19) 

with, k = 2, …, n – 1. We denote by [x] the integer part of the 

real x, and sometimes we write [ ]0 0k nτ=  and [ ]k nτ= , 

( )0, 0,1τ τ ∈  to indicate the change point in the continuous 

timescale. Define the partial sums 

2

1

n

n i

i

S Z
=

= ∑ , 2

1

k

k i

i

S Z
=

= ∑ , 2

1

n

n k i

i k

S Z−
= +

= ∑ , 

and denote by 2

1
θ  and 2

2
θ  the initial least squares estimators 

of 2

1θ  and 2

2θ  for any given value of k in (19), 

 
1 For continuous-time observations this problem was studied in [9].  

A bayesian approach for discrete-time observations can be found in [35]. 
2 For ergodic diffusion processes and n∆n = T → ∞, under additional mild 

regularity conditions, the results mentioned here are still valid. 

2 2

1

1

1
,

k
k

i

i

S
Z

k k
θ

=

= = ∑  

and 

2 2

2

1

1
.

n
n k

i

i k

S
Z

n k n k
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These estimators will be refined once a consistent estimator 

of k0 is obtained. Denote by 2

kU  the quantity 

( ) ( )2 2
2 2 2 2 2

1 2

1 1

.
k n

k i i

i i k

U Z Zθ θ
= = +

= − + −∑ ∑  

Then, 
0k̂  is defined as 

2

0
ˆ arg  min .k

k
k U=  

To study the asymptotic properties of 2

k
U , it is better to 

rewrite it as 
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2 2 2
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,
n
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i
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, 

with 

.k
k

n

Sk
D

n S
= −  

This representations of 2

kU  is obtained by lengthy but 

straightforward algebra, and it is rather useful because 

minimization of 2

kU  is equivalent to the maximization of Vk 

and hence of Dk. So it is easier to consider the following 

estimator of k0 

( )( )
1

2
0

ˆ arg  max arg  max .
k k

k k
k D k n k V= = −

      
(20) 

As a side remark, it can be noted that, for fixed k (and under 

suitable hypotheses), Dk is also an approximate likelihood ratio 

statistic for testing the null hypothesis of no change in 

volatility (see, e.g., [4]). Once 
0k̂ , has been obtained, the 

following estimators of the parameters θ1 and θ2 can be used: 

0
ˆ2

1

0

ˆ
ˆ
k

S

k
θ = ,               (21) 

0
ˆ2

2

0

ˆ
ˆ

n k
S

n k
θ −=

−
.             (22) 

Next results provide consistency of 
0k̂ , 2

1
θ̂  and 2

2
θ̂  as well as 

their asymptotic distributions. 
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Fact 1 ([34]) Under 
0 1 2: 1H θ θ= = , we have that 

( )0

2

d

k

n
D W τ→ ,          (23) 

where ( ){ }0 , 0 1W τ τ≤ ≤  is the Gaussian stochastic process – 

Brownian bridge, which is useful when we need to model 

variable, which starts at some point, and that must return to  

a specific point at a specific time in the future. 

The asymptotic result above is useful to test if a change 

point doesn’t exist. In particular, it is possible to obtain the 

asymptotic critical values for the distribution of the statistic by 

means of the same arguments used in [34]. 

Fact 2 ([34]) The estimator 0
0

ˆ
ˆ

k

n
τ =  satisfies 

( ) ( )1
1/2 2 2

0 0 2 1
ˆ log

p
n O nτ τ θ θ

−−− = − .                  (24) 

Moreover, for any ( )0,1 / 2β ∈ , 

( )0 0
ˆ 0

p
nβ τ τ− → . 

Finally, 

( )0 0 2
2 2

2 1

1
ˆ

p
O

n
τ τ

θ θ

 
 − =
 − 

.       (25) 

It is also interesting to know the asymptotic distribution of 

0̂τ  for small discrepancies between 
1θ  and 

2θ . The case 

2 2

2 1nϑ θ θ= −  equal to a constant is less interesting because 

when 
nϑ  is large the estimate of k0 is quite precise. 

Assumption 1 0nϑ →  in such a way that
log

n
n

n

ϑ
→ ∞ . 

Assumption 1 and Fact 2 imply the consistency of 
0τ̂ . 

Fact 3 ([34]) Under Assumption 1, for 0n∆ →  as n → ∞ , 

we have that 

( )

( )
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2
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where ( )W u  is a two-sided Brownian motion, 

( )
( )
( )

1

2

, 0

, 0

W u u
W u

W u u

− <
= 

≥
,        (27) 

with W1 and W2 two independent Brownian motions and 2

nθɶ   

a consistent estimator for 2

1
θ  or 2

2
θ . 

Finally we have the asymptotic distributions for the 

estimators 2

1
θ̂  and 2

2
θ̂  defined in (21) a (22). We denote by 

0θ  

the common limiting value of 
1θ  and 

2θ . 

Fact 4 ([34]) Under Assumption 1, we have that 
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• Estimation of the change point with unknown drift  

When both ( )b x  and ( )2 xσ  are unknown, it is necessary to 

assume that at least ( )xσ  is constant, and hence we consider 

the stochastic differential equation 

( )t t tdX b X dt dWθ= + .         (30) 

Then ( )b x  can be estimated nonparametrically with 
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(31) 

and Zi are estimated as 

( )1 ˆˆ i i
i n i n

n

X X
Z b X+ −

= − ∆
∆

. 

Remark 1 In Stanton’s approach [34], the two estimators are 

nothing but Nadaraya-Watson kernel regression estimators of 

the following conditional expectations 
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( ) ( ){ }22
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In this approach, ( )b x  and ( )2 xσ  are seen as 

instantaneous conditional means and variances of the process 

when
0X x= . The two quantities can be rewritten, for fixed 

n∆  as 
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So if we have estimated residues Zi, in this case, we can use 

the following contrast to identify the change point: 
2 2

2 2
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i i
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We obtain the new statistic 
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and the change point is identified as the solution to 

0
ˆ ˆarg  max k

k
k D= . 

Consistency and distributional results mentioned in [34], [37] 

and [38]. 

 

This paper will be dealt with a change point problem for the 

volatility of a process solution to a stochastic differential 

equation, when observations are collected at discrete times. 

The instant of the change in volatility regime is identified 

retrospectively by maximum likelihood method on the 

approximated likelihood. For continuous time observations of 

diffusion processes Lee, Nishiyama and Yoshida (2006) in [9] 

considered the change point estimation problem for the drift. 

In the present work, there will be only assume regularity 

conditions on the drift process. 

VI. PROBLEM SOLUTION 

Most data analysis procedures and the resulting conclusions 

are dependent on fulfilling basic assumptions on which these 

procedures were based. If not met, all other standard 

procedures such as calculating an average, confidence 

intervals, percentiles, most tests, classical Shewhart control 

charts, design of models for the description of time series, etc., 

are questionable and impugnable. They usually provide 

incorrect results and conclusions. A typical breach of 

conditions for application of control by Shewhart charts or 

different technologies, but also for the construction of models 

describing time series, is shown in [41]. The assumptions must 

be verified by statistical tests, which involve the basic 

assumptions for statistical process control: 

 

• normal data distribution, symmetry, 

• constant mean of the process, 

• constant variance (standard deviation) of data, 

• independence, non-correlation of data, 

• absence of outliers and extreme values. 

 

If these assumptions are infringed, conventional regression 

methods for the time series analysis provide biased and often 

incorrect results. 

Let us now analyze the time series of O/N rate of the Slovak 

crown for the period 2000 – 2008 (used in [43]). For this 

purpose the ARIMA model will be used, which is applied if  

a resulting process is showing such autocorrelation and partial 

autocorrelation after the transformation of the integrated 

process using differentiation of d-th order that it is expressed 

in the form of stationary and invertible ARMA model (p,q). 

The course of time series is illustrated in the following figure. 

The graph shows that the time series is non-stationary, but it is 

not clear whether it contains a seasonal component. 

 

 
Fig. 3 Time series of O/N rate of the Slovak crown for the 

period 2000 – 2008. Source: Own Processing 

 

Non-stationarity of the time series is also confirmed by the 

shape of the ACF and PACF. ACF values fall very slowly and 

the first value, as well as the PACF, is close to one. The 

periodogram has a significant peak in the zero (non-seasonal) 

frequency. Seasonality indicates neither the ACF and PACF, 

or the periodogram. 

 
Fig. 4 ACF of the original time series. Source: Own Processing 

 

 
Fig. 5 PACF of the original time series. Source: Own 

Processing 

 

 
Fig. 6 Periodogram of the original time series. Source: Own 

Processing 
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The time series will be again stationarized by the I. non-

seasonal difference. Let us skip the elementary steps of the 

analysis and go directly to the analysis of two ideal models to 

describe this time series. The first model is after the power 

linearization ARIMA (1,1,2)c and the second model is after the 

logarithmic linearization of the original time series 

SARIMA(1,1,2)(1,1,1)c20. 

 

 
Fig. 7 Residual periodogram for ARIMA model (1,1,2)c. 

Source: Own Processing 

 

Residual periodogram for ARIMA model (1,1,2)c shows that 

residuals are stationary. Now the focus is on the extended 

SARIMA model (1,1,2) (1,1,1)c20, followed by tables of 

estimates and interpolation criteria and the very estimates of 

the model’s parameters. 

 

Tab. 3 Estimates of the interpolation criteria of SARIMA 

model (1,1,2)(1,1,1)
c
20. Source: Own Processing 

 Estimation Validation 

Statistic Period Period 

RMSE 0.536932 0.145012 

MAE 0.327448 0.140548 

MAPE 7.23435 10.2761 

ME 0.0380698 -0.140548 

MPE -0.398906 -10.2761 

 

Tab. 4 Estimates of parameters of SARIMA model 

(1,1,2)(1,1,1)
c
20. Source: Own Processing 

Parameter Estimate Stand. Error T P-value 

AR(1) 0.752851 0.021549 34.9367 0.000000 

MA(1) 0.850656 0.0291219 29.2102 0.000000 

MA(2) 0.112643 0.0264917 4.25202 0.000021 

SAR(1) 0.046946 0.021776 2.15587 0.031094 

SMA(1) 0.974709 0.001605 607.074 0.000000 

Mean -0.00000 0.0000172 -0.420 0.674417 

Constant -0.00000    

Estimated white noise variance = 0.0143047 

Estimated white noise standard deviation = 0.1196 

Box-Pierce Test 

Test based on first 24 autocorrelations 

Large sample test statistic = 23.3012 

P-value = 0.224336, AIC = -1.25429 

 

Interpolation criteria shows SARIMA (1,1,2)(1,1,1)c20 as 

much more suitable than ARIMA (1,1,2)c for the description 

of this time series. 

 

The figures below show graphs with the time series forecast, 

autocorrelation and partial autocorrelation functions of 

unsystematic component for estimated model and residual 

periodogram. 

 

 

Fig. 8 Graph of the time series with forecast and confidence 

interval for forecast. Source: Own Processing 

 

According to Akaike information criteria, the Box-Pierce 

test of autocorrelation of unsystematic component and 

interpolation criteria, SARIMA model (1,1,2)(1,1,1)c20 

appears to be better for the description of this time series than 

ARIMA model (1,1,2)c.  

The following figure illustrates the residual ACF and PACF 

of the estimated model. P-value of the Box-Pierce test and 

both of these graphs indicate non-autocorrelation of 

unsystematic component, thus the estimated model appears to 

be correct. 

 

 
Fig. 9 Residual ACF of SARIMA model (1,1,2)(1,1,1)c20.  

Source: Own Processing 
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Fig. 10 Residual PACF of SARIMA model (1,1,2)(1,1,1)c20.  

Source: Own Processing 

 

 
Fig. 11 Residual periodogram of SARIMA model 

(1,1,2)(1,1,1)c20. Source: Own Processing 

 

Now that we have information on the process due to  

a statistical model, it can be used to construct control charts 

for detecting changes in the mean. This detection will be 

demonstrated on the time series of Overnight values of the 

Slovak crown during 20 January 2000 – 16 June 2004. 

 

 
Fig. 12 EWMA control chart for mean shift detection with  

λ = 0.6. Source: Own Processing 

 

 
Fig. 13 CUSUM control chart for mean shift detection in 6σ. 

Source: Own Processing 

 

As evident from the previous images, the EWMA control 

chart and CUSUM were able to detect changes in the mean 

almost immediately (EWMA: 13 November 2002; CUSUM:  

4 September 2002). These are control charts with memory, 

therefore information on variability in the time series of 

SARIMA model (1,1,2)(1,1,1)c20 was used for parameter 

estimation to construct these diagrams very effectively. The 

ARIMA control chart detected a shift of mean and therefore 

high heteroscedasticity in 5 August 2002, which corresponds 

to fluctuations of Slovak crown. 

 

 
Fig. 14 ARIMA control chart for volatility change point 

detection. Source: Own Processing 

 

Then we look at the volatility change point detection using the 

SDEs least squares approach. 

 

 
Fig. 15 Overnight values change point analysis of Overnight 

values of the Slovak crown in the period 20 January 2000 – 16 

June 2004. Source: Own Processing 

 

All the analysis using SDEs have been done using the R 

statistical environment (R Development Core Team, 2009) and 

the package sde (see in [37]) and Yuima (see in [42]). 

 

Following is the output of the R programming language 

environment using the sde package. 
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$k0 

[1] 655 

$tau0 

[1] 655 (2 September 2002) 

$theta1 

[1] 0.07893081 

$theta2 

[1] 0.124977 

 

Looking at the previous figure, another change point may be 

present. So we reanalyze the first part of the series to spot the 

second change point. 

 
$k0 

[1] 276 

$tau0 

[1] 276 (23 February 2001) 

$theta1 

[1] 0.05829864 

$theta2 

[1] 0.08956524 

 

Both change points (23 February 2001 and 2 September 

2002) correspond to fluctuations of Slovak crown. 

VII. DISCUSSION 

Most traditional control charting procedures are grounded 

on the assumption that the process observations being 

monitored are independent and identically distributed. With 

the advent of high-speed data collection schemes, the 

assumption of independence is usually violated. That is, 

autocorrelation among measurements becomes an inherent 

characteristic of a stable process. This autocorrelation causes 

significant deterioration in control charting performance. To 

address this problem, several approaches for handling 

autocorrelated processes have been proposed. The most 

popular procedure utilizes either a Shewhart, CUSUM or 

EWMA chart of the residuals of the appropriately fitted 

ARMA model. However, procedures of this type possess poor 

sensitivity especially when dealing with positively 

autocorrelated processes. As an alternative, we have explored 

the application of the statistics used in a time series procedure 

for detecting outliers and level shifts in process monitoring. 

The study focused on the detection of level shifts of 

autocorrelated processes with particular emphasis on the 

important AR(1) model. The results presented showed that 

time series charts are found to be sensitive in detecting small 

shifts and we utilize the fact that these control charts can be 

used in certain situations where the data are autocorrelated.  

As for the two sub-series identified by the change point 

estimate and estimators of these parameters: both are 

consistent and asymptotically normal at the usual rate n , with 

n the number of observations. The least squares estimator 
0̂

τ  

seems to have a good performance in terms of bias and 

variability for models with constant or bounded drift, while it 

behaves badly in the presence of unbounded drift as time T 

grows. 

VIII.  CONCLUSION 

In financial markets it is crucial to have an accurate 

description of the volatility of the market and/or the different 

financial products. All pricing formulas make use of the 

historical values of the volatility as a fundamental ingredient. 

It is well known, however, that volatility is not constant over 

time, even short time, and thus the monitoring of the volatility 

is one of the primary tasks in empirical finance. The statistical 

way to monitor structural changes is called change point 

analysis or change point estimation. 

The paper dealt with the control charts and SDEs 

applications in financial data. This kind of data is very 

sensitive to mean shifting and strong autocorrelation appears 

very often. Therefore we put a focus on dynamic regulation 

charts CUSUM, EWMA and ARIMA models. We highlighted 

the versatility of control charts not only in manufacturing but 

also in managing the financial stability of financial flows.  

A refined identification of the type of intervention affecting the 

process will allow users to effectively track the source of an 

out-of-control situation, which is an important step in 

eliminating the special causes of variation. It is also important 

to note that the proposed procedure can also be applied when 

dealing with a more general autoregressive integrated moving 

average model. Autocorrelated process observations mainly 

arise under automated data collection schemes. Such collection 

schemes are typically controlled by software upgradeable to 

handle SPC functions. Under such an integrated scheme, the 

usefulness of the proposed procedure will be optimized. Based 

on information from chapter 4, we would recommend  

a properly designed time series control charts as control charts 

for individual measurements in a wide range of applications. 

They are almost perfectly nonparametric (distribution-free) 

procedures. 

Stochastic differential equations are among the most used 

stochastic models to describe continuous time financial time 

series. Although data are collected in discrete time, the 

underlying structure of the continuous model allows for very 

detailed analysis of these data. In the analysis of the Slovak 

crown, the approach revealed (unlike time series control 

charts) another change point in the structure of variability, thus 

appearing to be preferable for the change point detection. It 

also shows that the use of SDEs provides robustness in the 

estimation results.  
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